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Abstract 22 

Recent advances in spatial transcriptomics (ST) have allowed for the mapping of 23 

tissue heterogeneity, but this technique lacks the resolution to investigate gene 24 

expression patterns, cell-cell communications and tissue organization at the single-cell 25 

resolution. ST data contains a mixed transcriptome from multiple heterogeneous cells, 26 

and current methods predict two-dimensional (2D) coordinates for individual cells within 27 

a predetermined space, making it difficult to reconstruct and study three-dimensional 28 

(3D) tissue organization. Here we present a new computational method called 29 

scHolography that uses deep learning to map single-cell transcriptome data to 3D 30 

space. Unlike existing methods, which generate a projection between transcriptome 31 

data and 2D spatial coordinates, scHolography uses neural networks to create a high-32 

dimensional transcriptome-to-space map that preserves the distance information 33 

between cells, allowing for the construction of a cell-cell proximity matrix beyond the 2D 34 

ST scaffold. Furthermore, the neighboring cell profile of a given cell type can be 35 

extracted to study spatial cell heterogeneity. We apply scHolography to human skin, 36 

human skin cancer and mouse brain datasets, providing new insights into gene 37 

expression patterns, cell-cell interactions and spatial microenvironment. Together, 38 

scHolography offers a computational solution for digitizing transcriptome and spatial 39 

information into high-dimensional data for neural network-based mapping and the 40 

reconstruction of 3D tissue organization at the single-cell resolution.  41 

 42 

 43 
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Introduction 45 

 The cell is the basic building block of life. Tissues are composed of many 46 

heterogeneous cells, usually numbering in the millions or billions. Each cell has its own 47 

location and performs specific functions that contribute to the physiological function of 48 

the tissue. These functions can include adhesion, sensing the environment, and 49 

communication with other cells. The expression of genes within a cell determines not 50 

only its identity but also its ability to interact with neighboring cells. This relationship 51 

between gene expression and cell localization and tissue architecture has been 52 

supported by genetic studies that have shown that manipulating gene expression can 53 

cause reproducible structural changes in tissues during development and homeostasis. 54 

However, it is difficult to map individual cells to 3D space and reconstruct the 55 

organization of tissues, based on their gene expression patterns1–3. The development of 56 

single-cell RNA sequencing (scRNAseq) has permitted more accurate measurement of 57 

the transcriptome at the single-cell level4. More recently, spatial transcriptomic (ST) 58 

platforms have been developed to measure the transcriptome of localized regions. 59 

However, the resolution of ST is limited by the size of the micropatterned pixels, which 60 

are usually 10-100 μm in diameter and capture a mixture of transcriptomes from 61 

multiple cells within a pixel. As a result, the single-cell resolution ST has yet to be 62 

established1–3. Computational methods, including cell-type deconvolution of spatial 63 

pixels such as RCTD5 and single-cell spatial charting methods such as CellTrek6, have 64 

been developed to enhance the resolution of ST. However, these methods acquire the 65 

spatial information of ST pixels as the 2D registration, which is dependent upon the 66 

sectioning angle of the reference slide. Furthermore, single cells are usually mapped 67 
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back to 2D spatial positions constrained by the reference slide, which can limit the utility 68 

to identify cell neighbors and study spatially dynamic gene expression patterns.     69 

 In this study, we aim to map single cells and their associated transcriptome to 70 

specific locations in 3D space in order to reconstruct tissue organization and study the 71 

transcriptomic dynamics of the reconstructed tissue microenvironment. To address the 72 

limitations of current ST and computational methods, we have developed a new 73 

computational framework called scHolography. Our approach is based on three 74 

concepts. First, we reason that a distributed description of a spatial location, based on 75 

the distance between each pixel and all other pixels, can more accurately define the 76 

location of a pixel than 2D coordinates alone. This inter-pixel spatial information can 77 

better capture the intrinsic organizing principles of the tissue, regardless of the 78 

sectioning angle or slide orientation. Second, to establish an accurate transcriptome-to-79 

space (T2S) projection, we treat the spatial-information components (SICs) as a high-80 

dimensional dataset that describes the spatial organization of the tissue. Finally, we use 81 

neural networks to learn the T2S transformation and implement the Gale-Shapley 82 

algorithm to identify stable-matching neighbors (SMNs), which assigns single cells and 83 

their associated transcriptome to unique spatial locations. This approach allows us to 84 

improve spatial resolution from a large spatial pixel to the single-cell level without the 85 

need for cell-type deconvolution. Based on these principles, we have developed 86 

scHolography and applied it to human foreskin samples, as well as a recently published 87 

dataset of human skin cancer ST samples7 and a well-studied mouse brain ST dataset 88 

from 10X Genomics Visium. Our results demonstrate the accuracy of scHolography for 89 

de novo 3D tissue reconstruction, and highlight its ability to identify the profiles of 90 
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neighboring cells of any given type, investigate spatial cell heterogeneity within tissues, 91 

and identify differential gene expression patterns across a defined space.  92 

 93 

Results 94 

scHolography learns inter-pixel distance and reconstructs tissue organization  95 

The scHolography workflow aims to resolve the spatial dynamics of tissue at the 96 

single-cell resolution. One of the major goals of scHolography is to establish the 97 

transcriptome-to-space (T2S) projection, which maps a defined transcriptome to a 98 

spatial location within the tissue. While it is widely appreciated that scRNAseq 99 

accurately measures the transcriptome and defines cellular state9, it remains unclear 100 

which parameters could be used to define the spatial identity of the cell. Because no 101 

two pieces of tissue sections are the same, and x- and y-coordinates from each section 102 

also depend on arbitrary features such as tissue orientation and sectioning angle, 2D 103 

coordinates of cells/pixels only capture limited information for the spatial identity of 104 

cells/pixels in the ST dataset. We reason that the spatial identity of individual cells or 105 

pixels, in the case of spot-based ST platform, should collectively reflect cell-cell 106 

interactions and 3D tissue organization globally. Therefore, the spatial identity of a given 107 

cell/pixel should be more accurately determined by the measurement of the distance 108 

between this cell/pixel to all other cells/pixels within the tissue, rather than relying solely 109 

on its 2D coordinates. 110 

To develop scHolography, we acquire readily available 2D spatial registration 111 

from the 10x Visium platform and generate a high-dimensional spatial dataset by 112 
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computing pairwise pixel-pixel distances from 2D ST registration. To generate the pixel-113 

pixel distance matrix, each pixel is considered as a dimension, and distances from this 114 

pixel to all others are the measurement for the dimension of the pixel. Principal 115 

component analysis (PCA) is then performed on the distance matrix to select top-116 

ranked PCs and their corresponding values for downstream inferences. We name these 117 

top-ranked PCs as spatial-information components (SICs) (Fig. 1a and Extended Data 118 

fig. 1a-j).  To establish the transcriptome-to-space (T2S) projection, scHolography takes 119 

the spatial (ST) RNAseq and scRNAseq data, obtained from the same or similar 120 

samples, as input (Fig. 1a Input Data). To prepare data for model training, ST and SC 121 

expression data are first integrated into the shared manifold, and SIC values for each 122 

ST pixel are defined, as described above (Fig. 1a Data Preparation, see Methods).  123 

Next, scHolography trains neural networks to perform the T2S projection. 124 

Specifically, we use ST expression data as training input and SIC values as training 125 

targets for generating the T2S projection model (Fig. 1a NN training). The trained model 126 

is then applied to scRNAseq data to infer cell-cell affinity, a measurement for cell-cell 127 

virtual distance, from the predicted SIC values. The Gale-Shapley algorithm is then 128 

implemented to find stable-matching neighbors (SMNs) for each cell by using the cell-129 

cell affinity matrix. Finally, scHolography reconstructs 3D tissue organization by 130 

projecting the cell-cell spatial connection with an undirected SMN graph, which could be 131 

visualized in 3D with the forced-directed Fruchterman-Reingold layout algorithm (Fig. 1a 132 

Stable Matching Neighbor Assignment).  133 

In the reconstructed 3D tissue, each cell is assigned to a unique spatial location, 134 

and the distance between single cells is determined by the length of the shortest path 135 
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connecting individual cells on the SMN graph. Thus, local and global tissue organization 136 

can be examined by ordering cells of interests based on their distances to any reference 137 

cell type and plotting the dynamics of gene expression patterns across inferred spatial 138 

organization of the tissue (Fig. 1b). Furthermore, cell heterogeneity can be studied by 139 

spatial organization, based on the first-degree neighbor profiles of any cell type (Fig. 140 

1c), in addition to widely used transcriptomic clustering10. Collectively, scHolography 141 

reconstructs tissue organization in 3D, allows the identification of dynamic gene 142 

expression patterns across tissues, and determines spatial cell heterogeneity.  143 

 144 

scHolography recapitulates global and local spatial organization of human skin 145 

We generated scRNAseq and ST datasets from human foreskin samples and 146 

examined the performance of scHolography. We generated ST datasets from 2 serial, 147 

sagittal sections from donor #1 (Fig. 2a and Extended Data fig. 2a). Our scRNAseq 148 

data, obtained from a different donor (donor #2), captured 6,425 cells with a mean 149 

depth of 136,235 reads/cell, and 5,450 cells passed our filtering with the Seurat 150 

package10. Unsupervised clustering identified major epithelial and dermal cell types. We 151 

also detected PECAM1+ endothelial cells, MGST1+ glandular epithelium, CD74+ 152 

immune cells, PROX1+ lymphatic endothelial cells, PMEL+ melanocytes, MPZ+ 153 

Schwann cells, and TAGLN+ smooth muscle cells (Fig. 2b). The human foreskin ST 154 

data (the serial section #1) from donor #1 captured 659 pixels with a median depth of 155 

156,332 reads/pixel. By plotting with markers for major skin cell types, we confirmed 156 

that our ST data capture all major cell types in the skin, including epithelium, fibroblast, 157 

endothelial and smooth muscle cells (Fig. 2a and Extended Data fig. 2a-b).  158 
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To evaluate the performance of T2S projection and SMN assignment of our 159 

algorithm, we benchmarked scHolography against 2D spatial charting methods CellTrek 160 

and Seurat-SrtCT using the human scRNAseq and ST data. To compare the predicted 161 

tissue organization, we used the serial section #2 from donor #1 of human foreskin ST 162 

data as the ground truth (Extended Data fig. 2c-d) and reconstructed the serial section 163 

#2 by applying the model learned from the serial section #1 to the ST data of #2 164 

(Extended Data fig. 2e-g). This allowed us to compare the reconstructed result to the 165 

experimentally determined result. We assessed the global prediction accuracy by 166 

calculating the pixel-by-pixel spearman correlation between reconstructed and 167 

experimentally determined coordinates (Extended Data fig. 2h, see Methods). We also 168 

evaluated the local accuracy by calculating the Jaccard similarity of the overlap in 169 

reconstructed and experimentally determined neighbors of pixels (Extended Data fig. 2i, 170 

see Methods). With both assessments, scHolography achieved the highest prediction 171 

accuracy (Mann Whitney Wilcoxon test, p<2.22e-16), significantly outperforming both 172 

CellTrek and Seurat-SrtCT. In addition, each pixel in scHolography reconstruction was 173 

uniquely assigned. In contrast, pixels in CellTrek reconstruction and, more prominently, 174 

in Seurat reconstruction had more overlapping, likely due to the inability to distinguish 175 

transcriptomic similar pixels.  176 

Next, we applied scHolography to the scRNAseq data to reconstruct human 177 

foreskin at the single-cell level by applying the model learned from the serial section #1 178 

as the spatial reference (Fig. 2c and Extended Data fig. 3a). scHolography 179 

reconstruction recapitulated stereotypical positions of major cell types, reflected by both 180 

cell type annotation and gene marker expression in the reconstructed 3D structure. For 181 
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example, suprabasal epithelial cells, marked by KRT10hi expression, were located at the 182 

outermost layer of the 3D structure, and KRT5hi basal epithelial cells were located 183 

beneath the suprabasal cells and sandwiched between the suprabasal epithelial cells 184 

and dermal fibroblasts (Fig. 2d-e). The ACTA2hi smooth muscle cells were located at 185 

the bottom of the reconstructed 3D tissue, consistent with stereotypical cell organization 186 

of the skin. In contrast, neither CellTrek nor Seurat-SrtCT was able to reconstruct 3D 187 

skin organization (Extended Data fig. 3b).   188 

The quantitative information of cell-cell distance, SMN distance, is embedded in 189 

the prediction of scHolography, allowing for the study of tissue architecture based on 190 

spatial distance. This enabled us to analyze the distance between individual cell layers. 191 

As an example, we calculated the distance from suprabasal, basal, fibroblast and 192 

smooth muscle cells to smooth muscle cells (Fig. 2f). Not only were the differences 193 

highly significant between each cell type (Mann Whitney Wilcoxon test, p<2.22e-16) but 194 

also the spatial order agreed with stereotypical tissue organization such that suprabasal 195 

cells were furthest away from smooth muscle cells, followed by basal cells and 196 

fibroblasts (Fig. 2f).  Furthermore, the SMN graph designates 30 stable-matching cells 197 

to a cell as its first-degree neighbors (Fig. 2g). We next determined the first-degree 198 

neighbor composition for each cell type in the skin by averaging 30 neighboring cell type 199 

information for all cells from each cell type (Fig. 2h and Extended Data table 1). For 200 

basal, suprabasal and glandular epithelial cells, the most abundant neighbors to each 201 

cell type were themselves as one may expect. However, fibroblasts often emerged as 202 

the most abundant neighbors for cell types that were localized in the dermis, including 203 

endothelial cells, lymphatic endothelial cells and Schwann cells. Therefore, 204 
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scHolography allows quantitative analysis of cell heterogeneity based on their neighbor 205 

cell composition. Interestingly, we also noticed that each cell has a different matching 206 

stability for their assigned 3D location, likely due to cell migration or differences in cell 207 

types detected by scRNAseq and ST. We then computed a motility score, called 208 

learning variance, for each cell such that the confidence of the T2S projection and SMN 209 

assignment can be quantified. Melanocytes, immune cells and, to a lesser extent, 210 

glandular epithelial cells and Schwann cells, showed higher motility scores (Fig. 2i and 211 

Extended Data fig. 3c). In contrast, suprabasal and basal epithelial cells and smooth 212 

muscle cells showed the lowest motility scores.  213 

 214 

Spatially defined single-cell gene expression dynamics and cell heterogeneity in 215 

human skin 216 

 Having established the accuracy of scHolography in recapitulating cell 217 

organizations in 3D, we next investigated spatial dynamics of gene expression across 218 

multiple cell types in the human foreskin by using the findGeneSpatialDynamics function 219 

(see Methods). We first ordered cells from basal and suprabasal epithelial cell clusters 220 

according to their computed distance to the fibroblast clusters. As expected, basal cells 221 

were proximal to fibroblasts, whereas suprabasal cells were distal to fibroblasts (Fig. 222 

3a). We then identified spatially variable genes and correlated their expression levels to 223 

the distance away from fibroblasts. For example, proliferation-related genes, such as 224 

CENPF, TOP2A, ASPM, and MKI67, were proximal to the fibroblast-basal boundary 225 

and showed a declining trend away from the boundary (Fig. 3b), reflecting the exit of the 226 

cell cycle when keratinocytes moved upward and differentiated11,12. Differentiation 227 
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genes, such as KRT1 and KRTDAP, were distal to the boundary and showed an 228 

ascending trend as keratinocytes reached the suprabasal layer.  229 

Interestingly, we observed a trimodal pattern of keratinocyte cell clustering 230 

patterns, based on their distance away from fibroblasts (Fig. 3c). We re-classified 231 

epithelial keratinocytes into 3 spatial clusters, epi_proximal, epi_intermediate and 232 

epi_distal cluster, according to the trimodal distance distribution, and visualized their 3D 233 

organization together with fibroblast cells (Fig. 3d). With these spatially defined clusters, 234 

we determined cell-cell communications between epithelial cells and fibroblasts by 235 

applying CellChat algorithm13. By using the inferred relative strength of signaling, we 236 

classified signaling into two types. Type 1 signaling, including laminin and IGF signaling, 237 

was originated from fibroblast and showed decreasing in-signal strength from proximal 238 

to distal epithelial cells, representing fibroblast-basal cell signaling events. Type 2 239 

signaling, including NECTIN, EPHA and desmosome signaling, was originated from 240 

distal epithelial cells and showed a decreasing in-signal strength from distal to proximal 241 

epithelial cells, representing suprabasal-suprabasal cell signaling events. Notably, 242 

laminin and IGF signaling are related to basal cell adhesion to the basement membrane 243 

and basal cell proliferation14. In contrast, NECTIN, EPHA and desmosome, representing 244 

Type 2 signaling pathways, are related to tight junction and the initiation of epidermal 245 

differentiation15,16. These results from epidermal differentiation demonstrated the utility 246 

of scHolography for not only faithfully projecting single cells to reflect cell lineage 247 

differentiation but also identifying spatially dynamic gene expression patterns and 248 

signaling pathways.  249 
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We next performed quantitative analysis of spatial cell heterogeneity. We used 250 

dermal fibroblast cells as an example because of the high cell heterogeneity of these 251 

cells17,18. With the spatially resolved cell locations, we calculated cell type frequency-252 

inverse cell frequency (CTF-ICF) to identify fibroblast subtypes with distinct first-degree 253 

neighbor cell compositions (Fig. 3f, see Methods). The composition of first-degree 254 

neighbor cells varied across spatial neighborhoods in the dermis, supporting the idea 255 

that different fibroblasts are located near different cell types, and nine distinct spatial 256 

neighborhoods for fibroblasts (FN1-9) were identified (Fig. 3g, Extended Data fig. 4a 257 

and Extended Data table 2). The hierarchical dendrogram of these nine clusters 258 

revealed similarities and differences among these nine spatial neighborhoods (Fig. 3h). 259 

Among them, FN1 and FN8 were the most similar pair of neighborhoods, and we further 260 

investigated their spatial features. The non-fibroblast first-degree neighbors of FN1 and 261 

FN8 were highly enriched for endothelial cells and lymphatic endothelial cells. However, 262 

FN1’s neighbors showed more abundant Schwann cells and smooth muscle cells, 263 

whereas FN8’s neighbors showed more basal and suprabasal epithelial cells (Fig. 3i). 264 

These observations suggested that FN1 fibroblasts were likely localized to deeper 265 

dermis and FN8 fibroblasts were localized to the surface of the skin. Indeed, 266 

visualization of FN1 and FN8 fibroblasts in 3D reconstruction corroborated these 267 

analyses (Fig. 3j-k).  268 

To gain insights into differential gene expression of fibroblasts that was 269 

associated with different spatial neighbors, we determined enriched genes in FN1 and 270 

FN8 fibroblast populations. Notably, CEBPD, MFAP5 and WNT2, which have been 271 

shown to regulate fibroblast-endothelial cell interactions19–21, were enriched in both FN1 272 
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and FN8, consistent with their proximity to endothelial cells in spatial reconstruction 273 

(Fig. 3l). In addition to these commonly elevated genes, differential gene expression 274 

analysis identified CD34, ATP6AP2, TCF7L2 and IGF1 as highly enriched genes in FN1 275 

fibroblasts and B2M and HLA-A, which are involved in MHC class I antigen 276 

presentation, as highly enriched genes in FN8 fibroblasts. Taken together, these results 277 

illustrate the utility of scHolography for not only reconstructing 3D tissue organization 278 

but also identifying spatial cell heterogeneity.    279 

 280 

Spatial reconstruction of human cutaneous squamous cell carcinoma  281 

 We next aimed to compare normal and diseased tissues and identify disease-282 

associated spatial features. To achieve this goal, we applied scHolography to previously 283 

published human cutaneous squamous cell carcinoma (cSCC) datasets7, which contain 284 

both normal skin and cancerous regions (Fig. 4a). Furthermore, patient- and site-285 

matched ST RNAseq and scRNAseq datasets were available for tissue reconstruction 286 

by scHolography (Fig. 4a-b). We applied scHolography, CellTrek and Seurat-SrtCT for 287 

tissue reconstruction. Only scHolography produced layered tissue patterns that were 288 

reminiscent of the reference tissue section with distinct normal and tumor regions (Fig. 289 

4c and Extended Data fig. 5a-c).    290 

To benchmark the results, we used ST replicate #1 as the reference to learn the 291 

spatial information for the T2S projection. We next reconstructed ST replicate #2 in 3D 292 

and compared the accuracy of the T2S projection from scHolography, CellTrek and 293 

Seurat-SrtCT with the true spatial registration of replicate #2. For both global and local 294 

accuracy measurements, scHolography significantly outperformed the other two 295 
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methods (Extended Data fig. 5d), mirroring the performance comparison from the 296 

human foreskin study.  297 

 To compare the spatial organization of normal skin and cSCC, we focused on the 298 

first-degree neighbor composition of each cell type. As expected, we observed a wide 299 

range of variation in the neighbor profile across different cell types (Fig. 4d, Extended 300 

Data fig. 5e and Extended Data table 3). Interestingly, cells from similar developmental 301 

origin, such as keratinocytes (KCs), myeloid cells and lymphoid cells, generally had 302 

more similar neighbor cell composition. In addition, immune cells, including both 303 

myeloid and lymphoid cells, generally had more complex neighbor cell compositions. 304 

Next, we turned to normal and tumor KCs to compare the neighbor profiles of normal vs 305 

diseased tissue regions. We also performed statistical test to identify the significantly 306 

enriched neighbor cell types for each KC subtype (Fig. 4e). Analysis of scRNAseq data 307 

identified basal, cycling and differentiated KCs in both normal and tumor regions. As 308 

described previously, tumor KCs also contained a unique cluster, named tumor-specific 309 

keratinocytes (TSKs)7. TSKs are enriched at the leading edge of tumor, and these cells 310 

demonstrate invasive and immunosuppressive features7. Interestingly, the first-degree 311 

neighbors of normal KCs, including basal, cycling and differentiated KCs, were largely 312 

composed of themselves or other normal KCs (Fig. 4e). Normal cycling KCs also had 313 

significant shares of TSK and tumor cycling KCs as their first-degree neighbors, 314 

revealing a higher degree of spatial heterogeneity of proliferative KCs compared with 315 

both basal and differentiating KCs. In sharp contrast, the first-degree neighbor profiles 316 

of tumor KCs were more complex with notable shares of immune cells, including T cells, 317 

plasmacytoid dendritic cells (pDCs) and AXL+SIGLEC6+ dendritic cells (ASDCs) (Fig. 318 
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4e). Pilosebaceous cells were also significantly enriched as the first-degree neighbors 319 

for all tumor KCs, suggesting a possibility that hair follicle stem cells serve as the cell of 320 

origin for tumor KCs22. Notably, TSKs showed the most diverse composition of the first-321 

degree neighbors with the highest share of T cells, ASDCs, LCs, consistent with their 322 

location at the leading edge of the tumor.   323 

 Because of the key function of TSKs to tumorigenesis and invasion, we further 324 

investigated the microenvironment of TSKs. Leveraging the quantitative information of 325 

cell-cell distance embedded within scHolography, we determined the (averaged) 326 

distance between TSK cells and other cells. Besides themselves, TSKs were proximal 327 

to eccrine cells, melanocytes, AXL+SIGLEC6+ dendritic cells (ASDCs), cycling tumor 328 

KCs, T cells, and plasmacytoid dendritic cells (PDCs) (Fig. 4f). Interestingly, B cells and 329 

differentiated normal KCs were furthest away from TSKs. Because of the importance of 330 

T cell infiltration within tumor, we compared the distance from normal and tumor KC 331 

populations to T cells. While TSK showed the closest proximity to T cells among all 332 

KCs, all other tumor cell types, including cycling, basal and differentiated tumor KCs, 333 

were also significantly closer to T cells than their normal counterparts (Fig. 4g). 334 

Furthermore, cycling KCs, from both normal and tumor regions, were significantly closer 335 

to T cells than basal or differentiated KCs. This spatial proximity of TSKs and cycling 336 

cells to T cells suggests potential immune responses to the invasive and proliferating 337 

tumor cells, respectively, within the microenvironment of cSCC.  338 

We next examined the 3D visualization of reconstructed tissue with a focus on 339 

normal KCs, tumor KCs, TSKs and T cells. Consistent with morphological findings7, 340 

TSKs were localized at the leading edge of the tumor and interacted closely with T cells 341 
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(Fig. 4h). We next identified genes that were highly enriched within the first-degree 342 

neighbors of normal KCs, TSKs and tumor KCs. Consistent with distinct neighbor 343 

profiles for these cell types, we found differentially enriched genes within the neighbors 344 

of normal KCs, TSKs and tumor KCs (Fig. 4i). Specifically, ACTB, LGALS1, VIM and 345 

MMP1, which were associated with tumorigenesis and pro-progression7, were highly 346 

enriched in the neighbors of TSKs. Genes including FOSB, HES1 and ZFP36L2, which 347 

were associated with KC differentiation, were highly enriched in the neighbors of normal 348 

KCs, whereas SERPINB3 and SERPINB4, which are known for their roles in the 349 

initiation of the acute inflammatory response and as SCC antigen23,24, were enriched in 350 

the neighbors of tumor KCs (Fig. 4j). Taken together, scHolography reconstructs highly 351 

complex cSCC tissues and provides quantitative spatial information for investigating 352 

differential gene expression and studying tumor microenvironment.  353 

 354 

Spatial reconstruction of mouse brain  355 

 We applied scHolography to publicly available mouse brain data8 (Fig. 5a-b). 356 

Although the ST data were obtained from 2D brain slice (Fig. 5a), scHolography 357 

successfully reconstructed a well-defined tissue in 3D (Fig. 5c-d and Extended Data fig. 358 

6a), characterized by the layered organization of GABAergic neurons, including Vip+, 359 

Pvalb+, Sst+, Sncg+ and Lamp5+ populations (Fig. 5e), glutamatergic neurons, and 360 

other non-neuronal cells, such as astrocytes and endothelial cells (Fig. 5f). Furthermore, 361 

the reconstruction of glutamatergic laminar excitatory neurons recapitulated the 362 

stereotypical organization, in the order of L2/3 intratelencephalic (IT), L4, L5 IT, L5 363 

pyramidal tract (PT), L5/6 near-projecting (NP), L6 IT, L6 corticothalamic (CT) and L6b 364 
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(Fig. 5g). We plotted the distance between the L2/3 IT neurons and all glutamatergic 365 

neurons on the scHolography SMN graph, and this quantification confirmed the layered 366 

organization of this region (Fig. 5h).  367 

 To illustrate spatial heterogeneity within a transcriptionally defined cell type, we 368 

focused our analysis on astrocytes. A recent study, based on smFISH, has identified 369 

markers for different astrocyte layers in different cortical regions25. For example, Chrdl1 370 

expression was peaked in upper astrocytes close to L2-4 layers and Id3 expression was 371 

peaked in deep astrocytes close to L6 layer25. Indeed, scHolography reconstructed 372 

mouse brain recapitulated not only the layered localization of L2/3 and L6 glutamatergic 373 

neurons but also the locations of upper and deep astrocytes (Fig. 5i and Extended Data 374 

fig. 6b).  Notably, the spatial gradients of Chrdl1 and Id3 expression in astrocytes were 375 

also recapitulated in the reconstructed brain (Fig. 5j-k and Extended Data fig. 6c). In 376 

addition to these individual gene markers, we calculated gene expression scores for the 377 

upper and deep astrocytes as a global marker for spatial astrocyte heterogeneity, and 378 

this result validated our classification of upper and deep astrocytes (Extended Data fig. 379 

6d).   380 

To further interrogate whether microenvironment plays a role in astrocyte 381 

heterogeneity, we performed a spatial neighborhood analysis for astrocytes. We 382 

clustered astrocytes based on their first-degree neighbor cell composition and identified 383 

4 distinct spatial neighborhoods (AN1-4) (Fig. 5l). Closer inspection of the spatial 384 

neighbor profiles revealed that AN1 neighbors were enriched for L6 IT, L6 CT, L6b, 385 

Sncg, and Lamp5 cells, and thus these AN1 cells were related to deep astrocytes. AN2 386 

neighbors were enriched for astrocytes and L2/3 IT cells, and thus these AN2 cells were 387 
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related to upper astrocytes. AN3 neighbors were enriched for endothelial cells, and AN4 388 

neighbors were enriched for Vip cells (Fig. 5m and Extended Data table 4). Differential 389 

gene expression analysis of each spatial astrocyte cluster further corroborated the 390 

spatial heterogeneity of astrocytes (Fig. 5n). Consistent with experimental findings, AN1 391 

astrocytes were enriched for the deep marker, Id3; AN2 astrocytes were enriched for 392 

the upper marker, Chrdl1. Interestingly, AN3 astrocytes showed elevated expression of 393 

Dock1 and Tnks2, which are related to endothelial blood-brain barrier maintenance 394 

function through WNT signaling26, consistent with their proximity to endothelial cells. 395 

AN4 astrocytes were differentially expressed Rapgef3 and Klf7, which are associated 396 

with the Vip regulation of astrocytes27. Collectively, these spatial-based analyses 397 

highlight the utility of scHolography for not only faithful reconstruction of a highly 398 

complex tissue in 3D but also the identification of spatially relevant cell type clustering 399 

and gene expression pattern analysis.   400 

 401 

Discussion 402 

 In this study, we have provided a new computational solution to spatial 403 

transcriptomics, which defines the spatial identity of single cells, generates a neural 404 

network-based T2S projection for 3D tissue reconstruction and determines spatial cell 405 

heterogeneity. The limitation of using 2D coordinates to describe spatial identity is that 406 

the location of each pixel is determined independently by an “observer”. Thus, the 407 

interconnectedness of cell organization patterns within a tissue is not captured. As a 408 

result, the use of 2D coordinates does not accurately reflect the complex spatial 409 

organization of cells within a tissue. In contrast to using 2D coordinates, scHolography 410 
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uses an inter-pixel distance matrix to describe the spatial identity of cells within a tissue. 411 

This approach relies on all pixels in the tissue to define the spatial identity of any given 412 

pixel, which preserves important information about the organization of the tissue. 413 

Additionally, the high-dimensional inter-pixel distance matrix used by scHolography 414 

enables the use of neural networks and deep learning to create an accurate projection 415 

of a cell's transcriptome onto its spatial location. Interestingly, the T2S projection 416 

learned from low-resolution ST data is applicable to scRNAseq data without any cell-417 

type deconvolution and, in combination with stable matching neighbor assignment, 418 

successfully reconstructs 3D tissue organization of relatively simple tissues such as 419 

human foreskin and complex tissues such as human skin cancer and mouse brain. 420 

These results show that there is a connection between a cell’s transcriptome and tissue 421 

organization, which can be revealed through the use of scHolography. Improvement in 422 

the spatial resolution and joint learning from multiple ST datasets from the same tissue 423 

should further enhance the accuracy of deep learning and reconstruction. Overall, 424 

scHolography permits the study of the effects of genetic and epigenetic perturbations on 425 

the spatial organization of cells within a tissue. The genetic information encoded in the 426 

genome determines not only a cell’s state but also the architecture of tissues and 427 

organisms. Through the use of scHolography, this can provide insights into how 428 

changes in gene expression can alter the structure of tissues or organisms. These 429 

studies have the potential to uncover new paradigms in cell-cell communication and 430 

tissue organization during development, wound healing, aging and disease.   431 

 432 

 433 
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Methods 434 

The scHolography workflow 435 

Step 1: Data Preparation. scHolography takes ST and SC expression data and ST 2D 436 

spatial registration data as input. scHolography first integrates the ST and SC 437 

expression data with the Seurat reference-based integration method28. From integrated 438 

data, scHolography obtains matrices 𝑋!,# and 𝑌$,# where 𝑋 are the top expression 439 

principal components (default= 32) for SC data and 𝑌 are the top expression principal 440 

components (default= 32) for ST data. Next, for 2D spatial registration data associated 441 

with ST data, scHolography calculates pairwise Euclidean distance matrix 𝐷!,! between 442 

spatial spots. Top d principal components (default =32) are then found for the distance 443 

matrix D, and we rename the principal components as spatial-information components 444 

(SICs). The SIC matrix is denoted as 𝐷!,%& . 445 

Step 2: Neural Network Training. scHolography trains a neural network with 𝑋!,# as 446 

the predictor matrix and 𝐷!,%&  as the predicting target. The neural network functions are 447 

powered by the Keras package29 and have the following architecture: 448 

Name Operation Number of 
Features 

Dropout Batch 
Normalization 

Activation Input 

input - 32 X X - - 
FC-1 FC 32 0.2 √ Leaky ReLU input 
FC-2 FC 32 0.2 √ Leaky ReLU FC-1 
FC-3 FC 8 0.2 √ Leaky ReLU FC-2 
FC-4 FC 32 0.2 √ Leaky ReLU FC-3 
output FC 32 X X ReLU FC-4 

Optimizer Adam  # of Epochs 500   
Learning Rate 0.001  𝜶 0.00005   
Leaky ReLU 

slope 
0.2  Patience 20   

Batch Size 32      
The network architecture is optimized with a bottleneck layer to compress information 449 

for fitting. The trained neural network will be applied to 𝑌$,# to predict cell-specific 450 
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spatial-information score 𝑃$,% corresponding to each previously identified SIC values. 451 

Based on the predicted score matrix 𝑃, scHolography calculates cell-cell distance and 452 

normalizes for individual cells to obtain an inferred cell-cell affinity matrix 𝐴$,$. Step 2 will 453 

be repeated for 𝑛 times (default= 30) and the median of each 𝐴$,$ entry will be found 454 

across repeated runs to reduce the variance of prediction. Denote the resulting affinity 455 

matrix as 𝐴'$,$ and the variance of each 𝐴$,$ entry across repetitions as the learning 456 

variance matrix 𝑀.  457 

Step 3: Spatial Neighbor Assignment. From the affinity matrix 𝐴'$,$, scHolography 458 

applies the Gale–Shapley algorithm to find 𝑘 stable matching neighbors for every single 459 

cell via the MatchingR package30.  The affinity matrix is then used as the utility for 460 

matching. Note that not all cells will be assigned 𝑘 stable neighbors. Fewer neighbors 461 

will be assigned if there is not enough stable matching. The final stable matching results 462 

are represented in an unweighted graph. We name the graph as stable matching 463 

neighbor (SMN) graph. Once the SMN graph is determined, scHolography constructs 464 

the 3D visualization with the forced-directed Fruchterman-Reingold layout algorithm of 465 

the graph31. By default, the random seed is set to 60611 for all steps above. 466 

 467 

findDistance Function 468 

If 𝑎, 𝑏 are single cells within an SMN graph, we define the SMN distance between them 469 

by 470 

𝑑(𝑎, 𝑏) = the	length	of	the	shortest	path	from	𝑎	to	𝑏	on	the	SMN	graph 471 
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The findDistance function then enables the distance measurement of individual cells to 472 

a given cell type or cluster of cells on the SMN graph. We define the distance between a 473 

cell 𝑥 and a cell group 𝐴 by  474 

𝐷(𝑥, 𝐴) =
∑ 𝑑(𝑎' , 𝑥)(
')*

𝑘 , 475 

𝑎*, … , a+ are the 𝑘 nearest cells from group 𝐴 to 𝑥 measured by SMN distance. For 476 

default, we set 𝑘 = 30.  477 

findGeneSpatialDynamics Function 478 

The findGeneSpatialDynamics function enables the investigation of the association 479 

between spatial distribution and gene expression pattern by identifying genes with 480 

significant trends with respect to the SMN distance of cells to a reference group. Single 481 

cells in a query group Q are evaluated for their SMN distance to a reference group R. 482 

We can denote distances as 𝐷(𝑞*, 𝑅), 𝐷(𝑞,, 𝑅), 𝐷(𝑞-, 𝑅) and so on. We run a Poisson 483 

regression between the expression level of each highly variable gene 𝑖 and SMN 484 

distances to 𝑅 of each query cell 485 

𝑔' 	~	𝑃𝑜𝑖𝑠𝑠𝑖𝑜𝑛[exp	(𝛽. + 𝐷(𝑞, 𝑅)𝛽*)] 486 

Suppose there are 𝑛 cells in Q. 𝑔' is a vector of length 𝑛. 𝐷(𝑞, 𝑅) is also a vector of 487 

length 𝑛 488 

𝐷(𝑞, 𝑅) = S

𝐷(𝑞*, 𝑅)
𝐷(𝑞,, 𝑅)	

…
𝐷(𝑞/, 𝑅)

T 489 

Genes are then ordered by z values from Poisson regression. Genes with negative 490 

values are considered to have proximal trends in space toward the reference group, 491 

while genes with positive z values are considered for distal trends. 492 
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 493 

findSpatialNeighborhood Function  494 

The findSpatialNeighborhood function aims to evaluate neighborhood cell type 495 

similarities and to define distinct spatial neighborhoods. The first-degree neighbors of a 496 

given cell are defined as stable-matching neighbors recalled from the scHolography 497 

inference. These neighbors have a direct edge to the given cell on the SMN graph. The 498 

first-degree neighborhoods are then evaluated by their composition of cell types or other 499 

given annotations. Here we define a metric named cell type frequency-inverse cell 500 

frequency (CTF-ICF). CTF-ICF inherits the idea of term frequency–inverse document 501 

frequency method for document clustering in text mining. Assume there are in 𝑚 cell 502 

types, and there are 𝑛 cells selected for to find neighborhoods. We first create an 𝑚 by 503 

𝑛 cell type frequency (CTF) matrix 𝐶 to count how many cells from each of the 𝑚 cell 504 

types are present in the first-degree neighbors of 𝑛 single cells. With the textmineR 505 

package5, ICF for the cell type 𝑖 is then calculated as 506 

𝐼𝐶𝐹' = ln	(
𝑛

∑ 𝐶',0/
0)*

) 507 

We use ICF to weigh the original CTF matrix to get the final CTF-ICF matrix 𝐶'   508 

𝐶' = [𝐼𝐶𝐹*	𝐼𝐶𝐹,…𝐼𝐶𝐹1] ⋅ 𝐶 509 

We calculated pairwise cosine similarity between cells from 𝐶', and calculated cosine 510 

distance as  511 

𝐶𝑜𝑠𝑖𝑛𝑒	𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1 − 𝐶𝑜𝑠𝑖𝑛𝑒	𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 512 

Finally, we define distinct neighborhoods by conducting hierarchical clustering on the 513 

cosine distance matrix. The number of distinct neighborhoods for clustering is optimized 514 
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with the silhouette coefficient. Significant neighbor-cell types for each spatial 515 

neighborhood are identified using the one-sided Wilcoxon test with p-values<0.05. 516 

 517 

scHolographyNeighborCompPlot Function 518 

The scHolographyNeighborCompPlot function plots the first-degree neighbor 519 

composition with respect to a given annotation. The function also identifies enriched 520 

neighbor types for query cells with significance levels using the Wilcoxon test.  521 

 522 

Human foreskin sample collection and sequencing  523 

Neonatal foreskins from Donors 1 and 2 were collected as discarded, deidentified 524 

tissue under IRB protocol #STU00009443 of the Northwestern University Skin Biology 525 

and Diseases Resource-based Center. Donor 1 sample was punched by an 8mm punch 526 

and embedded in the sagittal direction into an FFPE block by SBDRC. 527 

For the scRNA-seq experiment, fresh human foreskin specimens from Donor 2 528 

were cut into 4 mm x 4 mm pieces. The dermal fat layer was trimmed off from the 529 

bottom. Then the skin was floated on 2 mL of dispase in a 6-well plate and incubated at 530 

37 °C for 1 hour. The epidermis was separated from the dermis and trypsinized for 12 531 

minutes at 37 °C to get the epidermal single-cell suspension. For the dermis part, it was 532 

further cut into smaller pieces, then incubated with 0.25% collagenase I in 2 mL HBSS 533 

for 1 hour at 37 °C. Collagenase-treated pieces were trypsinized for 10 minutes at 534 

37 °C. The tissue was then dissociated by pipetting and single-cell suspension was 535 

obtained. Epidermal and dermal cells were combined at a 1:1 ratio and used as scRNA-536 

seq input materials. The Single-Cell Chromium 3′ v3 kit from 10x Genomics was used 537 
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for single-cell library preparation. Final scRNA-seq libraries were sequenced on an 538 

Illumina NovaSeq-6000 system.  539 

The Cell Ranger v.6.0.0 was applied to align reads to the human reference 540 

GRCh38 (GENCODE v32/Ensembl 98), and a gene expression matrix was obtained. 541 

The Seurat package v4 was used for data processing and visualization, and the default 542 

settings were applied unless otherwise noted.  Cells with fewer than 200 or more than 543 

7000 unique feature counts were filtered. Besides, cells with more than 15% of 544 

mitochondrial counts were also filtered. The normalization was performed by 545 

sctransform32.  Variable genes were found with the FindVariableFeatures function and 546 

PCA was conducted by RunPCA.  The top 30 PCs were selected with ElbowPlot for 547 

downstream analyses. Cell clusters were identified by FindNeighbors and FindCluster 548 

functions at a resolution of 0.5. RunUMAP was used for 2D visualization. DE genes 549 

were identified by the FindAllMarkers function and the top DE genes for each cluster 550 

were considered for cell identity annotation.  551 

For ST experiments, RNA quality was first checked for the sample. Total RNA 552 

was isolated from a 20um Donor 1 FFPE block section using Qiagen RNeasy FFPE Kit 553 

following the manufacturer’s instructions. RNA quality was evaluated using the DV200 554 

assay on Agilent Bioanalyzer. The sample was used for library preparation after 555 

confirming the quality of RNA is desired based on DV200 (DV200 > 50%; DV200 = 556 

proportion of RNA fragments with >200 nucleotides in length).  557 

Two 5um sections in serial were sliced from Donor 1 FFPE block, placed on 10X 558 

Genomics Visium Spatial Gene Expression Slide v1, deparaffinized, and H&E stained 559 

under the manufacturer’s protocol. Two samples were placed on A1 and B1 capturing 560 
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regions, respectively. Brightfield images were acquired at 20x magnification using a 561 

Nikon Ti2 widefield microscope system for 2 hours. Images were processed with the 562 

Nikon NIS-elements software. The samples were then decrosslinked, and the human 563 

whole transcriptome probe panel was hybridized to the RNA from the decrosslinked 564 

tissue. Next, probes were ligated, released from the tissue, extended, and indexed. All 565 

these steps followed the manufacturer’s instructions. For library construction, 17 cycles 566 

of sample index PCR were performed. 567 

Final ST libraries were sequenced on an Illumina NovaSeq-6000 system. The 568 

Space Ranger v.1.3.1 was applied to align reads to the human reference GRCh38 569 

(GENCODE v32/Ensembl 98). The Seurat package v4 was again used for data 570 

processing and visualization, and the default settings were applied unless otherwise 571 

noted. The normalization was performed by sctransform32.  Variable genes were found 572 

with the FindVariableFeatures function and PCA was conducted by RunPCA. The top 573 

32 PCs were selected for downstream analyses. Pixel clusters were identified by 574 

FindNeighbors and FindCluster functions at a resolution of 0.5. RunUMAP was used for 575 

2D visualization. DE genes were identified by the FindAllMarkers function. 576 

 577 

Human foreskin data analysis 578 

Donor 2 scRNA-seq data were reconstructed by scHolography using Donor 1 579 

slice 1 ST data as the reference. Default scHolography settings were used. For 580 

benchmarking, we use Donor 1 slice 2 ST data as a testing dataset. We reconstructed 581 

Donor 1 slice 2 expression data using Donor 1 slice 1 ST as the reference. We 582 

compared the reconstruction results of Donor 1 slice 2 to its true spatial registration 583 
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information. We computed the pixel-wise SMN distance matrix 𝐷2$3454678!9: and pixel-584 

wise Visium spatial registration Euclidean distance 𝐷;'2'<1 of Donor 1 slice 2. Two 585 

metrics, Spearman correlation and Jaccard similarity, were calculated for 𝐷2$3454678!9: 586 

and 𝐷;'2'<1 to evaluate global and local prediction accuracy, respectively. Specifically, 587 

the two metrics for pixel 𝑖 were defined as 588 

𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛	𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛' =	
𝑐𝑜𝑣(𝑅e𝐷2$3454678!9:[i, : ]h, 𝑅(𝐷;'2'<1[𝑖, : ]))

𝜎=>?!"#$%$&'()*+[A,:]D𝜎=(?,-!-./[',:])
 589 

Where 𝑅 is ranks and 𝜎= is the standard deviation of the ranks.  590 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑	𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦' =
|𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟e𝐷2$3454678!9:[i, : ]h ∩ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐷;'2'<1[𝑖, : ])|
|𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟e𝐷2$3454678!9:[i, : ]h ∪ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐷;'2'<1[𝑖, : ])|

 591 

Where 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 is a set for 30 nearest neighbors for pixel 𝑖 under either 𝐷2$3454678!9: 592 

or 𝐷;'2'<1. 593 

 For comparison, CellTrek and Seurat-SrtCT predictions were also performed on 594 

Donor 2 scRNA-seq data and Donor 1 slice 2 ST data using Donor 1 slice 1 ST data as 595 

the reference. We rank Cell Trek with following parameters: intp_pnt=999, nPCs=30, 596 

ntree=1000, dist_thresh=999, top_spot=1, spot_n=999, repel_r=20 with 20 iterations. 597 

This setting aimed to reduce the number of unmapped cells for a fair comparison. 598 

Default settings of Seurat label transfer were used with dims=1:30. CellTrek and Seurat-599 

SrtCT inferred Donor 2 scRNA-seq data were visualized in 3D by first computing cell-600 

wise inferred spatial Euclidean distance matrices 𝐷GH55I7H( and 𝐷JH<78K. The distance 601 

matrices were then employed as utilities to be fed into scHolography for SMN graph 602 

construction and 3D visualization.   603 

The CellChat analysis13 was performed to dissect ligand-receptor interactions for 604 

suprabasal and basal cells in Donor 2 scRNA-seq data with default settings. Unless 605 
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otherwise noticed, all differential gene expression analyses for this paper used the 606 

Wilcoxon test that is powered by FindAllMarkers and FindMarkers functions of Seurat.  607 

 608 

Human cSCC data acquisition and analysis 609 

The filtered gene count matrices of the human cSCC 3′ scRNA-seq data were 610 

downloaded from GEO (GSE144240), and the cell types were annotated based on the 611 

level 2 cell types from the original study7. Data were subsetted to keep only Patient 6 612 

data. The keratinocyte cluster without specific keratinocyte state annotations and the 613 

multiplet cluster were excluded from downstream processing. The human cSCC ST 614 

data was also downloaded from GEO (GSE144240). Only two replicates from Patient 6 615 

were processed. The analysis and visualization were handled by automated processing 616 

and integration steps of scHolography workflows built upon Seurat (SCTransform 617 

normalization, nPCtoUse=32, FindCluster.resolution=0.5). 618 

scHolography prediction of cSCC scRNA-seq data was performed using Patient 619 

6 replicate 1 ST data as the reference. For validation and benchmarking purpose, 620 

Patient 6 replicate 2 ST expression data was used. The scHolography, CellTrek, and 621 

Seurat-SrtCT predictions of Patient 6 replicate 2 were then compared with the true 622 

Patient 6 replicate 2 spatial registration results from ST. The parameters for the three 623 

methods were the same as the previous human skin analysis. Spearman correlation 624 

and Jaccard similarity were also calculated as previously described.  625 

 626 

Mouse brain data acquisition and analysis 627 
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The mouse brain scRNA-seq and ST data were downloaded from the CellTrek 628 

website6 (https://github.com/navinlabcode/CellTrek). Only the frontal cortex region of ST 629 

data was processed. The cell types were annotated based on the cell type from the 630 

original study8. The analysis and visualization were handled by automated processing 631 

and integration steps of scHolography workflows built upon Seurat (SCTransform 632 

normalization, nPCtoUse=32, FindCluster.resolution=0.5). 633 

scHolography prediction of mouse brain scRNA-seq data was performed using 634 

the mouse brain ST data as the reference. For the astrocyte analysis, we calculated the 635 

SMN distances of all astrocyte cells to L2/3 (L2/3 IT) and L6 (L6 IT, L6 CT, and L6b) 636 

using the findDistance function. Astrocytes were classified as Upper Astro if they were 637 

closer to L2/3 in terms of SMN distance. Otherwise, astrocytes were classified as Deep 638 

Astro. Layer astrocyte markers were obtained from a previous study25. Upper Layer and 639 

Deep Layer scoring were performed using the Seurat AddModuleScore function with 640 

parameters used in the developer’s tutorial. 641 

 642 

Data availability 643 

The human foreskin scRNA-seq and ST data were submitted to the Gene Expression 644 

Omnibus (GEO): GSE220573.  645 

 646 

Code availability 647 

scHolography code and documentation are available at:  648 

https://github.com/YiLab-SC/scHolography. 649 

 650 
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Figure 1. Overview of the scHolography workflow. a, Three steps of the 742 

scHolography workflow. (1) scHolography takes in ST and SC expression data and ST 743 

2D spatial registration data. Spatial-information components (SICs) are defined for the 744 

spatial registration data. ST and SC expression data are integrated. (2) Neural networks 745 

are trained with post-integration ST data as input and top SIC values as the target. (3) 746 

The trained neural networks are applied to post-integration SC data to predict top SIC 747 

values for SC. SIC values are referenced to infer cell-cell affinity and construct the 748 

stable matching neighbor (SMN) graph. The graph is visualized in 3D. b, Based on 749 

inferred spatial distances among cells on the SMN graph, scHolography determines 750 

spatial dynamics of gene expression. The spatial gradient is defined as gene expression 751 

changes along the SMN distances from one cell population of interest to another. c, 752 

scHolography allows spatial neighborhood analysis. Cells are clustered according to 753 

their neighbor cell profile.   754 

 755 
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Figure 2. scHolography reconstructs the spatial organization of human foreskin. 765 

a, Spatial feature plots of markers for major cell types in Donor 1 slice 1 human foreskin 766 

ST data. KRT10, suprabasal cell marker; KRT5, basal cell marker; COL1A2, fibroblast 767 

marker; ACTA2, smooth muscle cell marker. b, UMAP plot of human foreskin 768 

scRNAseq data. c, 3D visualization of human foreskin spatial reconstruction by 769 

scHolography. d, scHolography 3D plot for 4 major cell types in the skin. e, 770 

scHolography 3D feature plot of marker genes for 4 major cell types. f, SMN distances 771 

between 4 major foreskin cell types to smooth muscle cells (Suprabasal cells n = 1120; 772 

Basal cells n = 808; Fibroblasts n = 1651; Smooth muscle cells n = 119). Boxplots show 773 

the median with interquartile ranges (IQRs) and whiskers extend to 1.5× IQR from the 774 

box. One-sided Wilcoxon tests are performed. g, scHolography 3D plot of Cell #30 and 775 

its first-degree neighbors. h, First-degree neighbor composition plot of major cell types 776 

in human foreskin. i, Violin plot of scHolography learning variance for each cell type in 777 

human foreskin. 778 
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Figure 3. Single-cell gene expression dynamics and spatial cell heterogeneity in 788 

human skin. a, Expression heatmap of top ten spatially dynamic genes of human 789 

epithelial cells proximal (left) and distal (right) to fibroblasts. Poisson regression is 790 

performed to determine the significance. Epithelial cells are ordered, from left to right, in 791 

increasing SMN distance to fibroblasts. b, Expression-distance plot of CENPF (left, a 792 

proximal gene) and KRT1 (right, a distal gene). 95% confidence intervals of Poisson 793 

regression are shown. c, Density plot of SMN distance of epithelial cells to fibroblasts. 794 

Epithelial cells are classified into proximal, intermediate, and distal epithelial cells by the 795 

distance percentile of 25% and 65%. d, scHolography 3D plot of epithelial cells and 796 

fibroblasts. e, Heatmap of relative outgoing (top) and incoming (bottom) strength of 797 

enriched signaling pathways predicted by CellChat. f, Spatial cell neighborhood analysis 798 

for fibroblasts. Nine distinct neighborhoods FN1-9 are identified based on the similarity 799 

of the first-degree neighbor cell composition. g, scHolography 3D plot of nine fibroblast 800 

spatial neighborhoods. h, Dendrogram based on the similarity of first-degree neighbor 801 

cell composition. i, Pie charts of non-fibroblast first-degree neighbor cell compositions 802 

for FN1 (left) and FN8 (right). j, scHolography 3D plot of FN1, FN8 and endothelial cells. 803 

k, scHolography 3D plot of FN1, FN8, basal, endothelial, lymphatic endothelial, 804 

Schwann, smooth muscle, and suprabasal cells. l, Heatmap of average expression 805 

levels of highly expressed genes in FN1 and FN8 (Mann Whitney Wilcoxon test, 806 

p<0.05). m, Feature dot plot of differentially expressed genes between FN1 and FN8 807 

(Mann Whitney Wilcoxon test, p<0.05). 808 
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Figure 4. scHolography reconstructs the spatial organization of human cSCC. a, 811 

H&E image of Patient 6 rep 1 cSCC ST sample. b, UMAP plot of Patient 6 rep 1 812 

scRNAseq data. c, 3D visualization of cSCC spatial reconstruction by scHolography. d, 813 

The first-degree neighbor composition plot for each cell type in cSCC. e, The first-814 

degree neighbor composition plot for significantly enriched neighboring cell types of 815 

normal and tumor keratinocytes. f, SMN distances of major cell types to TSK cells by 816 

the order of increasing median distance (ASDC n = 70; B Cell n = 38; CD1C n = 595; 817 

CLEC9A n = 82; Eccrine cells n = 5; Endothelial Cells n = 23; Fibroblasts n = 114; LC 818 

n = 348; Mac cells n = 262; MDSC n = 18; Melanocytes n = 9; NK cells n = 5; 819 

Normal_KC_Basal n = 517; Normal_KC_Cyc n = 499; Normal_KC_Diff n = 2497; PDC 820 

n = 13; Pilosebaceous cells n = 385; T cells n = 128; TSK n = 34; Tumor_KC_Basal 821 

n = 116; Tumor_KC_Cyc n = 103; Tumor_KC_Diff n = 476). Boxplots show the median 822 

with interquartile ranges (IQRs) and whiskers extend to 1.5× IQR from the box. g, SMN 823 

distances of normal and tumor keratinocytes to T cells. One-sided Wilcoxon tests are 824 

performed to determine statistical significance. h, scHolography 3D plot of Normal KC, 825 

TSK, Tumor KC, and T cells. i, Feature dot plot of top ten significantly enriched genes 826 

among the first-degree neighbors of normal KC, including Normal_KC_Basal, 827 

Normal_KC_Cyc, Normal_KC_Diff, TSK, and tumor KC, including Tumor_KC_Basal, 828 

Tumor_KC_Cyc, Tumor_KC_Diff. Significances are determined by one-sided Wilcoxon 829 

tests. j, scHolography 3D feature plot of highly expressed genes among the first-degree 830 

neighbors of TSK (VIM), Normal KC (HES1), and Tumor KC (SERPINB3). 831 
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Figure 5. scHolography reconstructs the spatial organization of mouse brain. a, 834 

H&E image of an anterior brain sample for ST. b, UMAP plot of scRNAseq data from 835 

mouse brain. c, 3D visualization of spatial reconstruction of mouse brain by 836 

scHolography. d, GABAergic neurons, glutamatergic neurons and non-neuronal cells 837 

are visualized in the reconstructed mouse brain in 3D. e, Subtypes of GABAergic 838 

neurons are visualized in the reconstructed mouse brain in 3D. f, Non-neuronal cells, 839 

including astrocytes and endothelial cells, are visualized in the reconstructed mouse 840 

brain in 3D. g, Subtypes of Glutamatergic neurons are visualized in the reconstructed 841 

mouse brain in 3D. h, SMN distances of distinct glutamatergic neurons to L2/3 IT cells 842 

(L2/3 IT n = 353; L4 n = 489; L5 IT n = 270; L5 PT n = 188; NP n = 132; L6 IT n = 671; L6 843 

CT n = 344; L6b n = 100). Boxplots show the median with interquartile ranges (IQRs) 844 

and whiskers extend to 1.5× IQR from the box. i, L2/3 (L2/3 IT) and L6 (L6 IT, L6 CT, 845 

L6b) Glutamatergic neurons are visualized together with upper and deep astrocytes. j, 846 

scHolography 3D plot of upper and deep astrocytes. k, scHolography 3D feature plot of 847 

upper (Chrdl1) and deep (Id3) astrocyte with corresponding marker genes. l, Spatial cell 848 

neighborhood analysis for astrocytes. Four distinct neighborhoods AN1-4 are identified 849 

based on the similarity of the first-degree neighbor cell composition (left panel). Four 850 

astrocyte spatial neighborhoods are visualized with a scHolography 3D plot (right 851 

panel). m, First-degree neighbor composition plot for four astrocyte spatial 852 

neighborhoods. n, Feature dot plot of enriched genes in each astrocyte spatial 853 

neighborhood (Mann Whitney Wilcoxon test, p<0.05). 854 

 855 

 856 
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Extended Data Figure 1. Spatial relevance of SICs. Top five SIC values of ST data 857 

from Donor 1 slice 1 on spatial image (left panels) or expression UMAPs (right panels) 858 

are plotted to demonstrate the pattern correlation between spatial organization and 859 

expression profiles. a-b, SIC 1 values. c-d, SIC 2 values. e-f, SIC3 values. g-h, SIC 4 860 

values. i-j, SIC 5 values.  861 
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Extended Data Figure 2. Benchmarking of scHolography with current methods. a, 879 

UMAP plot of scRNAseq and ST data integration. b, Identification of major cell types in 880 

human foreskin samples by cell lineage markers. KRT10, suprabasal epithelial cells; 881 

ACTA2, smooth muscle cells.; MPZ, Schwann cells; PMEL, melanocytes; PROX1, 882 

lymphatic endothelial cells; CD74, immune cells; KRT6A, glandular epithelial cells; 883 

COL1A2, fibroblasts; PECAM1, endothelial cells; KRT5, basal epithelial cells. c, Spatial 884 

spot plot of ST data from Donor 1 slice 2. Five clusters are identified. d, Expression 885 

heatmap of top ten markers of each of the five clusters from Donor 1 slice 2 ST data 886 

(Mann Whitney Wilcoxon test, p<0.05). e, 3D plot of the reconstruction result from 887 

Donor 1 slice 2 ST data by scHolography. f, Dot plot of the reconstruction result from 888 

Donor 1 slice 2 ST data by Celltrek. g, Dot plot of the reconstruction result from Donor 1 889 

slice 2 ST data by Seurat-SrtCT. h, Violin plot of Spearman correlation for the 890 

comparison of prediction accuracy by scHolography, CellTrek, and Seurat-SrtCT. One-891 

sided Wilcoxon tests are performed to determine statistical significance. i, Violin plot of 892 

Jaccard similarity for the comparison of prediction accuracy by scHolography, CellTrek, 893 

and Seurat-SrtCT. 894 
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Extended Data Figure 3. Three-dimensional reconstruction of human foreskin. a, 902 

Cubemap of single-cell human foreskin reconstruction by scHolography. The cubemap 903 

includes perspective snapshots from the top (row 1), left (row 2, column 1), front (row 2, 904 

column 2), right (row 2, column 3), back (row 2, column 4), and bottom (row 3) of 905 

scHolography reconstruction.  b, 3D plot of CellTrek (left) mapping and Seurat-SrtCT 906 

(right) mapping results. The spatial cell-cell distance matrices are calculated from 907 

CellTrek and Seurat-SrtCT mapping results and fed into scHolography for SMN graph 908 

construction and 3D visualization.  c, 3D feature plot of learning variance of each cell by 909 

scHolography. 910 
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Extended Data Figure 4. Spatial neighborhoods of fibroblasts in human foreskin. 924 

a. First-degree neighbor composition plot of FN1-9. b. First-degree neighbor 925 

composition plot for significantly enriched neighboring cell types of FN1-9 (One-sided 926 

Mann Whitney Wilcoxon test, p<0.05). 927 
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Extended Data Figure 5. Benchmarking of scHolography and spatial 947 

neighborhood profiles of human cSCC. a, Cubemap of single-cell cSCC 948 

reconstruction by scHolography (left) and scHolography 3D plot of cSCC spatial 949 

reconstruction colored by normal and diseased conditions (right). b-c, 3D plot of 950 

CellTrek (b) mapping and Seurat-SrtCT (c) mapping results. d, Violin plots of Jaccard 951 

similarity (left) and Spearman correlation (right) for the comparison of prediction 952 

accuracy of scHolography, CellTrek, and Seurat-SrtCT. One-sided Wilcoxon tests are 953 

performed to determine statistical significance. e, First-degree neighbor composition 954 

plot for significantly enriched neighboring cell types within cSCC (One-sided Mann 955 

Whitney Wilcoxon test, p<0.05). 956 
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Extended Data Figure 6. Three-dimensional reconstruction of mouse brain and 970 

spatial neighborhood analysis for astrocytes. a, Cubemap of single-cell mouse brain 971 

reconstruction by scHolography. b, Distance plot of astrocytes to L2/3 and L6 colored 972 

by upper and deep astrocyte layers. c, Distance plot of astrocytes to L2/3 and L6 973 

colored by Chrdl1 (left, upper astrocyte marker) and Id3 (right, deep astrocyte marker) 974 

expression. d, Violin plots of upper layer score (left) and deep layer score (right) in 975 

upper and deep astrocyte layers. One-sided Wilcoxon tests are performed to determine 976 

statistical significance. 977 

 978 

Extended Data table 1. First-degree neighbor composition by cell type in human 979 

foreskin. 980 

 981 

Extended Data table 2. Spatial neighborhood composition for fibroblasts in 982 

human foreskin. 983 

 984 

Extended Data table 3. First-degree neighbor composition by cell type in human 985 

cSCC. 986 

 987 

Extended Data table 4. Spatial neighborhood composition for astrocytes in 988 

mouse brain. 989 
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