
International  Journal  of

Environmental Research

and Public Health

Article

High-Intensity Interval Exercise Performance and Short-Term
Metabolic Responses to Overnight-Fasted Acute-Partial
Sleep Deprivation

Zacharias Papadakis 1,* , Jeffrey S. Forsse 2 and Andreas Stamatis 3

����������
�������

Citation: Papadakis, Z.; Forsse, J.S.;

Stamatis, A. High-Intensity Interval

Exercise Performance and Short-Term

Metabolic Responses to Overnight-

Fasted Acute-Partial Sleep

Deprivation. Int. J. Environ. Res.

Public Health 2021, 18, 3655. http://

doi.org/10.3390/ijerph18073655

Academic Editor: Pantelis Nikolaidis

Received: 3 March 2021

Accepted: 29 March 2021

Published: 1 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Human Performance Laboratory, Barry University, Miami Shores, FL 33138, USA
2 Baylor Laboratories for Exercise Science and Technologies, Baylor University, Waco, TX 40385, USA;

jeff_forsse@baylor.edu
3 SUNY Plattsburgh, Plattsburgh, NY 12901, USA; astam004@plattsburgh.edu
* Correspondence: zpapadakis@barry.edu; Tel.: +1-305-899-3573

Abstract: People practicing high-intensity interval exercise (HIIE) fasted during the morning hours
under a lack of sleep. Such a habit may jeopardize the health benefits related to HIIE and adequate
sleep. Fifteen habitually good sleeper males (age 31.1 ± 5.3 SD year) completed on a treadmill two
isocaloric (500 kcal) HIIE sessions (3:2 min work:rest) averaged at 70% VO2reserve after 9–9.5 h of
reference sleep exercise (RSE) and after 3–3.5 h of acute-partial sleep deprivation exercise (SSE). Diet
and sleep patterns were controlled both 1 week prior and 2 days leading up to RSE and SSE. HIIE
related performance and substrate utilization data were obtained from the continuous analysis of
respiratory gases. Data were analyzed using repeated measures ANOVA with the baseline maximum
oxygen uptake (VO2max) and body fat percentage (BF%) as covariates at p < 0.05. No difference
was observed in VO2max, time to complete the HIIE, VE, RER, CHO%, and FAT% utilization during
the experimental conditions. Whether attaining an adequate amount of sleep or not, the fasted
HIIE performance and metabolism were not affected. We propose to practice the fasted HIIE under
adequate sleep to receive the pleiotropic beneficial effects of sleep to the human body.

Keywords: sleep restriction; metabolism; cardiorespiratory fitness; PSQI; SenseWear

1. Introduction

Sleep research is commonly focused on acute-total and chronic-partial deprivation [1,2]
with sleep related parameters to be either self-assessed (e.g., Pittsburgh Sleep Quality
Index–PSQI) [3–10] and/or objectively assessed with a sophisticated apparatus (e.g., sleep
monitors, polysomnography, actigraphy) [4–6,9–12]. Few studies have examined the acute-
partial sleep deprivation with respect to the exercise performance, with most of them
focusing on anaerobic performance (e.g., Wingate). Results are conflicting, as some indicate
that partial sleep deprivation negatively impacts the next day’s performance, especially
the afternoon’s compared to next morning’s performance [13–15], while others reported
no difference in Wingate performance after 4 h of partial sleep deprivation [13,14,16]. In
addition, partial sleep deprivation at the end of the night decreases anaerobic performance
compared to the deprived condition at the beginning of the night among Judokas [16].
The inconsistency in the aforementioned findings seems to be attributed to the differences
in the examined population, applied exercise protocols, heterogeneity of the examined
variables [17], and to combinations of sleep deprivation protocols in the form of delayed
onset, intermittent waking, and early rising [6].

Even fewer studies have focused on acute-partial sleep deprivation on aerobic perfor-
mance, also yielding contradictory findings. Antunes et al. reported that sleep quality and
duration assessed by PSQI are associated with the maximal incremental cycle ergometer
performance and appears to be fitness independent. The maximum heart rate (HRmax) was
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positively correlated with sleep quality (r = 0.41, p = 0.03) and negatively correlated with
sleep duration (r = − 0.43, p = 0.02). Good quality sleepers, as indicated by the PSQI scores,
presented higher values of maximum oxygen consumption (VO2max) and lower HRmax
compared to the individuals with altered sleep (i.e., <7 h) [3]. Partial sleep deprivation
of 3 h sleep did not alter the intermittent aerobic performance (i.e., Yo-Yo) of Taekwondo
athletes in the morning of the following day (7–8 a.m.) [18]. Similarly, about 3 h of deprived
sleep did not significantly decrease the next day’s graded exercise performance on a cycle
ergometer between 5 p.m. and 9 p.m. (i.e., peak VO2max by 15%, peak heart rate by 1.6%,
and exercise duration by 3.2%) compared to about 8 h of reference sleep [19]. Forty minutes
of cycling at a self-selected pace (~64.4 ± 16% SD VO2max) with the goal to cover as much
distance as possible did not alter the exercise performance after 4 h of sleep compared to
the reference sleep [20]. Similarly, no difference was reported in the heart rate and energy
expenditure after two 6-min early morning runs at 60% of running treadmill speed after
4 h of sleep compared to 7.5 h [21]. Mougin et al. reported no differences on the maximal
sustained exercise intensity and a significant decrease in VO2max, ventilation, and heart
rate during the incremental cycle ergometry performed at 2 p.m. in the next day after 3 h
of partial sleep deprivation [22].

In contrast to reporting no change or mixed results in aerobic exercise performance,
Mougin et al. found a decrease in the maximal work rate during incremental cycling to
exhaustion after ~4 h of sleep in the evening of the next day [23]. The next morning’s 3-km
time trial performance on a cycle ergometer was significantly impaired by 4% following
partial sleep deprivation (~3 h) compared to a full night of sleep (~7 h), with no reported
changes for maximum oxygen consumption, expired ventilation, and respiratory exchange
ratio [6]. In comparison, it was shown that 4 h of sleep impairs the aerobic cycling perfor-
mance on recreational cyclists by 4.1% compared to normal sleep (~8 h) [10]. Moreover,
trained cyclists/triathletes also reported an impaired cycling time trial performance on a
partial sleep deprivation (~4.7 h) condition compared to normal sleep (~7 h) [24].

Findings on partial sleep deprivation effects on aerobic related exercise performance
are mixed. The reason for this discrepancy is attributed to the small sample size (e.g., less
than 10 participants) and subsequent lack of power to extrapolate the reported results,
differences in the selected populations, durations of sleep deprivation, and performance
assessment protocols [18,25]. In this context, the majority of the reported literature has
been focused on examining the link between sleep and athletic performance [3,6,9,25–31]
and/or the link between diseases and their progression [1,32–41]. Lack of sleep is associ-
ated with several metabolic dysfunctions, influencing lifestyle factors such as nutritional
balance/metabolism, body composition, and cardiorespiratory fitness (CRF), ultimately
jeopardizing an individual’s health status [17,42–44].

Growing evidence favors high-intensity interval exercise (HIIE) for achieving various
health benefits [45]. HIIE’s popularity is mainly based on the fact that compared to other
forms of exercise, it can be completed in just 20–30 min per session [46]. Since lack of
time is the most common excuse that people give for not exercising [47], the HIIE session
may be a time-efficient strategy to improve health, body composition, and CRF levels [48].
People of varying CRF levels and body fat percentages (BF%) in their effort to accomplish
everything in a 24/7 society may practice HIIE, early in the morning before they engage in
their busy lives under the influence of lack of sleep [49,50]. It is possible for people that
select to work out early in the morning to exercise after an overnight-fasted state (e.g.,
empty stomach) in an effort to improve fuel efficiency and utilization during exercise, as
well as to increase fat usage in the premise to stimulate the accumulated weight loss [51–54].
Evidence suggests that exercise after an overnight fasting in healthy men can enhance
training-induced adaptations in the muscle metabolic profile. Energy production during
exercise in the overnight-fasted state is supported by both fat and carbohydrates utilization
at 45–65% of VO2max and predominantly from carbohydrates for intensities over 65% of
VO2max [52,55], while fat oxidation is increased during exercise in the overnight-fasted
state [56,57].
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However, such health-related behaviors may have detrimental effects on exercise
performance and the related metabolic, oxidative, and inflammatory responses [9,42,58]. It
is possible for people when they perform HIIE early in the morning under acute-partial
sleep deprivation to experience decrements in physical performance (e.g., VO2max,) due
to an increase in the metabolism (e.g., insulin resistance, glucose tolerance), inflamma-
tion (e.g., tumor necrosis factor alpha and prostaglandin E2), autonomic nervous sys-
tem (sympathetic activity), perceived exertion, and impairment in the aerobic metabolic
pathways [26,44,58,59] presenting an increase in carbohydrate (CHO) utilization due to
an increase in ghrelin, hepatic glucose production [60], and increase in the respiratory
exchange ratio (RER) [58].

The influence of acute-partial sleep deprivation on the HIIE performance and
metabolism is less investigated and physiological parameters that may influence the HIIE
performance and substrate utilization/partitioning are poorly understood [43]. Most of the
sleep and exercise accumulated evidence on both anaerobic and aerobic performances is
based on cycling ergometry protocols and evening performance assessments. It is possible
for exercising on a treadmill in the morning after an overnight-fasted acute-partial sleep
deprivation to elicit different performance responses and substrate utilization compared to
the reference sleep and exercise. Therefore, it was hypothesized (a) that the HIIE aerobic
performance (e.g., VO2max, time to expend 500 kcal, expired ventilation, and respiratory
exchange ratio) of apparently healthy fit males will be impaired after 3–3.5 h of acute-
partial-deprived sleep exercise (SSE) condition compared to 9–9.5 h of reference sleep HIIE
(RSE) condition, and (b) that the carbohydrate percentage (CHO%) utilized during HIIE of
apparently healthy fit males will be increased and the fat percentage (FAT%) utilized will
be decreased in SSE compared to the RSE condition.

2. Materials and Methods
2.1. Study Design and Participants

This study was a subpart of a project that examined acute-partial sleep deprivation and
cardiometabolic/autonomic nervous responses to HIIE [4,5]. A within-subject randomized
crossover experimental design with two experimental conditions was employed. Each
experimental condition was completed in a serial manner, with measurements performed
the evening of day 1 and the next morning of day 2 (see Figure 1).

Conditions began 48 h after limiting physical activity to activities of daily living,
no medication use, and the consumption of a diet standardized to what the individual
consumed during the first time of the experimental condition and was free of supplemen-
tation of any kind. At least a 72 h washout period occurred between the completion of
the experimental condition and initiating the next condition and no more than 2 weeks
between the experimental conditions [60].

Experimental conditions included: (1) A RSE in which a meal was ingested in the
evening before the reference sleep at day 1 (9 to 9.5 h of time-in-bed in with ~8 h of sleep
was attained) followed on day 2 by a session of HIIE (3:2 min intervals at 90 and 40% of
VO2reserve that average 70% of VO2reserve) that expends 500 kcals of energy, and (2) a SSE
similar to RSE but with 3 to 3.5 h of time-in-bed limited to no more than 3.5 h of sleep (see
Figure 1). All the participants were asked to read and sign an informed consent form before
they took part in the study. The study was conducted in accordance with the Declaration
of Helsinki, and the protocol was approved by the Institutional Review Board (#758508-7).
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Figure 1. Each experimental condition was completed on two consecutive days and began after 48 h of physical inactivity, 
no medication use, and the consumption of a diet standardized to what the individual consumed during the first inter-
vention and free from supplementation of any kind. Each experimental condition involved one pre-sleep standard meal 
consumed in the evening of the first experimental day before the sleep and exercise interventions. The experimental con-
ditions included: (1) A “reference sleep and exercise condition” (RSE) in which a session of high-intensity interval exercise 
(3:2 intervals at 90 and 40% of VO2reserve that average 70% of VO2reserve) that expends 500 kcals of energy was performed 
after 9–9.5 h of sleep, and (2) a “partial-deprived sleep and exercise condition” (SSE) after 3 to 3.5 h of rest limited to no 
more than 3 h of sleep in which a session of high-intensity interval exercise expends 500 kcals of energy. Participants 
arrived at 7 p.m. at the laboratory and stayed until around 8:30 p.m. until they consumed the evening meal. We discharged 
participants from the lab accounting for the commuting and bed-preparation time, therefore, at 9 p.m. or 3 a.m. all the 
participants were to be in bed. The participants stayed in their homes until awake time which was set at 6 a.m. During this 
time, only data from SenseWear were collected to verify the sleep duration. The participants had to be at the lab at 7 a.m. 
the next day. Between 7 a.m. and 8 a.m., we examined the data collected from the sleep monitor and the pre-exercise 
resting blood pressure was obtained. After that, an HIIE protocol was executed collecting respiratory gases and obtaining 
the related variables of interest. 
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Figure 1. Each experimental condition was completed on two consecutive days and began after 48 h of physical inactivity, no
medication use, and the consumption of a diet standardized to what the individual consumed during the first intervention
and free from supplementation of any kind. Each experimental condition involved one pre-sleep standard meal consumed
in the evening of the first experimental day before the sleep and exercise interventions. The experimental conditions
included: (1) A “reference sleep and exercise condition” (RSE) in which a session of high-intensity interval exercise (3:2
intervals at 90 and 40% of VO2reserve that average 70% of VO2reserve) that expends 500 kcals of energy was performed after
9–9.5 h of sleep, and (2) a “partial-deprived sleep and exercise condition” (SSE) after 3 to 3.5 h of rest limited to no more than
3 h of sleep in which a session of high-intensity interval exercise expends 500 kcals of energy. Participants arrived at 7 p.m.
at the laboratory and stayed until around 8:30 p.m. until they consumed the evening meal. We discharged participants
from the lab accounting for the commuting and bed-preparation time, therefore, at 9 p.m. or 3 a.m. all the participants
were to be in bed. The participants stayed in their homes until awake time which was set at 6 a.m. During this time, only
data from SenseWear were collected to verify the sleep duration. The participants had to be at the lab at 7 a.m. the next
day. Between 7 a.m. and 8 a.m., we examined the data collected from the sleep monitor and the pre-exercise resting blood
pressure was obtained. After that, an HIIE protocol was executed collecting respiratory gases and obtaining the related
variables of interest.

2.2. Participants

Eligibility for participation was granted to males, age between 24 and 55, apparently
healthy assessed by a modified health and history questionnaire [61], with normal and
overweight body mass index (BMI) (18.5–29.9 kg/m2). The cohort had to be recreationally
physically active engaging in a regular leisure-time or work-related physical activity, but not
engaged in training for long-distance endurance events. They had to be non-smokers and
not taking any medications known to influence neural and/or cardiometabolic responses.
Their respective quality of habitual sleep had to be “good” as indicated by the PSQI of
≤5 [62] and by wearing a sleep monitor [63] for a week long in order to characterize their
habitual sleep duration (i.e., ~8 h) [64–67].

2.3. Preliminary Experimental Procedures
2.3.1. Body Composition and Cardiorespiratory Fitness

Before undergoing experimental procedures, the participants’ BF% was determined by
dual-energy X-ray absorptiometry (DXA) (Discovery DXA™, Hologic®, Bedford, MA, USA).
After that, we determined their CRF with an individualized treadmill maximal graded
exercise test (VO2max), as previously described [4,5]. Briefly, for warmup the participants
had to jog/walk for 5 min at a self-selected pace. After the warmup, the participants ran
in speeds that were increased every 3 min for the first three stages with the last stage
representing the participants’ 5 K race pace. The grade was set at 0% for the first three
stages and then it was increased by 2% every minute with the speed to be the same as
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the last 3-min stage. The test was terminated when the participants reached volitional
fatigue and were required to stop. Respiratory gases (VO2 and VCO2) were measured
continuously using an integrated respiratory gas analysis system (ParvoMedics, Sandy, UT,
USA). We used the results of the CRF to describe their fitness and calculate the respective
HIIE intensities for the experimental conditions (see Figure 1) [68].

2.3.2. Sleep, Physical Activity, and Diet

In order to ensure that the participants were “good sleepers” and in addition to the
scores of PSQI, a sleep monitor (SenseWear™, Body Media®, Pittsburgh, PA, USA) was
provided to be worn on their non-dominant arm for 23 h a day for one whole week prior
to the experimental conditions, as well as 2 days leading up to the RSE and SSE condi-
tions. Data from the sleep monitor were used to characterize sleep and physical activity
levels [63–67,69,70], as the participants had to be “good responders” and to refrain from
physical activities for 2 days prior to the RSE and SSE conditions. In addition to sleep and
physical activity requirements, the participants had to control and monitor their diets for
the same period (i.e., 1 week prior and 2 days leading to the experimental conditions). The
participants were instructed to follow their typical diet so they could be easily reproduced
for the RSE and SSE conditions. The dietary intake and macronutrient composition were
processed using ChooseMyPlate® (US Department of Agriculture, Washington, DC, USA).

2.4. Experimental Conditions
2.4.1. Evening Meal

In order to simulate a real-life scenario and avoid negative influences on sleep quality
due to the meal composition [42], the participants received a typical light evening meal (non-
standardized per body mass) of approximately 805 kcals high and 127 g in carbohydrates
(70.4%), fat 20 g (11.1%), and protein 33.3 g (18.5%) macronutrients. The meal was made
up of a turkey and cheese sandwich on whole grain bread, a medium banana, a 150 g cup
of Greek yogurt, and a 24 oz Gatorade drink. The participants did not have anything else
ingested until the experimental conditions the following morning. After finishing their
meal, they had to remain in the lab until it was time for them to return to their residence
and go to sleep.

2.4.2. Sleep

To avoid any possible anxiety and disruption from occurring during sleeping in an
unfamiliar place, participants completed all sleep at their residence. Sleep conditions
were designed based on the national recommendations for adults of obtaining 7 to 9 h
of sleep [1,71,72]. For the RSE condition, the reference sleep allowed for 9.5 h of bed rest
hoping that the participants would have achieved ≥8 h of sleep. For the SSE condition, the
acute-partial sleep deprivation allowed for 3.5 h of bed rest and limited sleep to ≤3 h of
sleep. Participants had to go straight to their residence once they left the lab. The research
design allowed enough time for commuting and preparation time so that the requisite
sleep could be obtained for each condition. Upon arriving at their place of residence, we
asked them to refrain from eating, watching television, and engaging in computer activities
preceding their sleep preparations. We instructed them to both record the time they entered
the bed and the wake-up time. The next day’s lab appointment was scheduled to allow
enough time for them to prepare and commute to the lab. Participants wore the SenseWear
to monitor their sleep duration so the researchers are able to verify whether the participants
have met the sleep duration-related inclusion criteria for the RSE and SSE conditions.

2.4.3. High-Intensity Interval Exercise

Each HIIE session was performed under constant laboratory environmental conditions
on a motorized treadmill Trackmaster® TMX 428CP™ and began at least 10–12 h after the
evening meal in a fasted condition at about 0800 h using a specific HIIE protocol, as
previously described [4,5,71–77]. At first, a resting blood pressure was obtained following
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the standard procedures and a mean arterial pressure was calculated [68] followed by the
HIIE. The HIIE protocol included a brief 5-min warm-up period consisting of walking at
2.5 mph and 0% grade. The HIIE session was completed in 3-min running intervals at
90% of VO2reserve separated by 2-min intervals of jogging/walking at 40% of VO2reserve.
The average intensity of all HIIE sessions was equated to 70% of VO2reserve. The HIIE
session was concluded when the participants expended a total of 500 kcal, as determined
by the continuous respiratory gas analysis. Respiratory variables of volume of oxygen
(VO2), volume of carbon dioxide (VCO2), expired ventilation (VE), respiratory exchange
ratio (RER), etc. were measured continuously using an integrated respiratory gas analysis
system after a standardized calibration before each measurement.

2.5. Statistical Analyses

Dependent variables included the relative VO2max, time needed to expend 500 kcal,
VE, RER, carbohydrate percent (CHO%) utilized, fat percent (FAT%) utilized, and resting
mean arterial pressure (MAP) of the morning of day 2 before the HIIE. Independent
variables included the experimental conditions, RSE and SSE (see Figure 1). Descriptive
characteristics are presented in Table 1. Substrates utilization for CHO% and FAT% were
calculated based on the concept that lipid oxidation is related to RER values < 0.71, whereas
a value of RER > 1.00 is related to the CHO oxidation. Considering that RER values greater
than 0.85 represent an index of fat to the CHO oxidation assuming that protein oxidation
was negligible throughout the HIIE, the respective percentages were calculated using the
following formulas [78]:

(1.00 − RER)/(1.00 − 0.70) × 100 = %FAT utilized

100% − %FAT = %CHO utilized,

Table 1. Baseline screening −7 days of diet, activity levels, and sleep.

Variable Mean ± SD Min Max

Age (year) 31.1 ± 5.3 24 40
Height (cm) 179.3 ± 6.8 167.6 188.0
Weight (kg) 83.3 ± 11.4 70.7 105.7

BMI (kg/m2) 25.8 ± 2.7 21.1 29.9
BF (%) 21.0 ± 6.5 11.4 35.3

VO2 (mL/kg/min) 49.2 ± 8.5 36.0 66.0
Time to complete VO2 test (min) 10.1 ± 1.9 6.5 13.4

VE (L/min) 68.9 ± 17.3 32 95
RER 0.97 ± 0.5 0.89 1.03
PSQI 3.7 ± 0.9 2 5

7 Days Caloric intake (kcal) 2372 ± 576 1421 3440
7 Days Activity levels (METs) 1.49 ± 0.15 1.3 1.7

7 Days SL (h:mm:ss) 8:25:44 ± 1:22:50 6:33:00 11:15:00
7 Days SD (h:mm:ss) 6:43:28 ± 1:22:50 5:03:00 9:11:00

7 Days SLE (%) 81 ± 11 55.19 91.1
All values are presented as mean ± standard deviation. VO2: Volume of oxygen consumption; VE: Expired
ventilation; RER: Respiratory exchange ratio; BF: Body fat; BMI: Body mass index; PSQI: Pittsburgh sleep quality
index; SL: Sleep plus laying down; SD: Sleep duration; SLE: Sleep efficiency expressed as the percentage of sleep
duration over the laying down time; METs: Metabolic equivalents; activity levels are labeled as sedentary (up to
1.5 METs), light (1.5–3.0 METs), and moderate (3.0–6.0 METs).

The Kolmogorov-Smirnov/Shapiro-Wilk and normal Q-Q plots were used to deter-
mine the normality of the data [79]. In the case of violation of normality, natural logarithmic
transformations were performed. In the case of violation of sphericity, the Greenhouse-
Geisser degrees-of-freedom correction was performed.

Since this study was a subpart of a bigger project with different dependent variables
that required at least a sample size of 15 participants [80], a separate power analysis was
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run to verify if such a sample size was adequate enough to answer the research hypothesis
of this study. Previous studies related to research questions similar to this project used
seven to 14 participants [6,10,14,18,22–24,81–86]. Moreover, using the G*Power for Mac
(vs. 3.1.94, 2009) for the F-test, ANOVA repeated measures, within the interaction with
the alpha level at 0.05, power at 0.80, one group, lower bound of sphericity at 1, and effect
size at 0.4, yielded a total sample size of 12 [87]. Therefore, a sample of 15 participants was
considered proper to infer statistical significance and extrapolate the results for the aims of
this study.

Data were analyzed using the repeated measures ANOVA for conditions (RSE vs. SSE)
to examine differences in the main variables of interests. Moreover, an ANCOVA with
VO2max and BF% as covariates was run to compare the mean response of the dependent
variables. The Bonferroni post-hoc procedure was used to follow-up significant findings.
Eta squared (η2) effects sizes were also calculated with the following threshold values: <0.2
trivial, >0.2 small, >0.6 moderate, and >1.2 large [88]. The statistical significance for this
study was set a priori with a p-value ≤ 0.05. Group characteristics were reported as the
mean ± SD and data analyses were completed with the IBM Statistical Package for Social
Sciences (SPSS) for Mac, v. 26, (IBM Corp., Armonk, NY, USA).

3. Results
3.1. Pre-Experimental Data
Caloric Intake, Physical Activity, and Sleep

A total of 30 individuals met the inclusion criteria, but only 15 were able to adhere
to the study’s protocol, complete the study, and be included in the statistical analysis.
Descriptive data for the 7 days and baseline are presented in Table 1.

The selected cohort included habitually good sleepers which are able to follow the
study’s aims, as determined from the sleep data. Participants did not differ in their sleep
patterns during the 7 days with respect to the sleep laying down time (F3.8,52.8 = 0.41,
p = 0.79, η2 = 0.028), sleep duration (F3.5,49.2 = 0.48, p = 0.73, η2 = 0.033), and sleep efficiency
(F3.1,43.3 = 0.92, p = 0.44, η2 = 0.062). Moreover, participants’ sleep laying down time
(F1,14 = 0.85, p = 0.37, η2 = 0.057), sleep duration (F1,14 = 0.37, p = 0.55, η2 = 0.026), and sleep
efficiency (F1,14 = 3.7, p = 0.08, η2 = 0.210) did not differ during the 7 days of data collection
and RSE.

3.2. Experimental Data
3.2.1. Caloric Intake, Physical Activity, and Sleep

The cohort’s caloric intake did not differ between the 7 days, RSE, and SSE (F2,28 = 2.22,
p = 0.13, η2 = 0.137). Physical activity levels did not differ between the 7 days, RSE, and SSE
(F2,28 = 2.34, p = 0.12, η2 = 0.143) and there was no difference in the antioxidant consumption
between the 7 days, RSE, SSE in vitamin A (F1.39,19.4 = 2.04, p = 0.15, η2 = 0.127), vitamin C
(F2,28 = 0.24, p = 0.79, η2 = 0.017), and vitamin E (F2,28 = 1.4, p = 0.27, η2 = 0.090).

Data for RSE and RSE regarding diet, physical activity, and sleep are presented in
Table 2. The caloric intake did not differ between RSE and SSE (F1,14 = 0.36, p = 0.56,
η2 = 0.025). Physical activity levels did not differ between RSE and SSE (F1,14 = 2.73,
p = 0.12, η2 = 0.163). Vitamin A (F1,14 = 0.01, p = 0.94, η2 = 0.006), vitamin C (F1,14 = 0.07,
p = 0.80, η2 = 0.006), and vitamin E (F1,14 = 0.60, p = 0.45, η2 = 0.041) did not differ between
RSE and SSE. By design, there was a difference in the sleep laying down (F1,14 = 297.98,
p < 0.01, η2 = 0.955), sleep duration (F1,14 = 285.67, p < 0.01, η2 = 0.953) between RSE and
SSE, but not in sleep efficiency (F1,14 = 2.07, p = 0.17, η2 = 0.129).
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Table 2. Sleep and physical activity level conditions.

Variable RSE SSE

Caloric intake (kcal) 1989 ± 749 2106 ± 870
Activity levels (METs) 1.4 ± 0.15 1.5 ± 0.15

Vitamin A (µg) 782.53 ± 618.17 795 ± 603.30
Vitamin C (µg) 156.73 ± 378.91 191.1 ± 376.41
Vitamin E (µg) 11.8 ± 7.86 14.53 ± 12.62
SL (h:mm:ss) 8:11:04 ± 1:01:48 3:18:09 ± 0:52:02 *; p < 0.05
SD (h:mm:ss) 6:57:09 ± 0:47:38 2:39:30 ± 0:40:11 *; p < 0.05

SLE (%) 86 ± 8 81 ± 12
All values are presented as mean ± standard deviation. Means with * are significantly different between
conditions at p < 0.05. SL: Sleep plus laying down; SD: Sleep duration; SLE: Sleep efficiency expressed as the
percentage of sleep duration over the laying down time; activity levels are labeled as sedentary (up to 1.5 METs),
light (1.5–3.0 METs), and moderate (3.0–6.0 METs); METs: Metabolic equivalents; RSE: Reference sleep and
high-intensity exercise; SSE: Acute-partial sleep deprivation and high-intensity interval exercise.

3.2.2. Exercise and Substrate Utilization

Descriptive data for exercise and substrate utilization are presented in Table 3. A
covariate analysis with VO2max and BF% on the main variables of interest did not alter
the outcomes, therefore we present results only for the repeated ANOVA. In general, no
differences between RSE and SSE were observed in any of the examined HIIE performance
variables, but there was a possible trend of an impaired HIIE aerobic performance. No
difference between RSE and SSE in substrate utilization during HIIE was observed as well,
but during the RSE more CHO (89%) was used compared to RSE (86%), while fat was
utilized less at RSE (11%) compared to SSE (14%). A significant difference in MAP was
reported between conditions with participants presenting a lower resting MAP before the
HIIE at the SSE compared to RSE.

Table 3. Resting mean arterial pressure, exercise performance, and substrate utilization.

Variable RSE SSE Within-Subjects Effects

90% VO2reserve (mL/kg/min) 41.6 ± 7.3 41.2 ± 7.3 F1,14 = 0.30, p = 0.6, η2 = 0.021
40% VO2reserve (mL/kg/min) 20.4 ± 3.2 20.3 ± 3.1 F1,14 = 0.03, p = 0.87, η2 = 0.002

VO2max (mL/kg/min) 45.8 ± 8.1 45.39 ± 8.1 F1,14 = 0.22, p = 0.6, η2 = 0.016
Time to complete VO2 test (min) 24.31 ± 2.6 24.44 ± 2 F1,14 = 0.09, p = 0.77, η2 = 0.006

VE (L/min) 72.8 ± 9.39 71.6 ± 10.84 F1,14 = 0.41, p = 0.53, η2 = 0.029
RER 0.97 ± 0.037 0.96 ± 0.041 F1,14 = 0.41, p = 0.53, η2 = 0.029

CHO (%) 88.91 ± 12.63 86.65 ± 13.94 F1,14 = 0.41, p = 0.53, η2 = 0.029
FAT (%) 11.08 ± 12.63 13.34 ± 13.94 F1,14 = 0.41, p = 0.53, η2 = 0.029

MAP (mmHg) 98.6 ± 6.3 72 ± 9.8 F1,14 = 222.97, p < 0.001, η2 = 0.941 *

All values are presented as mean ± standard deviation. Means with * are significantly different between conditions. VO2max: Maximum
volume of oxygen consumption; VE: Expired ventilation; RER: Respiratory exchange ratio; CHO: Carbohydrate percentage utilized; FAT:
Fat percentage utilized; MAP: Resting mean arterial pressure; RSE: Reference sleep and high-intensity exercise; SSE: Acute-partial sleep
deprivation and high-intensity interval exercise.

4. Discussion

This study attempted to explore the impact of acute-partial sleep deprivation on
the next day’s HIIE performance and subsequent substrate utilization after an overnight
fasting. We hypothesized that the HIIE performance in the sleep deprived condition will
be impaired, but results presented that the HIIE performance was not influenced by acute-
partial sleep deprivation, even though a trend for a marginal decrease emerged. Moreover,
we hypothesized that participants in the sleep deprived condition will be using more
CHO% and less FAT% during the HIIE, but on the contrary, results showed that partial
sleep deprived participants utilized more FAT% and less CHO% compared to the reference
sleep and HIIE. In addition, our cohort presented at the morning of the second day of the
sleep deprived condition with lower resting mean arterial pressure, as recorded before the
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HIIE. When we added in the examined model participants’ respective VO2max and BF%,
there was still no difference in the earlier reported outcomes.

It is difficult to position the current findings in the context of the sleep and aerobic
performance due to the documented discrepancies on selected populations, durations
of sleep deprivation, and the time of day that was induced, and lastly the performance
assessment protocols [19,26]. Our results support the current ambiguity surrounding the
studies that examine partial sleep and aerobic performance by employing sub-maximal or
maximal protocols [28].

For example, the morning (8 a.m.) cycling performance was impaired at the partial
sleep deprived condition (~2.5 h) compared to the reference sleep (~7 h) for six male
and two female recreational cyclists [6]. Chase et al. reported a 4% decrease in time
completion of 3-km cycling after sleep restriction, and in this context, our findings are
in direct disagreement as we did not observe any difference, only a minimal impairment
in time performance for the SSE. Chase et al. even though they reported changes in
time performance, similar to us, they did not report any difference at VO2, VE, and RER
suggesting that these variables probably are not influenced by sleep deprivation [6,28,89],
even at extreme levels of 64 h of deprivation [90].

There is, however, some evidence supporting the fact that partial sleep deprivation can
alter heart rate, VE, and RER due to the elevated catecholamine and sympathetic nervous
system for exercise intensities over 75% of VO2max [23,26,91]. We did not measure heart
rates, but our cohort presented in the sleep deprived condition with significantly lower
mean arterial pressure indicating that they possibly had lowered heart rates and their
sympathetic nervous system was not stressed enough, and the parasympathetic branch
was more activated. This can also be supported by the heart-rate variability (HRV) indices
related to this study, which were recently presented from the same project. We reported that
acute-partial sleep deprivation significantly increased HRV indices, such as high-frequency
(HF) and root mean square of successive normal RR interval differences (RMSSD), which
are mainly influenced by the parasympathetic activation in the morning after the sleep
deprivation on day 2 before the HIIE [5]. There is a lack of studies examining acute-partial
sleep deprivation and HRV, but it has been reported that partial deprivation increases the
sympathetic branch of the autonomic nervous system as reflected by an increase in low
frequency (LF) and decrease in HF [92].

The evening cycling exercise at 75% of the VO2max for at least 20 min after partial
sleep deprivation of 3 h was able to significantly reduce the aerobic performance VO2max,
increase both VE and lactate accumulation compared to ~8.5 h of reference sleep on trained
endurance male athletes, but no significant difference in the maximal exercise intensity
was reported [23]. Their exercise intensity was averaged to 75% of the predetermined
maximal oxygen consumption, but exercise was performed during the afternoon hours on
a cycle ergometer. Previous work has shown that heart rate, VE, and RER during exercise
are not impacted by sleep patterns [28,89]. However, there is some support that sleep
deprivation can influence physiological variables when exercise is performed at relatively
high intensities greater than 75% of VO2max due to the induced stress on the cardiovascular
system and elevation of the catecholamine levels [23]. In our study, we utilized a similar
average exercise intensity (70% of VO2max), but it was performed during the morning
hours in a HIIE form and on a treadmill where the sleep debt was not yet high enough.
It has been reported that the morning performance is unaffected by the sleep patterns of
the previous night and this may be the reason for the partial discrepancy in the findings
between our study and Mougin et al., while the evening performance is more likely to be
affected as the sleep debt accumulates [13,14,19,93].

Cullen et al. reported that a 15-min all out cycling aerobic performance was signif-
icantly decreased in the next morning (7 to 9 a.m.) in recreationally active males after
4 h of sleep compared to the reference sleep [10]. Similarly, trained cyclists/triathletes
also reported an impaired cycling morning endurance time-trial for more than 50 min
of performance in the sleep deprived condition (~4.5 h) compared to the reference sleep
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(~7 h) [25]. In addition to the apparent similarities and differences in the design of the
previous two studies and ours, a possible reason for the discrepancy between their results
and ours (i.e., no difference in the HIIE performance) may be due to the discomfort which
is associated with all our tests and the long endurance tests compared to the submaximal
workouts as ours. It is possible that the applied HIIE protocol during the SSE was perceived
in a more pleasant way eliciting less discomfort and allowing our participants to exercise
at the same levels as the RSE [94].

The results of this work agree with Omiya et al. who reported that healthy men
presented a non-significant decrement in the cycling cardiopulmonary exercise test evening
performance (5–9 p.m.) after a 3 h sleep deprivation compared to the control sleep of
~7.5 h. They also reported that time to exhaustion, peak heart rate, and maximum oxygen
consumption was not affected by sleep loss [20]. In addition, our results are partially
confirmed by Mougin et al. who reported no difference in the maximal cycling exercise
intensity. However, their evening cycling exercise at 75% of the VO2max for at least 20 min
after partial sleep deprivation of 3 h was able to significantly reduce the aerobic perfor-
mance VO2max, increase both VE and lactate accumulation compared to ~8.5 h of reference
sleep on trained endurance male cyclists [23].

Mejri et al. reported no change in the intermittent aerobic performance test scores on
Taekwondo players at 7–8 a.m. after partial sleep deprivation of 3 h compared to 7.5 h of
reference sleep [19]. Our findings agree with Mejri et al. and even though their sample
was Judokas, while ours was recreationally active people, based on the Judokas respective
CRF and BF% levels many of our participants could have been categorized as athletes, as
well. Having high fitness levels has been associated with better sleep quality and adopting
a healthy lifestyle [3] may have masked our cohort’s responses to sleep deprivation due
to their respective fitness (VO2max-49.2 mL/kg/min) and due to the research design, that
recruited recreationally active, normal, and overweight non-smokers individuals. It is
possible that if participants were not that fit and following a sedentary lifestyle to have
different HIIE performance and metabolic responses with respect to overnight-fasted
partial sleep deprivation. Moreover, our study and Mejri’s et al. study had similar sleep
deprivation (~3 h) and reference sleep (~7.5 h) protocols, exercise was performed in the
morning and involved running as the mode of exercise. In addition, even though there is a
notable difference between submaximal and maximal tests performed in the laboratory
versus in the field or on a treadmill versus on a cycling ergometer, both applied exercise
stimuli probably stressed the same metabolic pathways. The Yo-Yo test evaluates the
capacity to perform repeated high intensity aerobic work with the anerobic system to be
taxed towards the end of the test [95,96], similar to our HIIE protocol as demonstrated by
the respective RER values.

The fasted exercise at about 70% of VO2max mobilizes and promotes fat oxidation via
increased lipolytic activity and limited action of insulin and in that respect our findings
support the literature [55]. The energy substrate during exercise depends on the intensity,
duration, and level of training and FAT% utilization is higher at no greater than 60–65% of
VO2max and decreases at intensities greater than 75% of VO2max. Even though the applied
HIIE protocol involved intensities at 90% of VO2max for 3 min and 40% of VO2max for 2 min
the average interval intensity was 70% of VO2max indicating that the observed increase in
FAT% during the acute-partial sleep deprivation is justified [55]. The nutrient substrate
utilization and most notable the muscle glycogen storage and utilization is impaired,
especially during sleep deprivation where the brain is “hungry” for glucose [97,98]. It has
been shown that sleep deprivation of 30 h reduces muscle glycogen and affects brain and
glucose metabolism [99,100]. In five and a half hours of a sleep deprivation protocol, CHO%
is augmented due to the increased need of glucose in the brain metabolism during sleep
deprivation. Results from the same study reported increased hunger and elevated fasting
and postprandial respiratory quotient (RQ) values with reduced FAT% oxidation and with
no increase in catabolic hormones such as cortisol, triiodothyronine, free thyroxine, and
catecholamines [61]. We did not deprive our participants nor did we measure muscle



Int. J. Environ. Res. Public Health 2021, 18, 3655 11 of 17

glycogen, ghrelin, leptin or catabolic hormones, but based on the slightly lower obtained
RER values from the partial sleep deprived condition and the respective decrease in
CHO% and increase FAT% utilization during the HIIE, we may suggest that the same
levels of oxidative glucose metabolism occurred, with no noticeable impairment in glucose
metabolism. Taking all these together is premature to conclude on whether partitioning of
the substrate utilization was affected by the acute-partial sleep deprivation. In theory, the
extra time spent, while being awake induces an increased demand for glucose to support
brain wakefulness and other glucose dependent tissues while sparing fat [62].

An increase in the exercise intensity and/or duration alters the cardiac autonomic
modulation with sleep quality to be independent of intensity and duration as aerobic
exercise is not able to result in sleep pattern disturbances [101]. In that context, many
studies do not report that sleep related characteristics add more in the complexity of
interpreting the literature. In our study, sleep efficiency for the reference sleep was 86%,
with the minimum efficiency recommended for good health [102] to be 85%, and for
the partial sleep deprived condition to be 81%. Moreover, it has been shown that the
timing of the food intake and its composition are correlated with negative effects on sleep
quality [43]. Our study’s design with its light meal composition allowed for adequate
time between the last meal and preparations for sleep, while supported the body with
CHO to improve sleep and the next day’s aerobic performance [103]. It is apparent that all
of the aforementioned studies, including ours, have used different populations, applied
exercise protocols, and patterns of sleep manipulation, factors that have been discussed to
be reasons for discrepancies [19,26].

The present study has several strengths. First, 15 participants were used for the sta-
tistical analysis when the common sample size is between 7 and 14 providing adequate
statistical power when testing the null hypothesis [104]. However, recently it was suggested
that the Bayesian analysis may be a more appropriate statistical analysis to detect subtle
changes in the partial sleep deprivation area overcoming the common problems of large
variability and low sample sizes [10]. Studies may consider examining their research ques-
tions not only using inferential statistics, but also under the Bayesian theorem, recognizing
that even this approach has its limitations, as well [105]. However, given the crossover
nature of the study and the power size calculations, this is unlikely to have affected the
findings. In an effort to eliminate the common trait in variability in individual responses
among studies regarding acute-partial sleep deprivation, we utilized a strict diet and sleep
protocol for 7 days to verify eligibility and again 2 days prior to the experimental conditions
to ensure that the sample would be “habitually good sleepers” and to respond adequately
to acute-partial sleep deprivation [89,106]. In addition, using a treadmill rather than a
cycling ergometer and HIIE protocol of that nature was something unique that we have
not experienced before in the literature. Moreover, the majority of studies examining sleep
loss acute or partial on performance lack specificity as their “scenarios” are not applicable
to real life [26]. This study’s protocol has a real life’s applicability and significance, as
exercising early in the morning after an overnight fasting and acute sleep deprivation is a
common behavior [50,51].

However, this study is limited in employing objective sleep quality measurements
that assess sleep architecture and cycles. We defined sleep patterns as having subjective
evaluations based on PSQI scores and objective using the sleep monitor. Such measures
have proven to have good applicability, reproducibility, face validity, and they are relatively
inexpensive in nature [65,66,68,72,107].

It is important to consider that our findings are specific to the time of day (7:00–8:00 a.m.),
on how awake or restored the participants were from the previous night in questioning or
even by their respective chronotype (i.e., morning-type or evening-type) [108–110]. The
time of day has been shown to influence the level of aerobic performance such as time
to exhaustion and total distance covered in the Yo-Yo test [111,112]. The time of day may
have an effect on the performance of the muscle contractile properties and the intracellular
variation due to the circadian rhythm impact on the inorganic phosphate concentration
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and central temperature which would influence calcium release from the sarcoplasmic
reticulum [113]. It has been shown that morning-type individuals perform better in the
morning, while evening-type individuals have their peak performance in the evening
during a self-paced walking task [114]. It is reported that evening-type individuals will
meet more of a burden when they perform a HIIE protocol (e.g., 4 × 4 min at 90–95% of
peak heart rate with 3 min of active recovery at 50–60% of peak heart rate) early in the
day [115]. Since we did not assess the participants’ circadian typology, we are not in a
position to determine if our results were attributed due to the sample’s distribution of
morning-type and evening-type participants and how these responded to an 8:00 a.m. HIIE
session.

Restrictions can be imposed due to the specific design and studied population high-
lighting the need for larger studies performed in sleep research centers with other popula-
tion groups, such as women and sedentary individuals, as well as studies that share similar
or different HIIE protocols and modes of exercise. A per design exercise was scheduled in
the morning, and we instructed the participants to avoid strenuous physical activity for
at least 48 h prior to the sleep intervention. This practice may have masked our reported
acute-partial sleep deprivation and next-day HIIE performance responses due to the given
restorative nature of sleep on regulating homeostasis [35,102,116]. Moreover, comparing
morning and evening exercisers and/or gender responses under the partial sleep deprived
condition is still unexplored. In sleep related studies, there is very often an issue with the
operational definition of what “short” and “long” sleep loss are across different studies,
thus preventing adequate comparisons [18].

Another issue that may complicate the interpretation of this study’s results may be
the heterogeneity of the included covariates. Many have included age and gender, health
status and history, sociodemographic and socioeconomic factors, and medication use [18].
Therefore, future studies may consider the inclusion of more covariates, since not adjusting
for enough variables may lead to relationships and differences caused by several factors,
other than the casual effects of sleep.

Future studies may examine this research question using different HIIE protocols/
modalities and establish a more solid proof with regards to the effect of sleep patterns
(duration and quality) in the overnight-fasted HIIE performance and metabolism. More
research is needed to confirm acute sleep deprivation effects on intermittent bouts of
exercise, maybe on sport specific and cognitive performance. It is critical to obtain a better
understanding on the physiological/psychosocial interactions of acute-partial sleep and
exercise, glucose tolerance, obesity, and cardiovascular functioning. In addition, studying
sleep disturbance in accordance to sleep duration, quality, and latency will provide a better
understanding of the implications of short sleep for the public health.

5. Conclusions

Our findings suggest that acute-partial sleep deprivation has no impact on the HIIE
performance and utilizes less CHO% and more FAT% during HIIE in the morning hours. In
that perspective, HIIE in the fasted acute-partial sleep deprived state provides a neglectable
increase in fat oxidation compared to the reference sleep HIIE. Therefore, it is probably wiser
for people that practice the HIIE session in the morning hours to perform as such under a
full night of sleep, in order to receive the sleeps’ pleiotropic beneficial effects. Moreover,
exercise specialists and health care related practitioners may find this information useful
when they prescribe exercise for health and well-being.
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