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Abstract Humans and other group-living animals tend to distribute their social effort

disproportionately. Individuals predominantly interact with a small number of close companions

while maintaining weaker social bonds with less familiar group members. By incorporating this

behavior into a mathematical model, we find that a single parameter, which we refer to as social

fluidity, controls the rate of social mixing within the group. Large values of social fluidity

correspond to gregarious behavior, whereas small values signify the existence of persistent bonds

between individuals. We compare the social fluidity of 13 species by applying the model to

empirical human and animal social interaction data. To investigate how social behavior influences

the likelihood of an epidemic outbreak, we derive an analytical expression of the relationship

between social fluidity and the basic reproductive number of an infectious disease. For species that

form more stable social bonds, the model describes frequency-dependent transmission that is

sensitive to changes in social fluidity. As social fluidity increases, animal-disease systems become

increasingly density-dependent. Finally, we demonstrate that social fluidity is a stronger predictor

of disease outcomes than both group size and connectivity, and it provides an integrated

framework for both density-dependent and frequency-dependent transmission.

Introduction
Social behavior is fundamental to the survival of many species. It allows the formation of social

groups providing fitness advantages from greater access to resources and better protection from

predators (Krause and Ruxton, 2002). Structure within these groups can be found in the way indi-

viduals communicate across space, cooperate in sexual or parental behavior, or clash in territorial or

mating conflicts (Hinde, 1976). While animal societies are usually studied independently of each

other, studying how they differ in these regards has potential to reveal new insights into the nature

of social living (Sah et al., 2018; Dunbar and Shultz, 2010).

When social interaction requires shared physical space it can also be a conduit for the transmis-

sion of infectious disease (Altizer et al., 2003). In a typical infectious disease model, if the disease

spreads through the environment then the transmission rate is assumed to scale proportionally to

the local population density (de Jong et al., 1995; Hopkins et al., 2020). Alternatively, if transmis-

sion requires close proximity encounters that only occur between bonded individuals then we expect

social connectivity to determine the outcome. These two paradigms are known in the literature as

density-dependence and frequency-dependence (Silk et al., 2017).
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The problem, however, is that real diseases are not so easy to categorize (Patterson and Ruck-

stuhl, 2013). For example, as social groups grow in size, new bonds must be created to maintain

cohesiveness (Lehmann et al., 2007). To manage the time and cognitive effort required to create

these bonds, individuals tend to interact mostly with a small number of close companions while

maintaining cohesion with the wider group through less frequent contact (Silk, 2007; Sueur et al.,

2011; Dakin and Ryder, 2020). For an infectious disease, this creates fewer transmission opportuni-

ties than we would expect to see in a group with highly fluid social dynamics. The extent to which

group size amplifies the transmission rate therefore depends on how individuals choose to distribute

their social effort between strong and weak ties (Karsai et al., 2014).

While transmission rate has been observed to scale non-linearly with group size for a number of

disease systems (Cross et al., 2013; Smith et al., 2009; Silk et al., 2017), it remains unclear how

much this dependency is related to the internal social structure of the group; few studies observe

social dynamics at sufficient detail while simultaneously monitoring the disease status of each individ-

ual. In the absence of direct observations, our contribution to this discussion centers around model-

ing; incorporating empirical social data with computational simulations. We address two specific

questions. Firstly, can we quantify the variability in how individuals choose to distribute their social

effort within a group, and secondly, what will this tell us about the effect that population density has

on disease transmission?

In the first part of this paper, we introduce a mathematical model founded on the concept of

social fluidity which we define as variability in the amount of social effort the individual invests in

each member of their social group. Using openly available data, we estimate the social fluidity of 57

human and animal social systems. In the second part, we derive an expression for the basic repro-

ductive number of an infectious disease in the social fluidity model and demonstrate its accuracy in

predicting simulated outcomes. Furthermore, social fluidity emerges as a coherent mathematical

framework providing the smooth connection between density-dependent and frequency-dependent

disease systems.

Characterizing social behavior
Our first objective is to measure social behavior in a range of human and animal populations. We

start by introducing a model that captures a hidden element of social dynamics: how individual

group members distribute their social effort. We mathematically describe the relationships between

social variables that are routinely found in studies of animal behavior, the number of social ties and

the number of interactions observed, and apply the model to empirical data to reveal behavioral dif-

ferences between several species.

Social behavior model
Consider a closed system of N individuals and a set of interactions between pairs of individuals that

were recorded during some observation period. These observations can be represented as a net-

work: each individual, i, is a node; an edge exists between two nodes i and j if at least one interac-

tion was observed between them; the edge weight, wi;j, denotes the number of times this

interaction was observed. The total number of interactions of i is denoted strength, si ¼
P

j wi;j, and

the number of nodes with whom i is observed interacting is its degree, ki (Barrat et al., 2004).

We define xjji to be the probability that an interaction involving i will also involve node j. There-

fore, the probability that at least one of these interactions is with j is 1� ð1� xjjiÞ
si . The main assump-

tion of the model is that the values of xjji over all i; j pairs are distributed according to a probability

distribution, �ðxÞ. Thus, if a node interacts s times, the marginal probability that an edge exists

between that node and any other given node in the network is

	ðsÞ ¼ 1�

Z

�ðxÞð1� xÞsdx: (1)

Technically, �ðxÞ is the distribution of marginal xijj values of the joint probability distribution �ðxÞ

where X is a matrix whose i; j entry is -1 if i¼ j and xjji otherwise. While the values of xjji are subject

to network interdependencies, specifically AX ¼ XTA and 1¼ 0, where A is any diagonal matrix with

positive entries, and 1 and 0 are column vectors of length N containing only 0 and 1, we do not take

these constraints into account when estimating �.
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Our goal is to find a form of r that accurately reproduces network structure observed in real

social systems. Motivated by our exploration of empirical interaction patterns from a variety of spe-

cies, we propose that r has a power-law form:

�ðxÞ ¼
f�f

1� �f
x�ð1þfÞ for �<x<1; (2)

where f controls the variability in the values of x, and � simply truncates the distribution to avoid

divergence. The form of �ðxÞ was chosen for its analytical tractability but other heavy-tailed distribu-

tions produce a similar result (Figure 1—figure supplement 1 ). Combining (1) and (2) we find

	ðs;f; �Þ ¼ 1�
f�fð1� �Þsþ1

ð1� �fÞðsþ 1Þ
2F1ðsþ 1;1þf; sþ 2;1� �Þ (3)

where the notation 2F1 refers to the Gauss hypergeometric function (Abramowitz and Stegun,

1975). It follows from
P

j xjji ¼ 1 that

N ¼ 1þ
ð1�fÞð1� �fÞ

f�fð1� �1�fÞ
; (4)

which can be solved numerically to find � for given values of N and f. The expectation of the degree

is kðs;f;NÞ ¼ ðN� 1Þ	ðs;f; �Þ.

Figure 1 illustrates how the value of f can produce different types of social behavior. As f is the

main determinant of social behavior in our model, we use the term social fluidity to refer to this

quantity. Low social fluidity (f � 1) produces what we might describe as ‘allegiant’ behavior: interac-

tions with the same partner are frequently repeated at the expense of interactions with unfamiliar

individuals. As f increases, the model produces more ‘gregarious’ behavior: interactions are

repeated less frequently and the number of partners grows faster. While names like ‘social strategy’

and ‘loyalty’ have been applied to similar concepts (Valdano et al., 2015; Miritello et al., 2013), flu-

idity, as a property of matter, is a useful metaphor for communicating the main idea behind this

model.
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Figure 1. Left: Each individual can be represented as a single point on this plot. Dashed lines mark the boundary

of the region where data points can feasibly be found. The mean degree is plotted for two values of f

representing two possible types of social behavior; as the number of observed interactions grows, the set of social

contacts increases; the rate at which it increases influences how we categorize their social behavior. Middle: The

weight of the edges between i and the other nodes represents the propensity of i to interact with each of the

other individuals in the group. Right: Probability distributions that correspond to the different levels of evenness in

the contact propensities, both distributions are expressed by Equation (2).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Outcomes using different forms of �ðxÞ.
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Estimating social fluidity in empirical networks
To understand the results of the model in the context of real systems, we estimate f in 57 networks

from 20 studies of human and animal social behavior (further details in the supplement) (Isella et al.,

2011; Stehlé et al., 2011a; Mastrandrea et al., 2015; Vanhems et al., 2013; Modlmeier et al.,

2019; Blonder and Dornhaus, 2011; Génois et al., 2015; Carter and Wilkinson, 2013;

Grant, 1973; Levin et al., 2016; Sailer and Gaulin, 1984; Mourier et al., 2017; Massen and

Sterck, 2013; Sade, 1972; Butovskaya et al., 1994; Takahata, 1991; Hass, 1991; Lott, 1979;

Schein and Fohrman, 1955; Hobson and DeDeo, 2015; Gernat et al., 2018), focusing our atten-

tion to those interactions which are capable of disease transmission (i.e. those that, at the least,

require close spatial proximity). The advantage of using this model over more detailed network

descriptions is that we obtain a single parameter estimate, f that is easily compared across animal

species and environments.

Each dataset provides the number of interactions that were observed between pairs of individu-

als. We assume that the system is closed, and that the total network size (N) is equal to the number

of individuals observed in at least one interaction. To estimate social fluidity, we find the value of f

that minimizes
P

i½ki � kðsi;f;NÞ�
2; the total squared squared error between the observed degrees

and their expectation given by the model. Uncertainty is displayed using the 2.5th and 97.5th per-

centile of the distribution of f computed on a set of 1000 ‘bootstrap’ samples, created by sampling

N data points, fki; sig, with replacement, from the observed data. Being estimated from the relation-

ship between strength and degree, and not their absolute values, social fluidity is a good candidate

for comparing social behavior across different systems as it is independent of the distributions of si
or ki, and of the timescale of interactions.

Figure 2 shows the estimated values of f for all networks in our study. We organize the measure-

ments of social fluidity by interaction type. Aggressive interactions have the highest fluidity (which

implies that most interactions are rarely repeated between the same individuals), while grooming

and other forms of social bonding have the lowest (which implies frequent repeated interactions

between the same individuals). Social fluidity also appears to be related to species: ant systems clus-

ter around f ¼ 1, monkeys around f ¼ 0:5, humans take a range of values that depend on the social

environment. Sociality type does not appear to affect f; sheep, bison, and cattle have different

social fluidity compared to kangaroos and bats, although they are all categorized as fission-fusion

species (Sah et al., 2018).

Across the 57 networks, there is no evidence that social fluidity scales with the size of the network

or the number of observations per individual. No correlation was found between the mean number

of interactions per individual (�s) and social fluidity when testing for a monotonic relationship between

the variables (Spearman r2 ¼ 0:02, p ¼ 0:36), and in general no correlation across sets of networks

taken from the same study (Supplementary file 1: Table S2). Similarly, network size (N) does not

correlate with f (Spearman r2 ¼ 0:02, p ¼ 0:28). To test for a non-monotonic relationship, we parti-

tion the set of networks into 10 equally sized groups according to each of the two measures being

compared, and compute the adjusted mutual information (AMI) of the two groupings. We find

AMI=0.15 for the relationship between f and N, and AMI=0.2 between f and �s. While non-negative

values of AMI typically indicate a non-random relationship, an inherent amount of clustering is to be

expected in data aggregated from a diverse range of sources.

Larger values of f correspond to higher mean degrees (Spearman r2 ¼ 0:21, p<0:001) and lower

variability in the distribution of edge weights (measured as the index of dispersion of wi;j; Spearman

r2 ¼ 0:46, p<0:001). Weight variability and mean degree are uncorrelated in these data (Spearman

r2 ¼ 0:01, p ¼ 0:54, AMI=0.01) implying that f combines these two entirely distinct features of social

behavior. Finally, the modularity of the network (computed by the Louvain method on the

unweighted network Blondel et al., 2008) is negatively correlated with f (r2 ¼ 0:52, p<0:001). This is

expected as individuals tend to be loyal to those within the same module while maintaining weaker

connections with the remaining network - in all but one network the mean weight of edges within

modules is higher than the mean weight of edges between modules (supplementary document).

As with any applied modeling, the validity of these results depends on the extent to which each

study system conforms to the assumptions of the model. The value of N, for example, might not rep-

resent the true group size if some individuals in the group did not have their interactions recorded,

or if there are individuals who did not interact during the time-frame of observation. While we found
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that variation in the value of N did not have a large impact on the estimated value of f, as shown in

Figure 2—figure supplement 1, we warn that the amount of consistency between model assump-

tions and the conditions of each study will vary, and close consideration should be given to the way

data were collected when interpreting these results.

Characterizing disease spread with social fluidity
Our objective is to characterize how social behavior influences the exposure of the group to infec-

tious disease in a range of human and animal social systems. Intuitively, we expect an infected indi-

vidual in a group with low social fluidity to expose fewer susceptible group members to the

pathogen than they would in a group with highly fluid social dynamics. We explore this idea by intro-

ducing a analytical transmission model that incorporates social fluidity. Using this model, we mathe-

matically characterize the impact of social fluidity on density dependence, and apply the model to

empirical networks to predict disease spread.

Disease transmission model
We consider the transmission of an infectious disease on the social behavior model introduced in the

previous section. An infectious node i interacting with a susceptible node j will transmit the infection

with probability b. The node will recover from infection with rate g, assuming an exponential distribu-

tion of the length of the infectious period. The probability that the infection is transmitted from i to

any given j is

Ti!jðb;g; si;t ;xjjiÞ ¼ 1� expð�sixjjib=gt Þ; (5)

Figure 2. Each point represents a human or animal system for which social fluidity was estimated. Colors

correspond to the species and the setting in the case of human networks. Different shapes are used as a visual

aid. Lines represent the 95% bootstrap confidence interval. Results are organized by interaction type: aggression

includes fighting and displays of dominance, food sharing refers to mouth-to-mouth passing of food, antennation

is when the antenna of one insect touches any part of another, space sharing interactions occur with spatial

proximity during foraging, face-to-face refers to close proximity interactions that require individuals to be facing

each other, association is defined as co-membership of the same social group, and grooming is when one

individual cleans another with their hand or other body part.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. All data and fitted curves.

Figure supplement 2. Sensitivity to changes in time frame.
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assuming that the interactions si of i are distributed randomly across an observation period of dura-

tion t.

By integrating Equation (5) over all possible values xjji and infectious period durations and multi-

plying by the number of susceptible individuals (N � 1) we obtain the expected number of infections

caused by individual i,

rðsiÞ ¼
1�f

fð�f� �Þ
1� �fþ �f2F1ð�f;1;1�f;�bsi=gt Þ
�

�2F1ð�f;1;1�f;��bsi=gt Þ�: (6)

The basic reproductive number (usually denoted R0) is defined as the mean number of secondary

infections caused by a typical infectious individual in an otherwise susceptible population

(Diekmann et al., 1990). We will use the notation R
f
0
to signify the social fluidity reproductive num-

ber, that is the analogue of R0 derived from our social behavior model.

We assess the relation of the reproductive number with the population density by focusing on a

special case where every node has the same strength, that is si ¼ s for all i, so that Rf
0
¼ rðsÞ. Further-

more, we choose b ¼ gt R¥
0
=s where R¥

0
is R

f
0
as f ! ¥, that is a constant that represents what the

basic reproductive number would be if every new interaction occurred between a pair of individuals

who have not previously interacted with each other.

Figure 3 shows the effect of social fluidity on the density dependence of the disease. At small

population sizes, Rf
0
increases with N and converges as N goes to ¥ (Figure 3A). The rate of this

convergence increases with f, and the limit it converges to is higher, meaning that f determines the

extent to which density affects the spread of disease. As N ! ¥, we find that R
f
0
! R¥

0
for f>1.

When f<1, R
f
0
! ½ð1� fÞ=f�½2F1ð�f; 1; 1� f;�R¥

0
Þ � 1�. At these values of f the disease is con-

strained by individuals choosing to repeat interactions despite having the choice of infinitely many

potential interaction partners (Figure 3B).

Infection spread in empirical networks with heterogeneous connectivity
To apply this analogue of a reproductive number to an animal-disease system, we need to account

for heterogeneous levels of social connectivity in the given population and thus the tendency for

infected individuals to be those with a greater number of social partners (Anderson et al., 1986).

For the basic reproductive number, this is often done using the mean excess degree, that is the

degree of an individual selected with probability proportional to their degree (Newman, 2018). Fol-

lowing a similar reasoning, we define REst
0

, which incorporates the effect of social fluidity, as the

Figure 3. Density dependence in populations where every node has the same strength. (A) For different values of

social fluidity, f, we show R
f
0
(from Equation (6)) as a function of N (from Equation (4)) through their parametric

relation with �. Dashed lines show the limit for large N. (B) In large populations Rf
0
increases with f up to f ¼ 1.

Beyond this value, infections occur as frequently as they would if every new interaction occurs between a pair of

individuals who have not previously interacted with each other.
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expected number of infections (rðsiÞ) caused by an individual that has been selected with probability

proportional to their degree (ki):

REst
0

ðfsig;fkig;t ;b;gÞ ¼

P

i kirðsiÞ
P

i ki
: (7)

Given the degree and strength of each individual in a network, the duration over which those

interactions occurrred, and the transmission and recovery rates of the disease, we are able to esti-

mate f, compute Equation (6) for each individual, and finally use Equation (7) to derive a statistic

that provides a measure of the risk of the host population to disease outbreak.

Numerical validation using empirical networks
We simulated the spread of disease through the interactions that occurred in the empirical data

(Materials and methods). We compute RSim
0

ðgÞ, defined as the ratio of the number of individuals

infected at the ðgþ 1Þ-th generation to the number infected at the g-th generation over 103 simu-

lated outbreaks, for g ¼ 0; 1; 2 (g ¼ 0 refers to the initial seed of the outbreak).

Table 1 shows the Pearson correlation coefficient and the adjusted mutual information between

RSim
0

ðgÞ and its corresponding value REst
0

obtained Equation (7) (Materials and methods). Equivalent

results are also presented for other indicators and network statistics. The results correspond to one

set of simulation conditions and are consistent across a wide range of parameter combinations (see

Supplementary file 1). Note that a different value of b was chosen for each network to control for

the varying interaction rates between networks while keeping the upper bound (R¥
0
) constant (Mate-

rials and methods). While contact frequency is known to be one of the major contributors to disease

risk, calibrating b in this way eliminates its effect, allowing the contribution of other network charac-

teristics to be compared. Thus, the mean strength does not have a significant effect on RSim
0

ðgÞ, and

higher mean edge weight does not necessarily imply higher transmission probability over the edges

of the network.

These correlations support a known result regarding repeat contacts in network models of dis-

ease spread: that indicators of disease risk that are derived solely from the degree distribution are

unreliable and the role of edge weights should not be neglected (Smieszek et al., 2009;

Stehlé et al., 2011b). After transmission has occurred from one individual to another, repeating the

same interaction serves no advantage for disease (most directly transmitted microparasites are not

dose-dependent). Since a large edge weight implies a high frequency of repeated interactions, net-

works with a higher mean weight tend to have lower basic reproductive numbers. Furthermore, vari-

ability in the distribution of weights concentrates a yet larger proportion of interactions onto a small

Table 1. The Pearson correlation coefficient between quantities calculated on the network and the

simulated disease outcomes (with R¥
0
¼ 3).

Results that are significant with p<0:01 are labeled with *. Adjusted mutual information is calculated

between the variables after partitioning the set of networks into 10 equally sized rank-order classes.

Corr. with RSim
0

ðg ¼ 1Þ Adjusted MI

REst
0

0.91* 0.35

Social fluidity 0.73* 0.24

Excess degree 0.64* 0.15

Mean degree 0.53* 0.14

Network size 0.47* 0.18

Mean strength -0.07 -0.02

Mean clustering -0.15 0.12

Mean edge weight -0.45* 0.10

Edge weight heterogeneity -0.48* 0.21

Modularity -0.59* 0.12
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number of edges, further increasing the number of repeat interactions and reducing the reproduc-

tive number.

Correlation between modularity and RSim
0

ðgÞ is partly due to the strong correlation between mod-

ular networks and those with high social fluidity. Consistent with other evidence (Sah et al., 2017),

this suggests that transmission events occur mostly within the module of the seed node, with weaker

social ties facilitating transmission to other modules. The effect of clustering (a measure of the num-

ber of connected triples in network Watts and Strogatz, 1998) correlates with smaller RSim
0

ð2Þ, con-

sistent with other theoretical work (Miller, 2009; Smieszek et al., 2009).

Finally, we find the model estimate of the social fluidity reproductive number REst
0

to be, on aver-

age, within 10% of the simulated value, RSim
0

ðgÞ at g ¼ 1. At g ¼ 2 the amount of error is larger (to up

to 29% for some parameter choices). Prediction accuracy at this generation is negatively correlated

with the mean clustering coefficient. This is not surprising as REst
0

does not account for the acceler-

ated depletion of susceptible neighbors that is known to occur in clustered networks (Miller, 2009;

Smieszek et al., 2009). No other properties of the network affect the accuracy of REst
0

consistently

across all parameter combinations (see Supplementary file 1).

Results and discussion
We proposed a measure of fluidity in social behavior which quantifies how much mixing exists within

the social relationships of a population. While social networks can be measured with a variety of met-

rics including size, connectivity, contact heterogeneity and frequency, our methodology reduces all

such factors to a single quantity allowing comparisons across a range of human and animal social sys-

tems. Social fluidity correlates with both the density of social ties (mean degree) and the variability

in the weight of those ties, although these quantities do not correlate with each other. Social fluidity

is thus able to combine these two aspects seamlessly in one quantity.

By measuring social fluidity across a range of human and animal systems we are able to rank

social behaviors. We identify aggressive interactions as the most socially fluid; this indicates a possi-

ble learning effect whereby each aggressive encounter is followed by a period during which individu-

als avoid further aggression with each other (Parker, 1974). At the opposite end of the scale, we

find interactions that strengthen bonds (and thus require repeated interactions) such as grooming in

monkeys (Seyfarth and Cheney, 1984) and food-sharing in bats (Carter and Wilkinson, 2013). The

fact that food-sharing ants are far more fluid than bats, despite performing the same kind of interac-

tion, reflects their eusocial nature and the absence of any need to consistently reinforce bonds with

their kin (Hölldobler and Wilson, 2009).

Our results contribute to a body of work examining the disproportionate distribution of social

effort in both human and animal groups. This phenomena has been directly observed in human tele-

communication (Mac Carron et al., 2016; Saramäki et al., 2014; Gonçalves et al., 2011;

Tamarit et al., 2018). Quantifying this aspect of sociality in animal systems, however, has been held

back by the limitations of the data, such as the bias introduced by variation in activity levels across

the social group (Di Bitetti, 2000). Additionally, while heterogeneous interaction frequencies and

temporal dynamics have become common in epidemiological models (Rocha and Blondel, 2013;

Colman et al., 2018), our results highlight the importance of including variability in how the individ-

ual chooses to expend their social effort.

As with most studies that aim to describe and quantify social structure, there are a number of

concerns that ought to be mentioned. The degree of an individual, for example, is known to scale

with the length of the observation period (Perra et al., 2012). This is also true of the networks used

here (Figure 2—figure supplement 1). Similarly, social fluidity can be affected by the length of the

observation window. However, since our model focuses not on the absolute value of degree, but on

how degree scales with the number of observations, the results we obtain are relatively robust

against this variability (Figure 2—figure supplement 1). Additionally, observed interactions are typi-

cally assumed to persist over time (Perreault, 2010). In our model this is not the case; only the distri-

bution of edge weights remains constant, an assumption consistent with growing evidence

(Miritello et al., 2013; Centellegher et al., 2017).

We therefore consider the model to be applicable to the data analysed in this study, but advise

caution when applying this approach to other data sources. If the duration of a study allows for
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substantial developments in the group structure, for example, then a model of edge formation and

dissolution may be preferred.

Finally, we do not know the extent to which an interaction, as defined for each network, is capa-

ble of transmission which can depend on the pathogen’s transmission mode and the infectious dose

required. Furthermore, the transmission probability is unlikely to be the same for all interactions

within the group since, for example, the duration of contact is known to be important for disease

spread (Stehlé et al., 2011b). We did not include explicitly the duration of each contact in our

model as this information was only available in a fraction of the datasets (Barrat et al., 2014). There

is therefore potential to improve the applicability of this model as more high resolution data

becomes openly available.

Our estimate of reproductive number derived from social fluidity provides a better predictor for

the epidemic risk of a host population, going beyond predictors based on density or degree only.

To illustrate this point, the social network of individuals at a conference (REst
0

¼ 1:60; conference_0,

supplementary document) is predicted to be at higher risk compared to the social network at a

school (REst
0

¼ 1:39; highschool_0), despite having a smaller size and lower connectivity (N ¼ 93 vs.

N ¼ 312, and �k ¼ 5:63 vs. �k ¼ 6:78, respectively). The discrepancy in the risk prediction comes from

the lower frequency of repeated contacts between individuals in the conference, compared to the

school. Interactions between infectious individuals and those they have previously infected are

redundant in terms of transmission. This dynamic is nicely captured by the social fluidity, with

f ¼ 0:66 for the conference and f ¼ 0:40 for the high school.

Unlike previous work that explores the disease consequences of population mixing (Volz and

Meyers, 2007; Reluga and Shim, 2014), our analysis allows us to investigate this relation across a

range of social systems. We see, for example, how the relationship between mixing and disease risk

scales with group size. For social systems that have high values of social fluidity, Rf
0
is highly sensitive

to changes in N, whereas this sensitivity is not present at low values of f. This corroborates past

work on the scaling of transmission being associated to heterogeneity in contact (Begon et al.,

2002; Ferrari et al., 2011). Going beyond previous work, our model captures in a coherent theoreti-

cal framework both density-dependence and frequency-dependence, and social fluidity is the mea-

sure to tune from one to the other in a continuous way. Since many empirical studies support a

transmission function that is somewhere between these two modeling paradigms (Smith et al.,

2009; Cross et al., 2013; Borremans et al., 2017; Hopkins et al., 2020), the modeling approaches

applied in this paper can be carried forward to inform transmission relationships in future disease

studies.

Materials and methods

Python libraries
Mean clustering coefficients were computed using the networkx Python library. To evaluate the

hypergeometric function in (3) we used the hyp2f1 function from the scipy.special Python library.

Numerical solutions to Equation (4) using the fsolve function from the scipy.optimize Python library.

Adjusted mutual information was computed using adjusted mutual info score from the sklearn.met-

rics library. All scripts, data, and documentation used in this study are available through https://

github.com/EwanColman/Social-Fluidity (Colman, 2021, copy archived at swh:1:rev:

90b27e1b84ce4417633885cd260c89bbf1b07eac).

Data handling
Only freely available downloadable sources of data have been used for this study. Details of the

experimentation and data collection, including how the interaction type is defined, can be found

through their respective publications. Here, we note some additional processes we have applied for

our study.

Each human contact dataset lists the identities of the people in contact, as well as the 20 s inter-

val of detection (Isella et al., 2011; Vanhems et al., 2013; Stehlé et al., 2011a; Mastrandrea et al.,

2015; Génois et al., 2015). Any sequence of consecutive time intervals for which contact is detected

between two individuals is considered to be one interaction. To exclude contacts detected while
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participants momentarily walked past one another, only contacts detected in at least two consecu-

tive intervals are considered interactions. Data were then separated into 24 hr subsets.

Bee trophallaxis provided experimental data for five unrelated colonies under continuous obser-

vation. We use the first hour of recorded data for each colony (Gernat et al., 2018). The ant trophal-

laxis study provided six networks: three unrelated colonies continuously observed under two

different experimental conditions (Modlmeier et al., 2019). Ant antennation study provided six net-

works: three colonies, each observed for 4 hr in two sessions separated by a 2-week period. The bat

study collected individual data at different times and under different experimental conditions

(Carter and Wilkinson, 2013). For bats that were studied on more than one occasion we use only

the first day they were observed.

Some data sets provided data for group membership collected through intermittent, rather than

continuous, observation (Grant, 1973; Massen and Sterck, 2013; Levin et al., 2016; Sailer and

Gaulin, 1984; Mourier et al., 2017) and typically recorded over multiple days or weeks. We con-

struct networks from these data by recording an interaction when two individuals were seen to be in

the same group during one round of observation. The shark data were divided into six datasets,

each one constructed from 10 consecutive observation bouts, and spread out evenly through the

46-day period over which the data were collected.

For the grooming data (Butovskaya et al., 1994; Sade, 1972), if one animal was grooming

another during one round of observations then this would be recorded as a directed interaction.

Similarly for aggressive interactions (Parker, 1974; Takahata, 1991; Hass, 1991; Lott, 1979;

Schein and Fohrman, 1955; Hobson and DeDeo, 2015). These data are typically collected over a

period of days or weeks. When an animal was determined to be the winner of a dominance encoun-

ter then this would be recorded as a directed interaction between the winner and the loser. We con-

sider interaction in either direction to be a contact in the network.

We considered including two rodent studies in which interaction is defined as being observed

within the same territorial space (Smith et al., 2009; Borremans et al., 2017). We did not find this

suitable for our analysis since the network we obtain, and the consequent results are sensitive to set-

ting of arbitrary threshold values regarding what should, or should not, be considered sufficient con-

tact for an interaction.

For data that did not contain the time of each interaction, contact time series were generated

synthetically. For those networks, the interactions between each pair were given synthetic time-

stamps in three different ways, Poisson: the time of each interaction is chosen uniformly at random

from {0, 1, ..., 104} seconds, Circadian: chosen uniformly at random from {0,1, ...,3333, 6666,

....,104}, and Bursty: interaction times occur with power-law distributed inter-event times adjusted to

give an expected total duration of 104 seconds.

Disease simulation
Simulations of disease spread were executed using the contacts provided by the datasets. The the

bat network was omitted from this part since these data were collected over a series of independent

experiments carried out at different times and under different experimental treatments.

In one run of the simulation, one seed node is randomly chosen from the network and, at a ran-

domly selected point in time during the duration of the data, transitions to the infectious state. The

duration for which they remain infectious is a random variable drawn from an exponential distribu-

tion with mean 1=g. During this time, any contact they have with other individuals who have not pre-

viously been infected will cause an infection with probability b.

The simulation runs until all individuals who were infected at the second generation of the dis-

ease, that is those infected by those infected by the seed, have recovered. The datasets are ‘looped’

to ensure that the timeframe of the data collection does not influence the outcome. In other words,

immediately after the latest interaction, the interactions are repeated exactly as they were originally.

This continues to happen until the termination criteria is met.

We set the parameters to normalise for the variation in contacts rates between networks. To

achieve this, we consider a hypothetical counterpart to each network in which the strength of every

node is the same, but each interaction occurs between a pair of individuals who have not previously

interacted. This is equivalent to f ! ¥. Under these conditions xjji ¼ 1=ðN � 1Þ for all pairs i; j. It
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follows that Equation (5) becomes Ti!j » sib=gt ðN � 1Þ, then rðsiÞ » sib=gt , and, since ki ¼ si for all

nodes i, Equation (7) gives

R¥
0
¼ REst

0
ðfsig;fsig;t ;b;gÞ ¼

b
P

i s
2

i

gt
P

i si
(8)

The value of R¥
0

can be chosen arbitrarily. Then, by setting g¼ 1=t and b¼ R¥
0

P

i si=
P

i s
2

i we

guarantee that Equation (8) holds for every network. To test that our results hold over a range of

disease scenarios, we repeat our analysis with R¥
0
¼ 2, 3, and 4.
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Stehlé J, Voirin N, Barrat A, Cattuto C, Isella L, Pinton JF, Quaggiotto M, Van den Broeck W, Régis C, Lina B,
Vanhems P. 2011a. High-resolution measurements of face-to-face contact patterns in a primary school. PLOS
ONE 6:e23176. DOI: https://doi.org/10.1371/journal.pone.0023176, PMID: 21858018
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