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An expansion of the corticothalamic transfer function into eigenmodes and resonant

poles is used to derive a simple formula for evoked response potentials (ERPs) in

various states of arousal. The transfer function corresponds to the cortical response

to an external stimulus, which encodes all the information and properties of the linear

system. This approach links experimental observations of resonances and characteristic

timescales in brain activity with physically based neural field theory (NFT). The present

work greatly simplifies the formula of the analytical ERP, and separates its spatial part

(eigenmodes) from the temporal part (poles). Within this framework, calculations involve

contour integrations that yield an explicit expression for ERPs. The dominant global mode

is considered explicitly in more detail to study how the ERP varies with time in this mode

and to illustrate the method. For each arousal state in sleep and wake, the resonances

of the system are determined and it is found that five poles are sufficient to study the

main dynamics of the system in waking eyes-open and eyes-closed states. Similarly, it is

shown that six poles suffice to reproduce ERPs in rapid-eye movement sleep, sleep state

1, and sleep state 2 states, whereas just four poles suffice to reproduce the dynamics in

slow wave sleep. Thus, six poles are sufficient to preserve the main global ERP dynamics

of the system for all states of arousal. These six poles correspond to the dominant

resonances of the system at slow-wave, alpha, and beta frequencies. These results

provide the basis for simplified analytic treatment of brain dynamics and link observations

more closely to theory.

Keywords: neural field theory, brain dynamics, evoked response potentials, brain resonances, eigenmodes

1. INTRODUCTION

Evoked response potentials (ERPs) reflect the electrical activity of the brain triggered by sensory
stimuli or events (Niedermeyer and Lopes Da Silva, 1999). ERPs have been widely used to provide
windows on cognitive processes such as attention and perception (Luck and Kappenman, 2013).
Most notably, attentional modulation enhances both early and late features of an ERP (Hillyard
and Anllo-Vento, 1998; Herrmann and Knight, 2001; Vázquez Marrufo et al., 2001; Yamagishi
et al., 2003). It has been shown that many characteristics of the stimulus and subject affect ERP
waveforms (Picton et al., 2000; Womelsdorf et al., 2007; Woodman, 2010), notably including the
state of arousal of the subject, with very different ERPs in sleep than wake, for example (Feng et al.,
2012).
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Traditional phenomenological analysis reduces ERPs to a
small set of “components” defined by amplitudes and latencies
(time delays after the stimulus) each of which correspond to a
peak or trough in the waveform (Luck, 2014); each component is
presumed to be generated by a group of excitatory or inhibitory
neurons that have a certain cognitive role (Luck and Kappenman,
2013), but there is no explicit link to physiology and it is common
to omit most data points and focus on only amplitudes and
latencies of a few components. Moreover, it has been widely
recognized that ERPs can be treated as impulse responses whose
building blocks are damped sinusoids that reflect the dynamics
of the underlying physical system that generates them (Kelly and
Reilly, 1983).

Over the last 20 years, many quantitative brain studies have
been performed based on a corticothalamic neural field theory
(NFT) (Wright and Liley, 1996; Robinson et al., 1997, 2002,
2004, 2005). It has been shown that much brain activity is
approximately linear and that ERPs can thus be described by a
system transfer function that describes the response to a delta
function input (Rennie et al., 1999; Robinson et al., 2005; Kerr
et al., 2008). Such a function can also be used to calculate
responses to arbitrary stimuli, and to derive other activity-
dependent quantities such as correlations (Robinson et al., 2018;
Robinson, 2019). Corticothalamic NFT averages over scales of a
few tenths of a mm and has been an essential tool to accurately
predict significant electroencephalographic (EEG) features such
as ERPs that have been previously calculated and verified against
experiment (Rennie et al., 1999; Robinson et al., 2005; Kerr et al.,
2008). The corticothalamic model introduces physiologically
based parameters that correspond to different physical quantities,
and each real brain state is described by a particular set of
parameters; consequently, transfer functions can be related to
underlying physiology via NFT.

Within NFT, the transfer function can be expanded in
terms of eigenfunctions which are the natural modes of the
brain (Robinson et al., 1997, 2001) and the building blocks
of normal brain dynamics (Pinotsis et al., 2013; Robinson
et al., 2016). Eigenmodes of the corticothalamic system manifest
on the cortical surface at length scales detectable with EEG,
magnetoencephalography (MEG), and fMRI. Using NFT these
modes can be described in terms of physiological parameters such
as corticocortical, intrathalamic, and corticothalamic feedback
loop strengths and inverse synaptodendritic decay and rise times
(Gabay and Robinson, 2017). Such a modal perspective has
yielded fruitful results regarding dynamic brain connectivity via
spectral analysis (Gabay and Robinson, 2017; Gabay et al., 2018).

NFT expressions for the time dependence of activity are
relatively complicated, as are the expressions for the transfer
functions, which involve transcendental equations and are not
analytically tractable. This poses a problemwhen comparing with
experimental results that often involve expressions in terms of
characteristic frequencies and time delays. Hence, it is desirable
to recast the outcomes of NFT in terms of observable quantities
in order to bridge more directly between theory and experiment.
Recent work has begun to address this problem via rational
function approximations to the temporal transfer function that
express it compactly in terms of a small number of poles, as

is often done in control theory (Babaie-Janvier and Robinson,
2018). Interestingly, this approach has yielded interpretations
of EEG resonances in terms of proportional-integral-derivative
(PID) filters that are commonly used in engineering control
systems for predicting the future course of inputs within their
corresponding frequency ranges (Kwakernaak and Sivan, 1972;
Ogata, 2010; Babaie-Janvier and Robinson, 2019).

In the present work we use NFT to analyze cortical activity
by representing the arousal states of the brain in terms of its
normal modes. This approach has also been used to approximate
brain activity by decomposing the transfer function first in terms
of eigenfunctions (spatial modes) then the temporal response of
each eigenfunction in terms of poles (resonant frequencies), but
not many results about resonances are available in the literature,
except for waking states of arousal (Gabay et al., 2018). In order
to better understand how many poles to include for accurate
representations, we systematically investigate the modal-polar
representation of the transfer function in various states of arousal
and provide parameters of the poles in each state for the first time.
Hence, the present work provides a modal-polar representation
of corticothalamic NFT that bridges between the mathematical
NFT and the applied work done by neuroscientists in measuring
resonances and impulse responses.

In this paper, the temporal transfer function is decomposed
in terms of poles or resonances to derive a general formula
for ERPs which greatly simplifies their analytical form. This
framework simplifies NFT results, and links NFT to observables
by expanding previous work that has calculated the poles for
the waking states only (Gabay et al., 2018). It also enables
observed resonances to be interpreted in terms of the transfer
function’s poles, and hence data filters of a type previously
shown to implement prediction and attention (Babaie-Janvier
and Robinson, 2018, 2019). Section 2 provides an overview of the
corticothalamic NFT. In section 3, we illustrate the derivation of
ERP formula based onmodal-polar expansion. Then, in section 4
we show and discuss our results. Finally, section 5 summarizes
our work.

2. MATERIALS AND METHODS

In this section we first review the relevant corticothalamic
NFT in section. 2.1, based on previous studies (Robinson
et al., 1997, 2002; Kerr et al., 2008; Babaie-Janvier and
Robinson, 2018; Gabay et al., 2018). Further details can be
found in the references cited. Then, we use the modal-
polar representation of the corticothalamic NFT as a tool for
finding an explicit expression of the transcendental transfer
function in terms of the brain’s natural modes and their
corresponding poles. Finally, in section 2.3 we discuss the
spectral features and parameters characterizing each arousal
state.

2.1. Corticothalamic Neural Field Theory
Neural field theory averages neural quantities over scales of a
few tenths of a millimeter. It has been widely used to interpret
and reproduce key features of experimental findings in EEG and
fMRI. The neural field model consists of cortical excitatory (e)
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and inhibitory (i) populations, thalamic specific relay populations
(s), thalamic reticular populations (r), and external sensory
inputs (n). This model incorporates key anatomic connectivities
between those populations, as shown in Figure 1, where φab is
the mean activity field reaching population a due to signals from
population b. The strength of connection to population a from
population b is Robinson et al. (2005)

νab = sabNab, (1)

where sab is the mean time-integrated strength of the response
in neurons a per incoming signal from neurons b, and Nab is the
mean number of synapses to neurons a from b.

It is found that population a’s average firing rate Qa is linked
to the corresponding average membrane potential Va, relative to
resting, by a nonlinear sigmoid function

Qa = S(Va) =
Qmax

1+ exp[−(Va − θ)/σ ′]
, (2)

where Qmax is the maximum firing rate, θ is the mean
threshold voltage, and σ ′π/

√
3 is the standard deviation of the

threshold distribution.
Due to synaptodendritic dynamics and soma capacitance,

presynaptic inputs b from different types of neurons a are

FIGURE 1 | Schematic diagram of the corticothalamic model (Gabay and

Robinson, 2017) that incorporates key anatomic connectivities between neural

populations, where φab is the mean activity field reaching population a due to

signals from population b. There are two cortical populations of excitatory (e)

and inhibitory (i) neurons, and two thalamic populations corresponding to the

thalamic reticular nucleus (r) and the thalamic relay nuclei (s).

summed after being filtered and smeared out in time, giving rise
to the potential Va such that

Va(r, t) =
∑

b

Vab(r, t). (3)

We can convert from the signal/stimulus to the population
response using the following equation:

Dα(t)Vab(r, t) = νabφab(r, t − τab), (4)

where Dα is the wave propagation operator, given by

Dα(t) =
1

αβ

d2

dt2
+

(

1

α
+

1

β

)

d

dt
+ 1, (5)

where r is the position vector on the brain, 1/β and 1/α are
the rise and decay times, respectively, of the potential at the cell
body elicited by an impulse response at the dendritic synapse,
and τab is the time delay due to anatomical separations between
neural populations a and b, as specified in Table 1. The only
nonzero time delays correspond to propagation time from cortex
to thalamus and vice versa (τab ≈ 0 in the case of intrathalamic
and intracortical connections).

The mapping of the source firing rates Qb(r, t) into the axonal
signal is achieved within the following equations (Robinson et al.,
1997)

Dab(r, t)φab(r, t) = Qb(r, t), (6)

Dab(r, t) =
1

γ 2
ab

∂2

∂t2
+

2

γab

∂

∂t
+ 1− r2ab∇

2, (7)

which describes the propagation of a mean activity field φab(r,t)
that obeys a damped wave equation where γab = vab/rab is
the temporal damping rate, rab is the mean characteristic range
of axons to population a from population b, and vab is the
propagation velocity in axons to population a from population b.

The mean axonal ranges for all populations except for
excitatory cortical neurons are very short so we can write rab ≈ 0
for b = i, r, s, yielding Dab = 1 for these neural populations.
Let us assume that the number of intracortical synapses is
proportional to the number of neurons involved, then Nib =
Neb for all b (Wright and Liley, 1996; Robinson et al., 1997;

TABLE 1 | Nominal parameters of corticothalamic neural field theory based on

previous work (Babaie-Janvier and Robinson, 2019).

Symbol Quantity Value Units

α Synaptodendritic decay rate 80 s−1

β Synaptodendritic rise rate 320 s−1

τes Thalamocortical axonal delay 0.02 s

τse Corticothalamic relay axonal delay 0.06 s

γee Cortical damping rate 116 s−1

ree Excitatory axon range 0.086 m
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Braitenberg and Schüz, 1998). We also assume that the input
stimulus φsn is not too large such that the system has a fixed
point with low firing rates (Robinson et al., 2002). Hence, we
can apply linear approximation where we henceforth treat each
dynamic quantity (φab,Qa,Va) as a linear perturbation from its
steady state value, which is denoted by the superscript (0). Then

Qa(r, t) = ρaVa(r, t), (8)

where

ρa = S
′
(

V(0)
a

)

, (9)

is the derivative with respect to voltage of the sigmoid function
evaluated at the steady state.

By taking the Fourier transform of the above equations, we get

Vab(k,ω) = L(ω)νabφab(k,ω)e
iωτab , (10)

L(ω) =
(

1−
iω

α

)−1
(

1−
iω

β

)−1

, (11)

Dab(k,ω)φab(k,ω) = Qb(k,ω), (12)

where k is the wave vector and L(ω) embodies a low-pass filter
response function. ActivityQb generates fields of activity φab that
propagate through the brain to affect populations a. We express
the firing rate φee in terms of the external stimulus φsn via the
transfer function

T(k,ω) =
φee(k,ω)

φsn(k,ω)
, (13)

= L2GesGsne
iωτes

(1−L2GsrGrs)(1−GeiL)

1

k2r2ee+q2(ω)r2ee
, (14)

where we assign

q2(ω)r2ee =
(

1−
iω

γee

)2

−
1

1−GeiL

[

LGee +
L2Ges(Gse+LGsrGre) exp[iω(τes+τse)]

1−L2GsrGrs

]

.

(15)

and Gab is the gain of responses in population a due to signals
from population b such that Gab = ρaνab. The above form
of the transfer function is transcendental, which is not easy to
work with and does not link easily to observable features such as
resonances in the EEG spectrum, so we seek to simplify it via the
approximations below. Note that, in a linear system, all the other
φab are linearly related to φee.

Let D′(ω) = q2(ω)r2ee, then in the absence of external stimulus
Equation (14) yields

D′(ω)φee = −r2ee∇
2φee, (16)

where ∇2 is the Laplace-Beltrami operator.
We analyze the spatiotemporal dynamics of the brain in terms
of discrete modes labeled η. To solve Equation (16) for these
eigenmodes, we introduce the ansatz

φee = uη(r)e
−iωηt , (17)

where uη(r) represents the spatial eigenmode on the cortical
surface oscillating at an eigenfrequency ωη. Substituting
(Equation 17) into (Equation 16) and using separation of
variables yields the Helmholtz equation for the spatial eigenmode
(Gabay and Robinson, 2017)

∇2uη(r) = −k2ηuη(r), (18)

where uη(r) are the eigenmode solutions of the equation, kη are
the wavenumbers and k2η are the eigenvalues. By substituting the

eigenvalues k2η from Equation (18) into the dispersion relation

k2η + q2η(ω) = 0, (19)

we get

D′
η(ω) = −k2ηr

2
ee. (20)

There are an infinite number of solutions of the dispersion
relation because it is transcendental, although, as has been
previously shown, a small number dominate the dynamics. These
solutions correspond to the eigenfrequencies of the eigenmodes
uη(r) and they correspond to the poles of the transfer function
T(k2η,ω) (Gabay et al., 2018).

2.2. Modal-Polar Expansion
The transfer function represents the cortical response to an
external stimulus. It encodes all the properties of the linear
system. By expanding the transfer function in terms of modes,
we can decompose (Equations 13, 14) into two separate parts:
the modal part which is spatial, and the temporal part, as in
Equation (17). Separation of variables is more general, but if we
assume that the transfer function is spatially symmetric, then the
set of eigenmodes uη is complete and orthonormal, which means
that any connectivity or activity whatsoever can be expressed in
terms of uη (Robinson et al., 2018), as

T(r, r′,ω) =
∑

η

uη(r)u
∗
η(r

′)θη(ω), (21)

where uη(r) are the eigenmodes, and θη(ω) is the temporal part of
the transfer function defined in Equation (23). Also, we assume
that the brain is a static network on the timescales of interest,
then the transfer function depends on the time difference t − t0
(Robinson, 2019); i.e.,

T(r, t; r0, t0) = T(r, r0, t − t0). (22)

Because the dispersion relation in Equation (20) is
transcendental, it has an infinite number of solutions. This
means that there are infinite number of poles (eigenfrequencies)
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for the corresponding eigenmode uη(r). However, transfer
functions are ratios of exponential polynomials of −iω. Then,
applying rational approximation enables us to write the
transcendental transfer function in Equation (15) in the form
(Gabay et al., 2018)

θη(ω) ≈
∑m

p=0 Bp(k
2
η)(−iω)p

∑n
q=0 Aq(k

2
η)(−iω)q

, (23)

the above rational approximation is Padé approximation of order
(m/n) which is used to convert the transcendental transfer
function into a rational polynomial (Equation 23), wherem and n
are the degrees of the numerator and denominator, respectively,
and n > m (Golub and Van Loan, 1983). The coefficients Bp and
Aq are real and depend on k2η (the eigenvalue of the mode η),
and n represents the number of poles where the denominator
vanishes. Increasing accuracy is attained as we consider more
poles in the expression. However, an important aim is to find the
smallest number of poles that retains the main dynamics of the
system while maintaining a high accuracy. Note that the form
in Equation (23) has many advantages because of its analytic
simplicity and pole structure (Gabay et al., 2018), as we see
below.

Applying partial fraction decomposition of the rational
approximate transfer function in Equation (23) yields (Varga,
1991; Babaie-Janvier and Robinson, 2018)

θη(ω) ≈
n

∑

j=1

rηj(k
2
η)

ω−ωηj(k2η)
, (24)

where rηj and ωηj are the residues and poles, respectively, and
we truncate the sum at j = n. We assume that the modes
are nondegenerate with wave numbers kη and have complex
eigenfrequencies ωηj. The resonant frequencies are of the form
ωηj = �ηj − iγηj, where �ηj and γj are real and represent the

angular frequency and damping rate, respectively, of the jth pole
at the ηth mode. We omit the explicit dependence on k2η, for
simplicity, and write T for mode η as θη(ω) in accordance with
Equation (21). Then,

θη(ω) ≈
n

∑

j=1

rηj

ω−ωηj
. (25)

The form (21) with the above expression of θη(ω) is termed
modal-polar representation of corticothalamic transfer function.

2.3. Arousal State Characterization
In this section we apply our methods to arousal states that
correspond to the levels defined by Rechtschaffen and Kales
(1968): wake (W) which includes both the eyes-open (EO) and
eye-closed (EC) states; sleep state 1 (S1) which refers to light
sleep; sleep state 2 (S2) which is a deeper level of sleep; slow-
wave sleep (SWS) which is the deepest level; rapid-eye movement
(REM); and sleep spindles that Rechtschaffen and Kales (1968)
defined them as “a burst of oscillatory brain activity visible
on an EEG that occurs during S2.” In order to distinguish

between each arousal state, we examine its corresponding EEG
power spectrum. For normal adult humans, the frequency is
conventionally divided into the following bands (Niedermeyer
and Lopes Da Silva, 1999; Buzsáki and Draguhn, 2004): infraslow
oscillations (0.01–0.1 Hz); delta (1.5–4 Hz); theta (4–7.5 Hz);
alpha (7.5–13 Hz); spindle (11–16 Hz); and beta (13–30 Hz).
The frequencies between 0.1 and 1.5 Hz are referred to as
slow-waves, and they are characteristic waves in the delta
band. Buzsáki and Draguhn (2004) divided these slow-wave
frequencies into four classses (slow 1, slow 2, slow 3, and slow
4).

The waking EC state is distinguished by a distinctive strong
alpha peak, whereas the waking EO state has a weaker alpha
peak but similar alpha-band power (Rechtschaffen and Kales,
1968; Niedermeyer and Lopes Da Silva, 1999; Chiang et al.,
2008). Eventually, as we move from the waking EC to S1,
the alpha peak strength decreases significantly with an increase
in the delta power, which continues to rise in the deep
sleep states (Iber et al., 2007; Van Albada and Robinson,
2013).

Over the last 25 years, it has been shown that the changes
in peak and trough timings and amplitudes are a natural
consequence of the dominant EEG frequencies in the various
states of arousal. In this paper, we are modeling what the impulse
response would be in the various background EEG states, which
is relevant if an external impulsive stimulus is applied, as in
ERP experiments. This approach has been successfully used to
model ERPs in multiple previous studies, however, the new
technique in this framework is the use and verification that a few-
pole approximation suffices to produce the same results, thereby
leading to a more compact representation.

The responses of the system transfer functions for all
populations are based on the nominal parameters shown in
Tables 1, 2. The gains in Table 2 were derived by Abeysuriya
et al. (2015) by fitting NFT predictions to experimental EEG
spectra. For wake states, they used a data set of 2100 subjects with
EEG recordings from the Brain Resource International Database,
an archive of electrophysiological and psychophysiological
measures, psychometric tests, and demographics (Gordon
et al., 2005). For sleep states, they used manually scored
polysomnograms from healthy controls (Wang et al., 2005;
D’Rozario et al., 2013). These are spontaneous parameters and fits
to observed ERPs could also be done using the same approach.
Note that in Table 2, spindles are shown in one column with
different gain parameters. Although spindles are considered to
characterize Stage 2 sleep, previous findings suggest that spindles
can be considered as transient substates and can span a different
region of parameter space than simply S2 does (Abeysuriya
et al., 2014). A state between SWS and Spindle would mix
characteristics and produce a k-complex, a gallery of examples of
these intermediate waveforms was shown in Figure 1 in Zobaer
et al. (2017). Spindle dominates when that pole is only weakly
damped; likewise, for slow waves. There is a region of parameter
space where both poles are weakly damped and both oscillations
can be seen. Figure 7 in Robinson et al. (2005) represents the
stability zone and shows that the SWS and spindle zones meet.
Gain parameters can in general be modulated by local feedback
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between populations in response to incoming stimuli, which
has been useful for analyzing how evoked responses are shaped
by attention (Babaie-Janvier and Robinson, 2020). Hence, we
could tweak the parameters, but the core aim in this work is
to determine how many poles are required to get a reasonable
approximation to analytically predicted ERPs for the same
parameters over the whole range of arousal states. Parameters
could be changed to account for the fact that ERPs may be
generated by a subsystem with somewhat different properties, for
example (Robinson, 2005). However, the gains remain fixed in
the present work which focuses on the theoretical ERP forms
and their simplifications. However, the gains remain fixed in
the present work which focuses on the theoretical ERP forms
and their simplifications. It should be noted that these model
parameters correspond to representative brain states from each of
the sleep stages, where each sleep stage is associated with a range
of parameters, reflecting individual differences in EEG between
subjects at the same arousal stage (Abeysuriya et al., 2015).

3. RESULTS

This section contains two sets of results: new theoretical
developments and application to states of arousal. In the first
part, we derive a simple expression for the ERP based on the
modal-polar transfer function. In the second part, we apply the
results to the different arousal states by plotting the locations of
poles for different cases of number of poles and finding the root
mean square error to study the convergence of T(f ) (where the
frequency in Hz is f = ω/2π) and ERP(t) to their exact results.
This enables us to estimate the number of poles needed to attain
high accuracy in studying each arousal state.

3.1. ERP Derivation
For simplicity, throughout the present work we restrict attention
to the spatially uniform global mode (k2η = 0), because this mode
has the lowest damping rate and is the least stable, so it is the
most easily excited and dominates the response (Robinson, 2003;
Gabay and Robinson, 2017).

TABLE 2 | Gain parameters used in the present work based on previous studies

from Abeysuriya et al. (2015) for the EO, EC, REM, S1, S2, SWS, and Spindles

arousal states.

Gain EO EC REM S1 S2 SWS Spindles

Gee 10.50 2.07 5.87 7.45 16.86 19.52 18.52

−Gei 13.22 4.11 6.61 8.30 17.93 19.74 18.96

Ges 1.21 0.77 0.21 0.31 3.89 5.30 2.55

Gse 5.78 7.77 0.66 1.67 0.07 0.22 0.73

−Gsr 2.83 3.30 0.28 0.40 0.14 0.22 0.26

Gsn 14.23 8.10 0.68 3.90 2.38 1.70 2.78

Gre 0.85 0.66 2.08 7.47 4.96 1.90 4.67

Grs 0.25 0.20 4.59 4.44 8.33 1.35 16.92

The ERP for a stimulus at (r0, t0) is identical to the transfer
function; i.e.,

ERP(r, r0, t) = T(r, r0, t − t0). (26)

If we let t0 = 0 without loss of generality and Fourier transform,
then

ERP(r, r0,ω) = T(r, r0,ω), (27)

so

ERP(r, r0,ω) ≈
∑

η

uη(r)u
∗
η(r0)

n
∑

j=1

rηj

ω−ωηj
. (28)

Applying an inverse Fourier transform we get

ERP(r, r0, t) =
∑

η

uη(r)u
∗
η(r0)θη(t), (29)

ERP(r, r0, t) ≈
∑

η

uη(r)u
∗
η(r0)

n
∑

j=1

∫

dω

2π
e−iωt

rηj

ω−ωηj
, (30)

where

θη(t) ≈
∑

j=1n

θηj(t) =
n

∑

j=1

∫

dω

2π
e−iωt

rηj

ω−ωηj
, (31)

is the temporal part of the ERP due to the mode η.

3.1.1. Integration Contour
In this section, we evaluate Equation (31) by contour integration.
The damping rate must be real and positive in a stable system,
so Im(ωηj) < 0, as shown in Figure 2, and the appropriate
integration contour lies in the negative imaginary half-plane

FIGURE 2 | Schematic of the transfer function poles (dots) within the contour

of integration comprising the real axis between −R and R and the semicircular

arc C.
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of complex angular frequency and encloses all n poles being
considered. Then

∮

dω

2π
e−iωt

rηj

ω−ωηj
= lim

R→∞

∫ R

−R

dx

2π
e−ixt

Re(rηj)

x−Re(ωηj)

+ lim
R→∞

∫

C

dω

2π
e−iωt

rηj

ω−ωηj
. (32)

By Jordan’s Lemma (Mitrinović, 1984),

lim
R→∞

∫

C

dω

2π
e−iωt

rηj

ω−ωηj
= 0. (33)

So
∮

dω

2π
e−iωt

rηj

ω−ωηj
= lim

R→∞

∫ R

−R

dx

2π
e−ixt

Re(rηj)

x−Re(ωηj)
. (34)

3.1.2. Cauchy Residue Theorem
The integrand of θηj(t) is analytic except at the frequencies ωηj,
and the integral is over the closed contour in Figure 2, Cauchy’s
residue theorem then implies

∮

dω

2π
e−iωt

rηj

ω−ωηj
= −i

∑

ωηj

Res

[

rηje
−iωt

ω−ωηj

]

, (35)

where Res denotes the residue of the function in brackets in
Equation (35) and the sum is over all n poles.

For nondegenerate modes, there are only simple poles at ω =
ωηj, and the residue is

lim
ω→ωηj

(ω − ωηj)
rηj e−iωt

ω−ωηj
= rηj e

−iωηjt . (36)

Remember that we have been setting t0 = 0, and writing t instead
of t− t0 when evaluating the temporal part of the ERP. Thus, the
general form of the temporal part of the ERP for arbitrary t0 is

θηj(t) ≈ −i

n
∑

j=1

rηje
−iωηj(t−t0) = −i

n
∑

j=1

rηje
−i�ηj(t−t0)e−iγηj ,

(37)
for t > t0, and θηj(t) = 0 for t < t0 to ensure causality, where
ωηj,�ηj, and γηj are defined in section 2.2.

3.1.3. Pairing Up Poles
In general, the poles of a transfer function can be grouped in
pairs, such that each pair generates a real response in the time
domain (Babaie-Janvier and Robinson, 2018). There are two
types of pairs: the first type has two poles with the same damping
rate (γηj) and equal but opposite natural frequency (�ηj), and
the second type consists of two pure imaginary poles; paired
for mathematical convenience. For simplicity, we call the first
type oscillatory poles, and the second type purely damped, as
illustrated in Figure 3. Accordingly, the temporal part of the ERP
is

θη(t) =
∑

O

IηO(t)+
∑

D

QηD(t), (38)

FIGURE 3 | Transfer function poles (dots) in the Fourier space for the global

mode in the human waking state. Blue and red dots correspond to oscillatory

poles and purely damped poles, respectively.

where IηO(t) is the sum of θη(t) over a single pair of oscillatory
poles labeled o and o′ such that O = [o, o′], and QηD(t) to a pair
of purely damped poles labeled d and d′ such that D = [d, d′].
Note that the total number of poles n should be even in order to
group them in pairs in our derivation. In the case when we retain
an odd number of poles all the poles are paired except one purely
damped pole.

To calculate IηO(t), we apply the reality condition (Howell,
2001; Babaie-Janvier and Robinson, 2018)

ωηo′ = −ω∗
ηo, (39)

and get

ωηo = �ηo − iγηo, (40)

ωηo′ = −�ηo − iγηo. (41)

Then

IηO(t) = −ie−γηot
[

rηoe
−i�ηot + rηo′e

i�ηot
]

. (42)

Also, we have

rηo′ = −r∗ηo, (43)

and can write

rηo = |rηo|e−iψηo , (44)

tan(ψηo) =
Im(rηo)

Re(rηo)
, (45)

where ψηo is the complex argument of rηo, so

IηO(t) = ie−γηot|rηo|
[

ei(ψηo+�ηot) − e−i(ψηo+�ηot)
]

, (46)

= −2|rηo|e−γηot sin(�ηot + ψηo), (47)
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FIGURE 4 | Location of poles for 4-pole (blue triangles), 5-pole (red rhombuses), 6-pole (green squares), 8-pole (purple circles), and 10-pole (black crosses)

approximations to the transfer function. (A) EO state, (B) EC state, (C) REM state, (D) S1 state, (E) S2 state, (F) SWS state, and (G) Spindles state.
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which is a real response, as required.
Now consider the case of purely damped modes with

�ηj = 0.

Then

ωηd = −iγηd, (48)

ωηd′ = −iγηd′ . (49)

So

QηD(t) = −i
(

rηde
−γηdt + rηd′e

−γηd′ t
)

. (50)

Note that rηd and rηd′ are pure imaginary here, so

QηD(t) = Im(rηd)e
−γηdt + Im(rηd′ )e

−γηd′ t , (51)

which is also a real response. Finally, by combining the above
results, we find

ERP(r, r0, t) =
∑

η

uη(r)u
∗
η(r0)

[

∑

O

IηO(t)+
∑

D

QηD(t)

]

.

(52)
This equation expresses the ERP via amodal-polar representation
of the transfer function. Each term has a spatial part uη(r)u

∗
η(r0)

and a temporal factor in the square brackets. Remember that we
have been considering an even number of oscillatory and purely
damped poles in the temporal part.

3.2. Pole Locations
The locations of poles for several cases of the total number of
poles are shown in Figure 4. Remember that the eigenfrequencies
are of the form ω = �− iγ , where� corresponds to the angular
frequency and γ to the damping rate. Our main results are:

(i) From these plots we figure out that as more poles are added,
a given root usually moves downwards and approaches
a limiting location (arrows in Figure 5), adding at most
a few weakly damped poles; adding more poles in the
analysis adds only strongly damped poles, including some
at increasingly high frequencies. However, these poles
contribute little to the overall dynamics in which the least
damped roots are the dominant resonances. Because just a
few weakly damped poles dominate the dynamics, addition
of further poles only modifies the behavior slightly. Note
that a very few poles move slightly upwards when we add
more poles, as what happened to the beta frequency poles
when changing from 4 to 5-pole approximation, but the
general trend is moving downwards. Also, in Figure 5, we
notice that some of the purely damped poles split into two
oscillatory poles (red low frequency purely damped pole
in a 5-pole approximation splits into two green oscillatory
poles after changing to 6-pole approximation) and vice
versa (two blue low frequency oscillatory poles in a 4-
pole approximation add together to become one red purely
damped pole after changing to 5-pole approximation).

FIGURE 5 | Enlarged view of Figure 4E showing how poles move as we add

more poles to the approximation. Starting with 4 poles (blue triangles), we

track (by arrows) how the oscillatory poles in the right and left of the figure

symmetrically move when changing to 5-pole approximation (red rhombuses),

6-pole approximation (green squares), 8-pole approximation (purple circles),

and 10-pole approximation (black crosses).

(ii) In the EO (Figure 4A) and EC (Figure 4B) waking states,
the roots corresponding to alpha frequency shift slightly
downwards as we add more poles, unlike the remaining
sleep states (Figures 4C–F) that show a larger shift of the
alpha roots as we add more poles. This is due to the
need to reproduce the prominent alpha peak in the wake
states, especially the EC state. We verify that by plotting
the locations of poles of the Spindle condition in Figure 4G

which shows that the poles corresponding to the spindle
peak (at about 14 Hz) also stabilize at a limiting location
like what happened in the waking states near their alpha and
beta peak frequencies. This result is expected because it is
well known in spectral analysis that whenever a peak exists,
the damping rate is low (inversely proportional). Therefore,
the distribution of poles (Figure 4) is a characteristic of the
arousal state.

(iii) Except for the least damped poles, the roots move rapidly
toward large damping for the other sleep states as we
increase the number of poles in the approximation,
especially in the REM and S1 states. This outcome is
predictable because REM and S1 states are classified as being
the lightest sleep states, and their smooth spectra are fairly
featureless, lack sharp peaks, and flatten at low frequencies.
Therefore, these states only need the lowest ω = 0 poles to
show their main dynamics.

(iv) These poles enable us to plot ERPs for the different
arousal states. Figure 6 shows the shape of a 14-pole
approximated ERP function upon only considering poles
at specific frequencies in the EO state. In Figure 6A, we
show the close match between analytical ERP and the 14-
pole approximated ERP. The 14-pole approximated ERP

Frontiers in Human Neuroscience | www.frontiersin.org 9 June 2021 | Volume 15 | Article 642479

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


El-Zghir et al. Modal-Polar Representation of ERPs

FIGURE 6 | The change of shape of a 14-pole approximated ERP in the EO state upon only considering poles at specific frequencies. (A) Analytical ERP vs. 14-pole

approximated ERP (B) purely damped poles. (C) Alpha-frequency poles. (D) Beta-frequency poles. (E) High-frequency poles (>30 Hz). (F) Removing high-frequency

poles.

starts from zero with the appearance of very short and
fast ripples before the stimulus hits the cortex (at τes =
0.02 ms), which then disappear and a sudden peak of
the ERP takes place followed by consecutive smaller peaks
decreasing in magnitude ending with an asymptotic decay
toward zero after around 0.5 s. The ERP obtained by
considering only purely damped poles (�ηj = 0), shown
in Figure 6B, captures the asymptotic tail of the overall ERP
and starts from a nonzero positive component, whereas the
contribution of the alpha pole is negative (Figure 6C) at
first. The ERPs formed by both the beta and high frequency
poles (> 30 Hz) show small peaks before the stimulus

reaches the cortex (Figures 6D,E), and these small peaks
disappear form the ERP if we remove the high frequency
poles (Figure 6F). Therefore, when we add all poles together
we get the ERP with very small residual ripples. This
is analogous to ripples near a step change using finite
number of Fourier coefficients. In real ERP analysis this is
insignificant because there is always noise in the data.

(v) Because from Figure 5 we deduce that the most weakly
damped poles dominate, we plot in Figure 7 the location
of poles in a 6-pole approximation (Figure 7A), and
the remaining 6 poles out of 14-pole approximation
(Figure 7B) to remove highly damped poles across all
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the states of arousal. Both figures look similar for the
EO and EC waking states except for small shifts in the
frequencies of the poles. However, in the other sleep
states, poles have stronger damping in Figure 7B than
Figure 7A especially in the REM and S1 states. In general,
the two figures are consistent with each other which

verifies that the three most weakly damped pairs of poles
dominate, and correspond to the slow-wave, alpha, and beta
resonances. Note that the 6-pole approximation figure is
better (Figure 7A), and it can also be used as a reference
to examine the shift between sleep states according to their
poles’ locations.

FIGURE 7 | Pole locations in different arousal states. (A) 6-pole approximation. (B) 6 most weakly damped poles out of 14.

FIGURE 8 | Comparison of magnitude of the analytical frequency and time responses of the transfer functions with their approximations in the EO waking state for

different cases of number of poles. (A) Magnitude of the transfer function in the case of 4-pole approximation (red), 5-pole approximation (green), and 6-pole

approximation (blue). (B) Magnitude of the evoked response potential in the case of 4-pole approximation (red), 5-pole approximation (green), and 6-pole

approximation (blue). (C) Same as (A) for 8-pole approximation. (D) Same as (B) for 8-pole approximation. Polar approximated transfer functions’ figures are plotted

by evaluating Equation (25) vs. frequency, and ERPs’ ones are obtained by evaluating Equation (38) vs. time.
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FIGURE 9 | Comparison of magnitude of the analytical frequency and time responses of the transfer functions with their approximations in the EC waking state for

different cases of number of poles. (A) Magnitude of the transfer function in the case of 4-pole approximation (red) and 5-pole approximation (green), and 6-pole

approximation (blue). (B) Magnitude of the evoked response potential in the case of 4-pole approximation (red), 5-pole approximation (green), and 6-pole

approximation (blue). (C) same as (A) for 8-pole approximation. (D) same as (B) for 8-pole approximation.

FIGURE 10 | Comparison of the magnitude of the analytical transfer function with its polar approximation for sleep states. (A) REM, (B) S1, (C) S2, and (D) SWS.
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FIGURE 11 | Comparison of the magnitude of the analytical transfer functions and ERPs with their 10-pole approximations for all the states of arousal. (A) Analytical

transfer function. (B) 10-pole approximated transfer function. (C) Analytical ERP for the EO, EC, and REM states. (D) 10-pole approximated ERP for the EO, EC, and

REM states. (E) Analytical ERP for the S1 and S2 states. (F) 10-pole approximated ERP for the S1 and S2 states. (G) Analytical ERP for the SWS and Spindle states.

(H) 10-pole approximated ERP for the SWS and Spindle states.
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3.3. Accuracy vs. Number of Poles
The model parameters identifying brain states representing each
of the Rechtschaffen and Kales sleep states are shown in Table 2,
where we use them to evaluate the model transfer function.
Here we apply our modal-polar approximation in frequency
space to the transfer function corresponding to each arousal state
separately in order to test our model in multiple arousal states.
To check the accuracy of our approximation, we calculate the
normalized root mean square error (rms) according to

ǫ =
∫

√

(|T|−|Tapp|)2
√

|T|2
dω. (53)

In the above rms error formula, we are considering the
magnitude difference between the analytical and approximated
transfer functions. The phase shift will not lead to much of a
difference in ERPs because (at least in part) the magnitude of
the high frequency components is very small. This is because the
damping in the system attenuates high frequencies so the system
only responds weakly to rapidly changing inputs. We could also
use the Akaike information criterion (AIC) to choose the best
fit on the basis of balancing accuracy against model complexity
(i.e., number of poles in the present context) (Bozdogan, 1987).
However, in the present work our aim is to achieve a given
percentage accuracy, whereas AIC might trade off a poorer
accuracy in favor of having fewer parameters.

Figure 8 compares the approximated and analytical transfer
functions (left) and their corresponding ERPs (right). In the
alert EO state, as shown in Figure 8A, the analytical transfer
function is characterized by possessing two consecutive peaks.
The first peak corresponds to the alpha frequency (8.7 Hz),
and the second one to the beta frequency (17.9 Hz). A 4-pole
approximation of the EO transfer function yields to a large shift
between the exact and approximated alpha peak in addition to
missing the beta contribution. As we increase the number of
poles to five, we observe a refined result, preserving the features
of the transfer function with ǫ ≈ 4%. As we keep on adding
poles to the approximation the results become more accurate,
with about 1% error achieved by using eight poles (Figure 8C).
In Figure 9, we repeat the same strategy for the EC waking state
which is characterized by a prominent alpha peak followed by a
beta peak. Similarly, four poles are insufficient to represent the
corresponding transfer function accurately. However, five poles
yield about 5% error, and ǫ < 2% for an 8-pole approximation.

The normalized rms error ǫ is worse for the sleep states
(REM, S1, S2) compared to the waking states upon using a 5-pole
approximation, with only about 10% error. However, Figure 10
reveals that a 6-pole approximation reproduces acceptable results
for the REM, S1 and S2 states (ǫ <5%); but, we notice that there
is a weak additional peak near the beta frequency which is absent
in the corresponding analytical transfer functions. Adding one
more pole cancels that extra peak in the REM state and leads
to further enhancement of the transfer function with about 2%
error, whereas, for the S1 and S2 states, twomore poles are needed
to attain a better resolution, with 2 and 0.8% error, respectively.
For the deepest sleep state SWS in Figure 10D, the 4-pole
approximation shows a very close match with the analytical SWS

transfer function, with about 4% error. By increasing the number
of poles to six, <2% error is achieved. Figure 11 shows a close
match (ǫ < 1%) between the analytical and polar representation
of both the transfer function and ERPs for all arousal states in a
10-pole approximation.

The normalized rms error values corresponding to each sleep
state shown in Table 3 are illustrated in Figure 12, where we
observe how these values vary with the number of poles. We
find that in the wake states. a 5-pole approximation is better
than 6-pole approximation; this is due to the fact that the
location of poles in a 5-pole approximation are approximately
the same as for a 6-pole approximation (Figures 4A,B) except
for the low frequency root which splits into two roots in the 6-
pole approximation, reducing accuracy at low frequencies and
increasing it at high frequencies (Figures 4A,B). In Figure 12, the
rms error values ǫ of the magnitude of the transfer function vs.
number of poles is shown for the different arousal states. In order
to obtain a general number of poles to be used when studying
any arousal state, we plot the worst cases of the maximum values
of ǫ vs. the number of poles in Figure 12H across all the arousal
states.We find that six poles are sufficient to attain better than 8%
error, thereby preserving the main dynamics of the system.

4. SUMMARY AND DISCUSSION

We have bridged between physiologically-based NFT and
experimental observations of brain resonances by decomposing
the corticothalamic transfer function into spatial (eigenmodes)
and temporal (poles) components. Modal-polar representation
of NFT provides a unified platform to investigate a formula for
ERPs and explore the number of poles needed to study the main
dynamics of the system in each arousal state. Ourmain results are
as follows:

TABLE 3 | Root mean square error ǫ (in%) of the magnitude of the transfer

function for each arousal state, where n is the number of poles.

n EO EC REM S1 S2 SWS Spindle

1 32 49 55 57 50 36 57

2 42 64 49 54 29 13 52

3 9 16 28 34 28 14 0.37

4 17 16 16 18 8.9 3.9 2.9

5 3.7 5.1 7.3 9.4 13 3.9 10

6 4.2 8.2 4.2 4.6 3.6 1.7 5.5

7 2.0 1.9 1.8 3.7 3.4 1.5 2.4

8 1.3 1.9 1.4 2.0 0.85 0.42 2.8

9 1.5 0.67 0.41 2.2 1.7 0.74 2.4

10 0.38 0.70 0.40 0.62 0.42 0.20 0.80

11 0.78 0.59 0.39 0.58 0.40 0.19 0.93

12 0.18 0.22 0.10 0.09 0.06 0.04 0.24

13 0.21 0.22 0.08 0.09 0.06 0.04 0.23

14 0.09 0.17 0.06 0.02 0.01 0.02 0.11

This table corresponds to the data illustrated in Figure 12.
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FIGURE 12 | Root mean square error of the magnitude of the transfer function for different number of poles for various states. (A) EO state (B) EC state (C) REM

state (D) S1 state (E) S2 state (F) SWS state (G) S2-Spindle state. In (H), the highest ǫ value across all the states is shown vs. n.

Frontiers in Human Neuroscience | www.frontiersin.org 15 June 2021 | Volume 15 | Article 642479

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


El-Zghir et al. Modal-Polar Representation of ERPs

(i) An approximation of the transfer function that describes
the linear response of cortical brain activity to any
input was achieved that allows it to be written as a
ratio of polynomials. For each eigenmode, a pole of the
transfer function corresponds to a given eigenfrequency
or resonance. We restricted detailed analysis to the global
mode (k2η = 0), because it has uniform spatial properties
across the two brain hemispheres. As a first approach,
we applied the modal-polar expansion of the transfer
function to derive a simpler formula for the ERP which
is otherwise not analytically tractable. The calculations
involved complex integrals that were solved via contour
integration and the Cauchy-residue theorem.

(ii) We validated the new expression of the ERP by comparing it
with the exact ERP (calculated from NFT) for various states
of arousal.

(iii) We investigated how the poles for each arousal state
shift as the approximation order increases and becomes
more accurate. We found that as the approximation order
increases, most poles move downwards in the complex
plane, corresponding to these eigenfrequencies becoming
more damped. For waking states, the least damped poles are
mostly robust to these changes and adding more poles to
the approximation involves shifts in the strongly damped
poles, which contribute little to the overall dynamics. In
these waking states, the roots corresponding to the alpha
resonance shift slightly as we add more poles to the
approximation, unlike the other sleep states. This is due
to the significant alpha peak in the wake states, especially
the EC which is characterized by its prominent alpha peak.
For sleep states, especially REM and S1, we observed larger
downward shifts in the poles toward more strongly damped
eigenfrequencies, reflecting the smooth almost featureless
spectra of these states.

(iv) We found that six roots or three pairs of eigenfrequencies
(poles) suffice to preserve the main dynamics of all arousal
states to within ≈ 4% error. These roots correspond to the
three resonances (low frequencies, alpha, and beta) and have
been found to resemble a response expressed in terms of
PID filters via control theory which is analogous to using a
group of controllers in order to enhance the control system
performance (Babaie-Janvier and Robinson, 2018).

Overall, this framework lays foundation for simplifying NFT
results, and connecting NFT with observations of brain
resonances, which in turn leads to an effective simplification
of analysis of ERPs by expressing exact ERPs (based on NFT)
in terms of those resonances. The present work has expanded
previous work that approximated the transfer function and
calculated poles for the waking state only (Gabay et al., 2018).
Hence, this links observable electrophysiological resonances
more directly to underlying dynamics and function, and yields
interpretations of EEG resonances in terms of PID filters via
control theory that provides insights on cognitive processes. The
present analysis was restricted to the global mode, but future
work could investigate the multimodal case as well as calculate
other quantities from the transfer function such as coherence,
correlation functions, and plasticity.
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