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Host genetic variation has a major impact on infectious disease susceptibility. The study of pathogen resis-
tance genes, largely aided by mouse models, has significantly advanced our understanding of infectious
disease pathogenesis. The Collaborative Cross (CC), a newly developed multi-parental mouse genetic refer-
ence population, serves as a tractable model system to study how pathogens interact with genetically
diverse populations. In this review, we summarize progress utilizing the CC as a platform to develop
improved models of pathogen-induced disease and to map polymorphic host response loci associated

with variation in susceptibility to pathogens.

Introduction

Pathogens often cause variable disease outcomes across in-
fected individuals, ranging from asymptomatic infection to se-
vere or fatal disease. Multiple factors influence an individual’s
susceptibility to a pathogen, including variation in pathogen
dose or virulence as well as host age, prior immune experience,
microbiome/coinfection, and genetics. A role for host genetics in
pathogen susceptibility is supported both by twin studies (Kall-
mann and Reisner, 1943) and by evidence of pathogen-driven
selective pressure on the evolution of the human immune system
(Cagliani and Sironi, 2013). Human genetic studies have demon-
strated a role for host genetics in pathogen susceptibility and
identified polymorphic genetic loci and genes associated with
variation in susceptibility to specific pathogens (e.g., HIV)
(MclLaren et al., 2015), classes of pathogens (e.g., mycobacteria)
(Bustamante et al., 2014), and more generalized primary immu-
nodeficiencies (PIDs) that result in severe immune defects
(Chapman and Hill, 2012). This information has enhanced our un-
derstanding of how host genetic variation affects pathogen sus-
ceptibility and how specific genes regulate human immunity and
host-pathogen interactions.

While advances in human genetic analysis have led to the
identification of several host genes that regulate pathogen sus-
ceptibility in humans (Newport and Finan, 2011), much of our un-
derstanding of how specific genes affect infectious disease
pathogenesis in mammals has come from studies using mouse
models (Masopust et al., 2017). This is in large part due to the ex-
istence of inbred mouse strains as well as the vast amount of
immunological and molecular genetic tools available for the
mouse, including the early generation of the mouse reference
genome. Inbred strains, in which each mouse is essentially
genetically identical, allow control of host genetics as well as
other factors that can confound human studies, such as path-
ogen dose, nutrition, and prior immune exposure. Additionally,
targeted knockout technology has been used in the mouse
genome for almost 30 years (Bouabe and Okkenhaug, 2013).
While advances in gene editing techniques (e.g., CRISPR) have
recently extended these approaches to other species, geneti-
cally modified mice have been an unparalleled resource for
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studying the role of specific genes in the response to a variety
of pathogens (Masopust et al., 2017). Furthermore, the use of
classical genetic crossing approaches (e.g., intercrosses), as
well as reproducible mouse genetic reference populations
(GRPs), has facilitated the discovery of key regulators of host im-
munity and pathogen susceptibility such as the innate immune
receptor Tir4, oligoadenylate-synthetase Oas7b, and divalent
metal transporter Nramp1 (Perelygin et al., 2002; Qureshi et al.,
1999; Vidal et al., 1993). The recent development of multi-
parental GRPs, such as the Collaborative Cross (CC), promises
to further extend genetic mapping capabilities, while also leading
to the development of mouse models that more accurately
reproduce the genetic diversity and phenotypic range seen in
human populations (Churchill et al., 2004). This review will sum-
marize recent advances in the use of mouse GRPs, with an
emphasis on the use of the CC for studying infectious diseases
and immunity.

Human Genetic Variation and Infectious Disease

The impact of host genetics on pathogen susceptibility can be
illustrated by genes exhibiting large effects such as the chemo-
kine receptor CCR5 and fucosyltransferase 2 (FUT2), for which
specific variants have a major impact on resistance to viral infec-
tion (HIV and norovirus, respectively) (Quillent et al., 1998;
Thorven et al., 2005). Likewise, deleterious mutations in immune
genes can result in PIDs, which cause enhanced susceptibility to
specific or entire classes of pathogens (Carneiro-Sampaio and
Coutinho, 2007). To date, over 350 genetically driven PIDs
have been identified in humans (Picard et al., 2018). The identifi-
cation of these monogenic resistance and susceptibility genes
has enhanced our understanding of human immunity and host-
pathogen interactions while contributing to the development of
antiviral therapies, such as HIV entry inhibitors, as well as gene
therapy and immune replacement therapies (Collins and
Thrasher, 2015; Lenardo et al., 2016).

Though genes of large effect can impact human health, inher-
itance patterns suggest that susceptibility to infectious disease
is largely polygenic (driven by tens to thousands of variants of
smaller effect) (Hill, 2012). This is supported by results from
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genome-wide association studies (GWAS) designed to map loci
associated with variation in pathogen susceptibility and vaccine
response. For example, GWAS of HIV viral load have shown that
mutations in the HIV co-receptor CCR5 and variants in human
leukocyte antigen (HLA) explain approximately 15% of the total
variance, with an additional 5% of heritable variance explained
by additive effects of other genes (MclLaren et al., 2015).
GWAS on malaria susceptibility have identified variants in multi-
ple genes including the calcium ATPase ATP2B4, the glucose
phosphate dehydrogenase GP6D, and HLAs, as well as confirm-
ing previously identified variants in hemoglobin genes (sickle cell
and thalassemia) (Hedrick, 2011; Timmann et al., 2012). Multiple
loci have been associated with clearance of hepatitis C virus,
including the cytokine IL-28b and HLA genes (Duggal et al.,
2013), and over 20 loci have been associated with leprosy sus-
ceptibility (Wang et al., 2016).

While GWAS have been applied to and enhanced our under-
standing of infectious diseases, these studies explain only a frac-
tion of the heritable variation in pathogen susceptibility (Hill,
2012). This is partly attributable to factors such as small cohort
sizes, ethnic striations, and lack of replicates, which limit detec-
tion and interpretation of results (Du et al., 2012). Rare genetic
variants are unlikely to be detected by GWAS, due to both lack
of power and lack of tagging on conventional genotyping arrays
(Auer and Lettre, 2015). A specific concern for GWAS in infec-
tious diseases is that studies can be confounded by pathogen
genetics, pathogen dose, and other environmental factors.
Furthermore, validation and mechanistic analysis can be difficult
in humans due to factors such as lack of replicates and inability
to routinely access many affected tissue types. For these rea-
sons, the use of appropriate animal models has been a critical
resource for identifying and studying pathogen susceptibil-
ity genes.

Mouse Models of Disease

While a variety of model genetic systems have been used to
analyze host-pathogen interactions (e.g., Caenorhabditis ele-
gans, Danio rerio, and Drosophila melanogaster) (Allen and
Neely, 2010; Dionne and Schneider, 2008; Marsh and May,
2012), the laboratory mouse (Mus musculus) provides the most
robust mammalian system for dissecting genetic regulation of
immune responses in human-relevant diseases. Mice are
relatively inexpensive, can be easily controlled in diet and envi-
ronment, and reproduce quickly. A wide variety of well-charac-
terized mouse immunological reagents are available, as well as
genetic tools such as reproducible inbred strains, gene-specific
knockouts, genome-wide mutagenesis strategies (e.g., N-ethyl-
N-nitrosourea [ENU] and CRISPR/Cas9), and transgenic
technologies. These systems facilitate the identification and
mechanistic characterization of specific host genes that affect
disease pathogenesis and/or immunity (Pelletier et al., 2015;
Takaki et al., 2017).

Though over 450 commercially available inbred mouse strains
and outbred stocks are available (Beck et al., 2000), the majority
of research in infectious disease and immunology is conducted
in a limited set of strains. One of the major reasons for the focus
on specific strains is the need to control for genetic background
when analyzing gene-specific knockouts or performing large-
scale mutagenesis screens. Large-scale initiatives such as the

International Mouse Phenotyping Consortium (IMPC) depend
upon the ability to control background strain to analyze the
impact of specific gene deletions or mutations on a wide range
of developmental and immune phenotypes (Munoz-Fuentes
etal., 2018), and have thus generated these mutants on common
backgrounds using largely identical procedures. C57BL/6J is the
most commonly used inbred mouse strain; it is the source of the
mouse reference genome and the genetic background for
the majority of knockout mice. Other strains, such as the
BALB/c substrains, also have a rich history of use in immunology
and infectious disease research (Watanabe et al., 2004). While
the ongoing use of such strains is driven by the need to compare
results across studies, it is important to note that every inbred
strain has a unique set of genetic features, and thus no one strain
is representative of all mice, let alone of a genetically complex
population such as humans.

Although genetically modified mice have been an essential
resource for gene discovery and mechanistic analysis, there
has been a growing acknowledgment in the field that knockout
approaches have limitations. Approximately 15% of genes
cannot be knocked out because they are developmentally
essential (NIH, 2015). Similarly, other knockouts have no observ-
able phenotype, due to genetic redundancy and/or lack of
robustness in the phenotyping pipeline (Barbaric et al., 2007).
In other cases, knockouts have disparate phenotypes on
different genetic backgrounds due to gene-gene interactions
(Doetschman, 2009). Furthermore, gene knockouts result in
null alleles (complete loss of gene function), whereas naturally
occurring genetic variants are most likely to be hypomorphic or
hypermorphic alleles (partial loss or gain of gene function; alter-
ations in timing and magnitude of expression). Lastly, while
single-gene approaches are straightforward, they are isolated
systems that do not model the simultaneous contribution of var-
iants in multiple pathways, as would most likely be observed in a
natural system. Thus, to better model and understand the role of
genes in complex phenotypes such as immunity and infectious
disease, it is pertinent to consider complex genetic interactions
across diverse genetic backgrounds.

Genetic Reference Populations

In contrast to the approaches discussed above, researchers have
also studied the role of natural genetic variants by leveraging dif-
ferential phenotypes across inbred strains, using classical genetic
breeding strategies to identify pathogen susceptibility genes such
as Oas1b, immune cell activating receptor Ly49H, and large inter-
feron-induced GTPase Mx1 (Casanova et al., 2002). In contrast to
mapping crosses between stocks (e.g., F2 crosses), where each
mouse is unique and therefore ephemeral, GRPs serve as repro-
ducible models to study the role of genetic diversity. GRPs consist
of anywhere from a few to hundreds of inbred lines derived and
split from a common ancestral population, and each line has a
fixed and known genome that can be replicated indefinitely. The
existence of reproducible yet genetically diverse individual mouse
strains facilitates study designs that involve case versus control,
genotype by environment interactions (GxE), and phenotypic
penetrance or threshold traits. These populations further facilitate
the integration of phenotypic, genotypic, and molecular data for
systems-level data analysis while also allowing retrospective inte-
gration of new layers of data.
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The first recombinant inbred panel, the CXB (BALB/cJ x
C57BL/6J), was created by Donald Bailey to facilitate mapping
of the MHC locus (Bailey, 1971). Subsequent biparental recom-
binant inbred panels include the AXB/BXA (A/J x C57BL/6J,
C57BL/6J x A/J), the BXH (C57BL/6J x C3H/Hed), and the
BXD (C57BL/6J x DBA/2J), which is the largest and most exten-
sively used of these panels (Peirce et al., 2004). Though originally
developed to study monogenic traits, use of these panels has
been extended to study genetically complex traits such as sus-
ceptibility to murine plasmodia (Hoffmann et al., 1984), murine
leukemia virus (Panoutsakopoulou et al., 1998), group A strepto-
coccus (Chella Krishnan et al., 2016), and influenza A virus (IAV)
(Nedelko et al., 2012). As results from these panels accumulated,
there was a community-wide recognition that larger and more
genetically diverse GRPs would improve the ability to genetically
dissect more complex traits (Threadgill et al., 2002).

The Collaborative Cross

Based on results from the early GRPs as well as genetic mapping
studies, the Complex Trait Consortium proposed to create a
second-generation, multi-parent advanced intercross GRP to
promote complex trait genetic mapping and systems genetics
research (Threadgill et al., 2002). In contrast to single-gene ap-
proaches, systems genetics considers phenotypes in the
context of global genetic variation as well as intermediate molec-
ular factors such as gene expression, protein abundance, and
environmental interactions. The resource ultimately derived
from this proposal was the CC, a large panel of recombinant
inbred strains derived from eight genetically diverse founder
strains. The CC was designed to facilitate systems genetics ap-
proaches with improved resolution and higher statistical power
compared to traditional GRPs, to expand the pool of genetic
variation segregating in the population, and to bridge the
analysis of genetic and molecular networks across diverse
phenotypes (Churchill et al., 2004).

Of the eight CC founder strains, five are classical laboratory
strains chosen for their rich history of use in mouse genetics
(C57BL/6J and 129S1/SvimJ) or their relevance as models of
common diseases including cancer, type 1 diabetes, metabolic
syndrome, and obesity (A/J, NOD/ShiLtJ, and NZO/HiLtJ). The
other three CC founders are wild-derived inbred strains, which
represent the three major subspecies of Mus musculus:
casteneus (CAST/EiJ), musculus (PWK/PhJ), and domesticus
(WSB/EiJ), and introduce much of the genetic diversity into the
CC. These eight founder strains were interbred in a funnel
breeding scheme to produce recombinant mice with genomic
contributions from each founder, which were then bred to homo-
zygosity to produce recombinant inbred (RI) CC strains (Figure 1).
Although the initial goal was to produce 1,000 CC strains, only
around 100 CC strains survived the inbreeding process due to
high rates of infertility and breeding issues, largely caused by
genomic incompatibility introduced by the wild-derived strains.
Extinction of CC strains during the inbreeding process inspired
the creation of the Diversity Outbred (DO) panel, an outbred pop-
ulation derived from a set of incipient CC strains (Churchill et al.,
2012). The DO now serves as its own important genetic resource
that has proven useful for high-resolution genetic mapping as
well as exploration of phenotypic diversity (Chick et al., 2016;
Gatti et al., 2014; Smallwood et al., 2014; Shorter et al., 2018).
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While the DO has only been used in a limited number of infectious
disease studies (McHugh et al., 2013; Niazi et al., 2015), the DO
and CC should be viewed as complementary resources for
studying how genetic variation affects pathogen susceptibility
and immunity.

While classical mouse GRPs remain actively used, and in
some ways provide a more straightforward analytical path than
the CC due to reduced complexity, several aspects of the CC
make it more attractive for discovery-based research. The CC
captures approximately 90% of common genetic variants
described within laboratory mice, with up to eight distinct haplo-
types at any region of the genome (Roberts et al., 2007). Due to
higher genetic diversity with novel allele combinations and
epistatic interactions, the CC yields more phenotypic variation
and extreme phenotypes than classical GRPs. The selection of
founder strains and the breeding design, as well as higher levels
of recombination, result in lower levels of long-range disequilib-
rium and population structure than classical GRPs, allowing for
higher resolution quantitative trait locus (QTL) mapping (Iraqi
et al., 2012; Threadgill et al., 2002). Genetic variation is also
more uniformly distributed across the genome, removing several
genomic “blind spots” that interfere with mapping in classical
inbred strains and GRPs (Roberts et al., 2007).

Although the CC has only been available for a relatively short
period of time, it has been utilized across a number of disciplines,
including response to environmental toxins (Venkatratnam et al.,
2017), nutrition (Schoenrock et al., 2018), body composition
(Mathes et al., 2011), and immunity and pathogenesis (discussed
further here). Importantly, these studies have highlighted previ-
ously uncharacterized phenotypic diversity, including expansion
of the phenotypic range, disassociation of traits previously
thought to be connected, and identification of completely novel
phenotypes (Srivastava et al., 2017). The CC is an especially
useful resource for studying the role of host genetics in host-
pathogen interactions because it allows for control of many of
the factors described above that confound infectious disease
studies in humans. Over the past decade, a variety of studies uti-
lizing the CC, including non-fully inbred incipient CC lines
(commonly termed the pre-CC) and derived CC populations
(such as CC-F1s), have been used to probe the role of host ge-
netics in the response to infectious disease. Here we will discuss
the current work in this field, including studies focusing on
phenotypic characterization (e.g., model development and mo-
lecular signatures of disease response) and genetic mapping
of disease trait-associated QTL.

Phenotypic Characterization in the CC

There is an ongoing debate over the validity of mouse models in
recapitulating human disease (Seok et al., 2013; Takao and
Miyakawa, 2015). While the utility of the mouse is undeniable in
the infectious disease field, it is equally true that individual clas-
sical inbred strains do not fully recapitulate human disease and
most models recapitulate only a portion of the disease pheno-
types observed in humans. In an effort to improve model fidelity
to human disease, a number of researchers have turned to the
CC to develop new mouse models. Genetically diverse CC
strains show a range of responses to pathogens, from variation
in disease severity to completely novel disease phenotypes.
This phenotypic variability better mimics the diversity of disease
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CC founders were bred in funnel breeding schemes to produce progeny with genetic contributions from each of the eight founders, at which point they were
inbred for generations until reaching near homozygosity. Many different funnels were set up, each to produce a unique CC Rl line.

presentation across the human population, thus providing a
more comprehensive platform to develop newer, more represen-
tative mouse models.

Ebola Virus

Ebola virus (EBOV) causes severe, and often lethal, hemorrhagic
fever in humans. While classical inbred strains are susceptible to
mouse-adapted EBOV (MA-EBOV), they do not display many of
the characteristic symptoms observed in severe human cases
such as coagulopathy, hemorrhagic manifestations, and rash
(St Claire et al., 2017). Rasmussen et al. infected a panel of F1
crosses between CC strains (CC-F1s) following an initial assess-
ment in founder strains (Rasmussen et al., 2014). They observed
significant phenotypic variation following MA-EBOV infection,
from high resistance to complete lethality, and covering a spec-
trum of different pathologies similar to the range of clinical
disease observed in humans. Importantly, some strains pre-
sented with severe hemorrhagic disease and liver damage,
consistent with human EBOV disease. Follow-up studies with
representative susceptible and resistant strains found differen-
tial transcriptional responses, highlighting the central transcrip-
tional regulatory gene Tek, for which haplotypes across these

CC-F1s correlated with weight loss and mortality following
MA-EBOV infection.
West Nile Virus
West Nile virus (WNV), a neuroinvasive flavivirus, induces a
diverse spectrum of immune responses and clinical outcomes
in humans that classical mouse models do not fully recapitulate
(Graham et al., 2015). Graham et al. assessed WNV susceptibility
in a panel of CC-F1 crosses that were heterozygous for the H-2b
MHC haplotype, which allowed quantification of WNV-specific
T cells with the same MHC tetramer. WNV outcome ranged
from highly resistant to highly susceptible, including a novel
outcome group in which mice were outwardly asymptomatic
despite higher viral titers and immunopathology in the brain.
Graham et al. followed up on one unique CC-F1 ((CC032/
GeniUnc x CCO013/GeniUnc)-F1), in which half of the mice
that survived infection displayed sustained weight loss and
persistent viral loads in the CNS. They found that these mice
exhibited a rapid early innate inflammatory response character-
ized by increased early expression of IFN- and the interferon-
stimulated gene IFN1, as well as high early viral titers and the
ability to control, but not clear, viral replication in the CNS
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(Graham et al., 2016). Additionally, (CC032/GeniUnc x CC013/
GeniUnc)-F1 mice had a unique immunoregulatory signature,
with a high number of T regulatory cells in both infected and un-
infected animals and a distinctive post-infection gene expres-
sion profile that indicated reduced cytolytic ability.

The initial Graham et al. study (Graham et al., 2015) found that
WNV response largely tracked with the haplotype of Oas1b, a
known flavivirus resistance gene, although there was still consid-
erable disease variation within Oas7b haplotype groups. Green
et al. continued to dissect the impact of Oas7b on the innate im-
mune transcriptional landscape following WNV infection (Green
et al., 2017) by performing genome-wide micro-array analysis
across multiple time points post-infection in seven CC-F1s car-
rying different combinations of functional (wild-derived) or non-
functional (classical inbred strain-derived) Oas7b haplotypes.
Transcriptional correlation analysis of differentially expressed
immune genes across CC-F1s yielded three gene clusters, and
pathway analysis led to the construction of innate immune regu-
latory networks associated with WNV infection between Oas1b
haplotype groups.

Mycobacterium tuberculosis

Mpycobacterium tuberculosis (Mtb) infection varies broadly in
disease presentation and pathology in humans. Likewise, the ef-
ficacy of the standard TB vaccine, the live-attenuated BCG, is
variable across individuals (Mangtani et al., 2014). Smith et al.
studied Mtb pathogenesis and BCG vaccine efficacy in the CC
founders and three Rl strains that were selected based on a pilot
study assessing Mtb susceptibility (Smith et al., 2016). The au-
thors observed a wide range of susceptibility to Mtb and disso-
ciation of previously associated phenotypes such as bacterial
burden, immune cell recruitment, and tissue damage. When
the BCG vaccine was administered prior to Mtb challenge, vac-
cine efficacy was low overall and not correlated with susceptibil-
ity to primary infection. While BCG vaccination reduced Mtb
burden in four strains, there was an increased bacterial burden
in NZO/HILtJ mice, a model for obesity and type 2 diabetes. In
addition to highlighting the importance of host genetics on Mtb
susceptibility and BCG-induced vaccine responses, the study
illustrates the potential impact of comorbidities, such as type
2 diabetes in NZO/HILtJ mice, on vaccine responses in geneti-
cally diverse populations.

Influenza A Virus and SARS-Coronavirus

Maurizio et al. analyzed the heritability of IAV-induced disease
using CC-F1s as well as F1 crosses between founder strains
(Maurizio et al., 2018). These studies determined that IAV-
induced weight loss was 57% heritable at day 4 post-infection,
and that this heritability was mostly composed of additive effects
largely attributable to the haplotype of Mx1, a polymorphic large-
effect anti-IAV gene. The genetic dominance of the protective
Mx1 haplotype varied depending on subspecies origin, with
the M. musculus musculus allele acting dominantly and the
CAST/EiJ allele, identified by Ferris et al. (2013), acting addi-
tively. Consistent with Ferris et al. (discussed below), these
authors determined that when controlling for Mx7, non-Mx1 her-
itable effects still accounted for 34% of the phenotypic variation,
and this effect was consistent across founder diallel, pre-CC,
and CC-F1 populations.

Human studies have identified blood transcriptomic and pro-
teomic signatures associated with IAV infection that could be
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used to predict patient outcome. Elbahesh and Schughart
observed that gene signatures from IAV-infected humans were
reproduced in the peripheral blood of CC founders (Elbahesh
and Schughart, 2016). In a follow-up study, Kollmus et al. char-
acterized the transcriptional response to IAV in the peripheral
blood of eleven CC strains (Kollmus et al., 2018). Though both
human and mouse datasets were globally heterogeneous, the
CC dataset showed that genetic background strongly influenced
gene expression, highlighting the importance of genetics in
driving the immune response. For the most differentially ex-
pressed genes, the transcriptional responses in mice and hu-
mans were largely similar, demonstrating the utility of the CC in
recapitulating IAV-induced host response in humans.

Xiong et al. characterized transcriptomic variation in response
to severe acute respiratory syndrome coronavirus (SARS-CoV)
and IAV across the eight CC founder strains (Xiong et al.,
2014). Differential gene expression analysis at days 2 and 4
post SARS-CoV or IAV infection showed significant differences
driven by mouse strain, infection status, and time point. Genes
with strain-specific differential expression patterns were largely
enriched for immune pathways, while more generic differential
expression patterns were enriched for basic biological functions.
The study also noted the presence of strain-specific isoforms
and novel transcripts not present in the C57BL/6J reference
annotation.

Pseudomonas aeruginosa

Pseudomonas aeruginosa is an opportunistic bacterial pathogen
with variable clinical outcomes across susceptible individuals.
Human studies, including twin studies as well as association
studies, have identified multiple genes associated with suscep-
tibility to P. aeruginosa. Lore et al. studied P. aeruginosa infection
in 17 pre-CC lines, focusing on survival time and early body
weight change, and observed a large amount of variation in these
phenotypes (Lore et al., 2015).

Genetic Mapping of Disease Response in the CC
As described above, the CC was initially envisioned as a genetic
mapping population with approximately 1,000 strains (Threadgill
etal., 2002). While the number of available CC Rl strains is closer
to 100, this population has proven to be sufficient for successful
QTL mapping. Mapping studies have identified QTLs spanning
the genome that are driven by variants from all eight CC founders
and show very little overlap across pathogens (Figure 2; Table 1;
discussed below). Overall, infectious disease phenotypes map-
ped in the CC show a broad range in overall heritability (the
proportion of population-wide variation explained by differences
between strains) as well as effect sizes (the proportion of popu-
lation-wide variation explained by specific loci). Across the
studies described in Table 1, reported estimates for heritability
range from 12% to over 80%, while reported estimates for effect
size range from 5% (for a QTL of small effect influencing SARS-
CoV viral titer) to over 40% (for a large effect QTL containing the
gene Mx1 on influenza-induced weight loss). Authors have nar-
rowed many of these QTLs to lists of candidate genes, and a
small number of these candidates have been subsequently
validated.

To date, most publications have highlighted QTLs mapped by
phenotyping large panels of CC strains; however, this is not the
only successful strategy. As mentioned above, some CC strains
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Figure 2. Summary of Infectious Disease and Immunity QTLs Mapped in the CC
QTLs are shown mapped onto MGSCv37/mm9; genome positions for QTLs that were mapped on GSCv38/mm10 were converted to corresponding MGSCv37/

mm9 coordinates.
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Table 1. Summary of Infectious Disease and Immunity QTL Mapped in the CC

Chr  Start (Mb) End (Mb)  Pathogen Phenotype Name Sig  Population  Reference
1 6.3 12.7 A. fumigatus survival day Asprl7  * pre-CC Durrant et al., 2011
3 109.6 123.6 A. fumigatus survival day Asprl6  * pre-CC Durrant et al., 2011
8 44.2 55.5 A. fumigatus survival day Asprl1 i pre-CC Durrant et al., 2011
10 12 23 A. fumigatus survival day Asprl4 ™ pre-CC Durrant et al., 2011
10 94.3 99 A. fumigatus survival day Aspri2  *** pre-CC Durrant et al., 2011
15 31 37.5 A. fumigatus survival day Asprl3  ** pre-CC Durrant et al., 2011
18 5.2 13.6 A. fumigatus survival day Asprls  * pre-CC Durrant et al., 2011
4 54.3 58.3 K. pneuomonia day 2 survival Kprl1 i pre-CC Vered et al., 2014
8 29.7 33.6 K. pneuomonia day 8 survival Kprl2 b pre-CC Vered et al., 2014
18 €8 36.4 K. pneuomonia day 8 survival Kprl3 * pre-CC Vered et al., 2014
1 741 81.8 S. Typhimurium spleen bacterial load StSI8b CC Zhang et al., 2018
1 77.5 95.6 S. Typhimurium spleen bacterial load StSI3a  * CC Zhang et al., 2018
6 771 90 S. Typhimurium liver bacterial load StSl4 * CC Zhang et al., 2018
8 11.3 17 S. Typhimurium spleen bacterial load StSI e CC Zhang et al., 2018
10 46.4 54 S. Typhimurium spleen bacterial load StSI2 ** CC Zhang et al., 2018
17 80.5 91.1 S. Typhimurium liver bacterial load StSI5 * CC Zhang et al., 2018
1 21.7 29 influenza A virus pulmonary edema (conditioned Hri3 i pre-CC Ferris et al., 2013
on Mx1)
7 89.1 96.7 influenza A virus weight loss Hrl2 i pre-CC Ferris et al., 2013
15 77.4 86.6 influenza A virus airway neutrophils Hrl4 i pre-CC Ferris et al., 2013
16 97.5 98.2 influenza A virus weight loss, viral titer, lung Hrl1 e pre-CC Ferris et al., 2013
pathology score, clinical score,
inflammation, airway damage,
and expression modules
3 18.3 26.7 SARS-coronavirus  vascular cuffing HrS1 i pre-CC Gralinski et al., 2015
13 52.8 54.9 SARS-coronavirus  vascular cuffing (conditioned HrS4 e pre-CC Gralinski et al., 2015
on HrS1)
15 72.1 75.8 SARS-coronavirus  eosinophilia HrS3 ** pre-CC Gralinski et al., 2015
16 31.6 36.7 SARS-coronavirus  viral titer HrS2 > pre-CC Gralinski et al., 2015
7 55.2' 117.2 SARS-coronavirus  viral titer HrS7 X CC-F2 Gralinski et al., 2015
<) 116.5 124.6' SARS-coronavirus  day 3 weight loss HrS6 e CC-F2 Gralinski et al., 2015
12 81.6' 108.5' SARS-coronavirus  viral titer HrS8 e CC-F2 Gralinski et al., 2015
15 o' 64.4 SARS-coronavirus  hemorrhage HrS9 X CC-F2 Gralinski et al., 2015
18 271" 58.7 SARS-coronavirus  day 3 and 4 weight loss, viral HrS5 i CC-F2 Gralinski et al., 2015
titer, and hemorrhage
3 129 130 none transitional B cells i pre-CC Phillippi et al., 2014
4 148.8 151.1 none H57+ (total T cells) ** pre-CC Phillippi et al., 2014
23.2 23.8 none B cell to T cell ratio, H57+ (total e pre-CC Phillippi et al., 2014
T cells) CD19+ (total B cells)
88.1 92.7 none B cell to T cell ratio e pre-CC Phillippi et al., 2014
136.5 138.6 none CD11c mean fluorescence i pre-CC Phillippi et al., 2014
intensity (MFI)
7 1411 142.2 none CD4+/CD8+ ratio, CD4+ T cells, b pre-CC Phillippi et al., 2014
CD8+ T cells, and CD11c MFI
8 3.1 16.8 none CD23 MFI o pre-CC Phillippi et al., 2014
X 100/ 106’ none CXCR3+ T regulatory cells HI2 o CC-F1 Graham et al., 2017
X 140 145’ none ICOS+ T regulatory cells HI3 x CC-F1 Graham et al., 2017
X 160’ 171 none CD73+ T regulatory cells HI1 i CC-F1 Graham et al., 2017
2 26 31.1 none GP23 * CC Kristic et al., 2018
4 51.7 63.3 none GP15 ** CC Kristi¢ et al., 2018
7 149.6 151.4 none GP25 o CC Kristi¢ et al., 2018
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Table 1. Continued

Chr  Start (Mb) End (Mb)  Pathogen Phenotype Name Sig  Population  Reference

10 93 94.1 none GB17b o CC Kristi¢ et al., 2018

12 114.5 117.9 none GP1, GP14, GP16, GP17a, e CC Kristi¢ et al., 2018
and GP20

15 77.9 82.8 none GP6 and GP10 e CC Kristi¢ et al., 2018

16 15 20.3 none GP17b o CC Kristi¢ et al., 2018

Significance threshold levels: *<0.1, **0.1, ***0.05. Genome coordinates marked with ’ refer to genome assembly GSCv38/mm10; otherwise, coordi-

nates refer to MGSCv37/mm0.

present with unique disease phenotypes, which may be driven
by complex genetic regulatory networks involving multiple loci
with epistatic interactions. When one or a few CC strains
possess the combination of genetic variants needed to manifest
the novel phenotype, population-wide studies may not possess
sufficient mapping power. In these cases, researchers have suc-
cessfully used more traditional F2 or backcross approaches to
identify causal genes (Rogala et al., 2014). In this section, we
will highlight results of both population-wide and intercross-
mediated CC studies of relevance to infectious disease
research.

Aspergillus fumigatus

The first host-pathogen study in the CC examined susceptibility
to the fungus Aspergillus fumigatus, which is pathogenic in
immunocompromised individuals. Durrant et al. found that sur-
vival time varied between 4 days and over 28 days post-infection
in 66 pre-CC lines (Durrant et al., 2011). The authors mapped
multiple genome-wide significant QTLs for survival time that
were largely driven by wild-derived founder haplotypes. Candi-
date genes were identified using merge analysis, a procedure
that compares the pattern of sequence variants (e.g., SNPs or
indels) to the pattern of haplotype effects (impact of each
founder strain haplotype on the phenotype) observed under
the QTL (Yalcin et al., 2005). The application of merge analysis
to the CC enables more effective gene refinement compared
to studies in classic biparental GRPs, where the presence of
only two haplotypes means that every genetic variant in a locus
is a putative candidate causal variant. Merge analysis supported
the candidate gene Irf2, an interferon regulatory transcriptional
factor gene, under the most significant QTL; however, for the re-
maining QTLs there was no strong concordance between a priori
and merge-supported candidates.

Klebsiella pneumoniae

Vered et al. challenged 73 pre-CC lines with K. pneuomonia,
which causes severe pneumonia and sepsis in immunocompro-
mised individuals (Vered et al., 2014). The pre-CC mice displayed
broad and heritable variation in survival time exceeding that
observed in classic inbred strains, as well as dissociation of sur-
vival time from temperature or body weight changes. The study
identified one QTL at day 2 post-infection and two at day 8
post-infection. The authors used merge analysis to refine candi-
date genes; however, they found that the best merge candidates
showed simpler allele effect patterns than the more complex
haplotype effects observed under the QTL. The strongest candi-
date genes identified were lkbkap, a transcriptional elongation
factor complex component, and Act/7a, Actl7b, and Ctnnalt,
which are involved in cell adhesion and cytoskeletal structure.

Influenza A Virus

Bottomly et al. analyzed a set of 99 pre-CC lines infected with
mouse-adapted influenza A/PR/8/34 and assessed weight
loss, clinical score, and mortality through 4 days post-infection
(Bottomly et al., 2012). A subset of pre-CC lines, classified as
high and low responders based on a composite metric of weight
loss and histopathological scoring, were selected for transcrip-
tomic profiling. Over 2,000 transcripts were differentially
expressed between susceptible and resistant classes, and map-
ping identified 21 significant expression QTLs (eQTLs). Twelve of
the eQTLs were validated in CC founder strains, and structural
equation modeling was applied to these candidates to infer
reactive expression networks underlying the transcriptional
differences.

In a companion study, Ferris et al. further characterized varia-
tion in response to influenza A/PR/8/34 in 155 pre-CC lines (Fer-
ris et al., 2013). While disease-associated phenotypes (weight
loss, viral titer, and inflammation) were largely correlated, sub-
sets of these pre-CC mice showed breakdowns in these relation-
ships, resulting in novel phenotypic combinations not observed
in classical mouse strains (e.g., high weight loss with minimal
inflammation). This study identified four significant QTLs,
including one strong QTL that explained approximately 42% of
IAV-induced weight loss, over the IAV resistance gene Mx1.
Importantly, while Mx1 is well studied, the authors identified a
novel allelic variant derived from CAST/EiJ that protects from
weight loss but less efficiently inhibits viral replication compared
to the functional M. musculus musculus-derived allele carried by
NZO/HiLtd and PWK/PhJ. Consistent with Ferris et al.’s finding
of a uniquely functional CAST/EiJ Mx1 variant, Leist et al. found
that CAST/EiJ mice have a unique response to an H3N2 strain of
IAV (Leist et al., 2016). While the Mx1 locus had a dominating ef-
fect in the Ferris et al. study, large phenotypic variation occurred
within Mx1 classes, suggesting the presence of modifier alleles.
Three additional QTLs were mapped when controlling for Mx1
haplotype, corresponding to variation in weight loss, pulmonary
edema, and airway neutrophils. Notably, aside from the Mx1
locus, none of the QTLs identified by Ferris et al. matched influ-
enza susceptibility loci found in mapping studies conducted in
the BXD population. (Boon et al., 2009; Nedelko et al., 2012).
These differences may reflect the more complex genetics of
the CC compared to the BXD and/or differences in the strain of
influenza or other experimental variables across studies.
Salmonella enterica
Salmonella enterica serovar Typhimurium (S. Typhimurium)
causes typhoid fever, and previous mouse mapping studies
have identified multiple loci associated with susceptibility (Roy
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et al., 2006; Sebastiani et al., 1998). To identify novel loci associ-
ated with S. Typhimurium susceptibility, Zhang et al. infected
35 CC RI strains and measured bacterial load in the liver and
spleen at 4 days post-infection (Zhang et al., 2018). QTL scans
for bacterial load mapped multiple significant or suggestive
QTL (Figure 2; Table 1), which differed from those identified in
studies conducted in other mapping populations (Roy et al.,
2006; Sebastiani et al., 1998). Zhang et al. used merge analysis
in combination with immune cell gene expression, gene
ontology, and analysis of known protein functions to narrow
the list of candidate genes under the two significant loci. They
identified candidate genes Cul4a (ubiquitin ligase), Lamp1 (lyso-
somal membrane protein), Mcf2/ (guanine nucleotide exchange
factor), Pcid2 (TREX-2 complex component involved in mRNA
nuclear export), and a high-priority candidate S/c35f1, which
has lactate dehydrogenase activity that may be important in
the S. Typhimurium pyruvate metabolism pathway. The study
also noted that one strain, CC042/GeniUnc, had extremely
high bacterial loads, suggesting that it may be uniquely suscep-
tible to S. Typhimurium.

SARS-Coronavirus

SARS-CoV causes severe acute respiratory syndrome in hu-
mans, but the genes regulating these processes are poorly un-
derstood. Gralinski et al. infected the CC founder strains and
147 pre-CC lines with mouse-adapted SARS-CoV and studied
disease through day 4 post-infection (Gralinski et al., 2015).
Variation in weight loss and viral titer was significant in the
CC founders and even broader in the pre-CC mice. Similar to
IAV, phenotypic dissociation was observed in some pre-CC
lines, with viral titer not correlated with weight loss. QTL map-
ping identified a significant main effect QTL, as well as a mod-
ifier QTL for vascular cuffing in the lungs, explaining 26% and
21% of the variation, respectively. Suggestive QTLs were iden-
tified for eosinophilia (26% of variation) and viral titer (22% of
variation) (Figure 2; Table 1). The candidate region for the
main effect vascular cuffing QTL was narrowed to a small
450 kb region of shared ancestry between the high-response
haplotypes. This region contained only one functional gene,
Trim55, a RING zinc-finger-containing protein expressed in
smooth muscle, which had not previously been implicated in
any immune phenotypes. Follow-up validation studies using
Trim55 knockout mice, which showed altered chemokine and
tight junction gene expression as well as altered inflammatory
cell recruitment, confirmed a role for this gene in SARS-CoV-
induced vascular cuffing. The authors also noted a high-priority
candidate under the modifier QTL, the cadherin family member
Cdhr2, which may be involved in migration of inflammatory cell
from the blood into the lung.

In a subsequent study, Gralinksi et al. used an F2 cross be-
tween two CC-RI strains with highly divergent SARS-CoV sus-
ceptibilities to map five significant loci affecting weight loss, viral
titer, and other disease phenotypes, including one main effect
QTL that explained between 6% and 12% of the variation in
every phenotype (Gralinski et al., 2017). Ticam2, a TLR4 adaptor
protein, was identified as a high-priority candidate gene under
the main effect QTL given the known importance of TLR4 in
SARS-CoV pathogenesis (Totura et al., 2015). Ticam2 knockout
mice had increased SARS-CoV-induced weight loss, early viral
titers, and pulmonary hemorrhage.
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Homeostatic Inmunity

In addition to exhibiting high levels of variation in pathogen-
induced responses, the CC also exhibits variation in baseline
(homeostatic) immunity. Variation in immune homeostasis has
been associated with variation in vaccine responses in humans
(Tsang et al., 2014), and the CC provides a novel resource to
study how variation in pre-existing immunity affects the host
response to infection or vaccination. Phillippi et al. analyzed sub-
sets of lymphocytes and antigen-presenting cells in the CC foun-
ders, CC founder F1s, and 66 pre-CC strains (Phillippi et al.,
2014). They observed variation in the pre-CC exceeding that in
the founders, as well as novel extreme phenotypes such as lym-
phopenia and inverted CD4/CD8 ratios. While some immune
phenotypes were highly correlated, others showed little or no
correlation to other immune populations. Mapping identified 10
significant QTLs across 8 phenotypes, including B/T cell ratio
and mean fluorescence intensity for CD23, also known as Fc
epsilon RIl. The CD23 QTL contains the gene Fcer2a, which co-
des for CD23 itself, and a combination of merge analysis, condi-
tional association, and residue conservation was used to identify
specific coding polymorphisms within Fcer2a driving the QTL.

Graham et al. also performed an extensive examination of
homeostatic immunity in over 100 CC-F1 crosses, with a focus
on T cell populations, expression of activation markers, and
production of inflammatory cytokines (Graham et al., 2017).
CC strains exhibited high levels of phenotypic variation that
extended well beyond the variation observed between
C57BL/6J and BALB/c, the most common laboratory strains in
immunological studies. Mapping identified two highly significant
QTLs driving the frequency of specific T regulatory subsets, and
candidates were chosen based on concordance of haplotype ef-
fects with founder polymorphisms that were coding or splice var-
iants. Similar to the cis-QTL for CD23 expression identified by
Phillippi et al., the QTL mapped by Graham et al. for CXCR3+
T regulatory cells contains the Cxcr3 gene itself.

Kristi¢ et al. studied variation in IgG glycosylation, which is
important for antibody structure and function, in 95 CC strains
and observed nearly double the variation observed in humans
(Kristi¢ et al., 2018). Glycosylation patterns were up to 80% her-
itable, and multiple QTLs associated with variation in different
glycans were identified. Variation in 5 different glycans all map-
ped to the immunoglobulin heavy chain locus. Variation in 2 other
glycans mapped to a locus containing the glycosyltransferase-
encoding gene Mgat3, which was identified as a strong
candidate.

Commensals and the Microbiome in the CC

While the focus of this review is on genetic control of immune
populations and response to infectious agents, there is a
growing appreciation for the role commensals play in shaping
health and modulating immune responses. Two studies have
addressed these responses in the CC (Snijders et al., 2016)
and DO (Carmody et al., 2015) populations. Both found that
there were significant contributions of host genetic back-
grounds. Further, the CC study found strong genomic signals
for many bacterial groups (OTUs) around the genome. Given
the increasing appreciation and awareness of the microbiome
in modulating a variety of biomedically relevant traits, as well
as the impact of commensals and the virome (Virgin, 2014)
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on directly modulating immune responses (Masopust et al.,
2017), future work within the CC will allow for the disentangling
of direct roles on host genetic variants on disease responses,
as well as indirect roles mediated through effects on commen-
sals or prior immune exposure.

Utilization of the CC

The CC is a powerful resource for model development,
extreme phenotype discovery, population-based QTL map-
ping, intercross mapping, validation of candidate genes
across genetic backgrounds, and a variety of other ap-
proaches. Here, we provide an overview of different study
designs that can be implemented to study the impact of
host genetic variation on pathogen outcomes or immunity us-
ing the CC (Figure 3).

Many of the genetic mapping studies described above uti-
lized large panels of CC strains and were able to identify loci
of moderate to large effects on pathogen outcomes. However,
these types of studies are extremely resource intensive and
may not always be the optimal approach. Rather, we suggest
a tiered approach to study design within the CC, starting with
a small-scale analysis in a set of strains (e.g., 12-16) that sam-
ple most of the haplotypes present across the CC genomes,
and expanding as necessary. The efficacy of this type of
approach is demonstrated by the success of small CC screens
that have identified strains with unique phenotypes and pro-
ceeded with further targeted studies such as F2 crosses to
reveal complex polygenic networks driving the outlier pheno-
type (Gralinski et al., 2017; Rogala et al., 2014). Furthermore,
even when investigators opt for large mapping studies, they
may still identify strains with unique outlier phenotypes that
cannot be explained by QTLs identified in the initial screen.
This missing heritability may be driven by complex genetic in-
teractions such as epistasis, which are difficult to study in com-
plex populations and are more effectively studied in targeted
crosses (Rogala et al., 2014).

Initially screening small sets of CC strains (e.g., 12-16) allows
the investigator to obtain insight into the distribution of trait vari-
ation (e.g., continuous, bimodal), while testing whether any
strains show unique or strong outlier phenotypes (Gralinski
et al., 2015; Rasmussen et al., 2014; Rogala et al., 2014). These
small screens also facilitate estimation of the proportion of
phenotypic variation explained by genetics within the test popu-
lation (heritability), identification of potential confounding factors
(e.g., mouse size and activity levels), and performance of power
calculations before embarking on a large-scale screen. In
contrast to conducting the initial screen in the CC founders,
CC strains exhibit more phenotypic diversity due to re-assort-
ment of allelic variants throughout the genome. Furthermore, a
specific set of CC strains can be chosen to avoid the presence
of large effect resistance genes such as Mx7 or Oas1b that
may dominate the response to some pathogens. Likewise,
strains can be selected that carry specific gene haplotypes to
facilitate specific assays (e.g., MHC haplotypes for antigen-spe-
cific T cell analysis) (Graham et al., 2015, 2017).

Following an initial screen, researchers interested in devel-
oping new models can pursue the strains with the most rele-
vant phenotypes, while those interested in genetic mapping
may either perform a more extensive population-wide study

(e.g., across the entire CC) or conduct a focused analysis of
one or more strains with extreme or novel phenotypes via clas-
sical intercrosses. Unlike CC mice, which are fully inbred and
genotyped, each mouse in an F2 or other intercross mapping
population will need to be genotyped. In both cases, genetic
mapping should identify a subset of the variants impacting
the phenotype of interest (e.g., disease). While an in-depth dis-
cussion of mapping methods is beyond the scope of this re-
view, several robust mapping strategies have been successfully
applied to the CC, including DOQTL, BAGPIPE, and R/qtl
(Arends et al., 2010; Gatti et al., 2014; Valdar et al., 2009).
Once QTLs have been mapped, investigators can confirm the
underlying haplotype effects by screening additional CC strains
with high or low responder haplotypes under the QTLs that
were not included in the initial screen, or by screening a set
of mice from the related DO population. While not essential,
this step confirms the initial mapping studies and provides con-
fidence in the QTL effects prior to embarking on candidate
gene investigation.

The identification and validation of candidate genes can be a
challenging and intensive process. QTLs are often large, con-
taining tens to hundreds of genes. In contrast to mapping in
biparental GRPs or intercross populations, where there are
only two haplotypes and every variant is a putative candidate,
in the CC, merge analysis (Yalcin et al., 2005) can be used to
narrow candidates based on how the pattern of variants
(e.g., SNPs or indels) for each founder matches the distribution
of phenotypic responses associated with each founder haplo-
type. As described above, merge analysis has been a useful
tool in the CC; however, a drawback of merge analysis is
that it assumes a single SNP variant driving the locus. In
multi-parental populations, different SNPs or other mutations
within the same gene may phenocopy one another (e.g.,
different Mx7 null alleles; Ferris et al., 2013). Furthermore,
other genetic variants (e.g., copy number variants and trans-
posable elements) are often missed by traditional merge data-
bases. Other in silico tools, including baseline tissue and/or
haplotype-specific gene expression (e.g., ImmGen and
GECCO) (Shay and Kang, 2013; http://csbio.unc.edu/gecco)
and protein functional consequence prediction (e.g., SIFT;
Sim et al.,, 2012), can help narrow candidates to a single
high-priority candidate gene or small set of candidates (Ferris
et al., 2013; Gralinski et al., 2015). Alternatively, if causal vari-
ants are suspected of altering transcript levels, de novo gene
expression analysis can be used to further refine candidate
genes under the locus.

Following candidate gene identification, there are several op-
tions for testing whether the candidate is actually causal. When
the phenotype is driven by an individual cellular factor, such as
an antiviral molecule or receptor, gene function can be vali-
dated in vitro using techniques such as CRISPR or ectopic
expression of different variants. When the phenotype has a
more systemic cause, in vivo validation is generally necessary.
This can be facilitated by the wide availability of knockout
mouse lines (Gralinski et al., 2015, 2017). However, in vivo vali-
dation studies should take into account factors such as genetic
background of the knockout, the effect of the variant, and the
distribution of haplotypes (e.g., a knockout on a C57BL/6J
background may not provide an interpretable phenotype if, in
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(1) Small screen in a subset of CC strains (12-16), selected based on availability or a genotype of interest (e.g., MHC haplotype).
(2) Assess variation across strains, identify outliers, measure heritability, perform power calculations, and identify confounding variables and reassess experi-

mental design if necessary.

(8) Perform a larger screen either in the full CC population or a targeted intercross. Following mapping, this can be repeated to follow-up on modifier alleles or

other unexplained loci.
(4) Reassess variation, outliers, and heritability across mapping population.

(5) Map QTLs driving phenotype of interest; analyze founder haplotype effects if mapping is done in the CC.

(6) Rationally select candidate genes using different tools as applicable.

(7) Perform validation studies in vitro and/or in vivo to confirm effect of candidate gene on phenotype.

the CC, the C57BL/6J haplotype is an extreme response haplo-
type, or if the C57BL/6J allele is hypomorphic or amorphic).
More recent advances in CRISPR technology open up the pos-
sibility of knocking out or performing allele swaps in genes
directly in CC founders or RI strains, enhancing the utility of
the CC as a resource for both identifying and studying polymor-
phic genes affecting pathogen susceptibility or other pheno-
types of interest.
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Challenges and Future Directions
In less than two decades since the CC was conceptualized

(Churchill et al., 2004), the CC has proven to be a fruitful resource
across many fields, including infectious disease and immu-
nology. Expanding use of the CC has highlighted certain chal-
lenges and considerations that should be recognized to drive
future development in both experimental design and resource

expansion.
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Genetic mapping studies in the CC have successfully identi-
fied loci underlying infectious disease and immune phenotypes;
however, relatively few have subsequently validated the initially
identified candidate genes. Even more challenging than candi-
date gene validation is the identification of specific causal vari-
ants within a gene. While strategies such as merge analysis
can help refine candidates and variants, these tools are not
always informative. There is a need for more refinement method-
ologies that can be applied in combination with experimental
validation to narrow and identify causal variants.

The wide array of genomic, molecular, and immunological
reagents available is a valuable asset for mouse research;
however, these do not necessarily uniformly work across the
CC and should be validated before use. Existing CC-specific re-
sources, such as GECCO, are not necessarily informative for in-
fectious disease research since lymphoid organs, such as the
spleen, thymus, and bone marrow, are not profiled. Furthermore,
the development of new CC-specific tools, such as CC-derived
cell lines (e.g., MEFs and IPSCs), will expand the utility of the CC
across fields, including the infectious diseases and immu-
nology fields.

One of the largest challenges across all of model organism
research is connecting back to human relevancy. The CC has
already proven useful in providing improved models of human-
like disease, as highlighted above. A number of genes that
have been highlighted in the CC, such as Mx7 and Oas1b,
have human paralogs relevant in infectious disease susceptibility
(Lin and Brass, 2013; Simon-Loriere et al., 2015), demonstrating
the overlap between important genetically diverse infectious
disease pathways in mouse and humans. However, the majority
of studies have not yet made direct connections back to human
datasets. As CC research develops, it will be increasingly impor-
tant to continue to extend analysis from the CC to human ge-
netics and vice versa. This will require more crosstalk between
mouse and human geneticists to bridge gaps in research and
communication.

Conclusions

Host immunity and susceptibility to infectious disease is a com-
plex response driven by a multitude of factors, from environment
and immune experience to the genetics of both the pathogen
and the host. Studying the role of host genetics in infectious dis-
ease directly in humans is challenging because of this
complexity, and therefore much of the research in the field leans
heavily on the mouse as a model organism. While the role of
traditional laboratory strains and genetically modified mice in
driving advances in the field cannot be understated, these
models do not capture the genetic diversity and phenotypic
complexity observed in the natural population. Building on the
success of classical intercrosses and biparental GRPs, the CC
is a highly diverse and reproducible resource for studying and
mapping complex traits, including infectious disease suscepti-
bility. The reproducibility of CC strains will allow the community
to cross-compare genes and genetic networks that regulate
response across pathogens (e.g., IAV and SARS-CoV; Xiong
et al., 2014), while also exploring the impact of factors such as
the microbiome, co-infections, and genetic variation of the path-
ogen in the context of a controlled, genetically diverse model
population. The CC also holds promise for the development of

new models and testing platforms that will better reproduce spe-
cific human disease outcomes or host responses to pathogens
and vaccines.
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