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Abstract

Background: The succession of the gut microbiota during the first few years plays a
vital role in human development. We elucidate the characteristics and alternations of
the infant gut microbiota to better understand the correlation between infant health
and microbiota maturation.

Results: We collect 13,776 fecal samples or datasets from 1956 infants between 1
and 3 years of age, based on multi-population cohorts covering 17 countries. The
characteristics of the gut microbiota are analyzed based on enterotype and an
ecological model. Clinical information (n = 2287) is integrated to understand
outcomes of different developmental patterns. Infants whose gut microbiota are
dominated by Firmicutes and Bifidobacterium exhibit typical characteristics of early
developmental stages, such as unstable community structure and low microbiome
maturation, while those driven by Bacteroides and Prevotella are characterized by
higher diversity and stronger connections in the gut microbial community. We
further reveal a geography-related pattern in global populations. Through ecological
modeling and functional analysis, we demonstrate that the transition of the gut
microbiota from infants towards adults follows a deterministic pattern; as infants
grow up, the dominance of Firmicutes and Bifidobacterium is replaced by that of
Bacteroides and Prevotella, along with shifts in specific metabolic pathways.

Conclusions: By leveraging the extremely large datasets and enterotype-based
microbiome analysis, we decipher the colonization and transition of the gut
microbiota in infants from a new perspective. We further introduce an ecological
model to estimate the tendency of enterotype transitions, and demonstrated that
the transition of infant gut microbiota was deterministic and predictable.

Background
Dynamics of the gut microbiota during early development not only has a considerable

impact on childhood but also influences their health when children grow up [1, 2]. Un-

like that in adults, the microbial community in infants presents a less complex and hy-

pervariable pattern, especially during the first few years after birth [3]. The simple

composition of the neonatal microbiota facilitated us to elucidate and highlight the
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establishment of the symbiotic relationship between the host and microbes. In contrast,

the high plasticity and dependence on external environments of the infant microbiota

may provide an opportunity to use external intervention during the early stage to im-

prove children’s health in the future.

To date, most of the studies on the gut microbiota in early stages of life have exam-

ined cross-sectional samples collected from a single time point [4, 5], and the dynamics

of gut microbiota from newborn to infancy is unclear due to the lack of high temporal

resolution data. To overcome this shortcoming, several longitudinal cohorts with large

sample sizes were recruited [3, 6]. According to a recent TEDDY study [3], the gut

microbiota of infants may be roughly divided into three phases, namely developmental

(3–14 months), transitional (15–30 months), and stable phases (≥ 31 months). How-

ever, the transition pattern and its driving forces during this process remain largely un-

known. Recently, several studies have attempted to reveal the structure of infant

microbiota using the concept of enterotype [7, 8]. Unlike the three familiar and consist-

ent enterotypes (Bacteroides, Prevotella, and Ruminococcus) in adults, the infant entero-

types classified through each study were different. The difference may be related to the

instability and high diversity of the microbiota from newborn to infancy, or it may re-

sult from different sampling stages or insufficient data size. In either case, uniform clas-

sification and systematic analysis of infant enterotypes are necessary to focus on the

colonization and succession of the gut microbiota in early life.

In addition to the development involved in the natural growth cycle, some critical

time points or clinical factors may play important roles in shaping the neonatal micro-

biota. It was reported that the relative abundance of Firmicutes, such as Clostridium,

Streptococcus, and Enterococcus, was much higher in infants delivered by cesarean sec-

tion. In contrast, Bacteroides and Bifidobacterium showed an evident enrichment in the

development of infants delivered via the vaginal route [6]. Postnatal factors such as

feeding habits and solid food intake are crucial as well [3, 9]. Several studies have re-

ported differences in the gut microbiota of infants among different ethnicities or conti-

nents [5, 10], which implies that this diversity may derive from early life stages. The

integrated analysis of these factors will help to better understand the early development

of human microbiota.

Herein, we longitudinally collected fecal samples of neonates from China and further

integrated over 10,000 metagenomic or 16S rRNA sequencing datasets of longitudinal

fecal samples from 17 countries, spanning the first 3 years of life. Based on the largest

population to date, the microbial assembly, succession, and maturation during early life

were elucidated. Through the application of ecological models and the Markov chain,

the transition rate of the gut microbiota in the early stages was quantified. Our findings

provide comprehensive insights into the initial colonization and transition of the hu-

man microbiota through the analysis of enterotypes, which may increase our under-

standing of the microbiota dynamics in early life.

Results
Population characteristics

We enrolled a cohort of 101 Chinese full-term healthy neonates in this study; collected

their fecal samples at birth, 6, 12, or 18 months of age; and then used metagenomic
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shotgun sequencing to investigate their microbial community structures. We also re-

trieved metagenomic or 16S rRNA sequencing datasets of longitudinal fecal samples of

newborns and infants from 19 public cohorts [6, 8–23]. In total, 13,776 fecal micro-

biome datasets of 1956 infants aged 1–36 months were obtained and analyzed after

quality control and batch effect correction and included seven time points on average

for each individual. This combined dataset covered seventeen countries of six conti-

nents, including Asia, South and North America, Europe, Australia, and Africa (Fig. 1A,

Additional file 1: Table S1).

Classification of the infant gut microbiota in early life based on enterotypes

Enterotypes were classified in the large population of this study (n = 13,776) according

to previously described methods [24]. The microbial profiling resulted in four entero-

types (Fig. 1B, Additional file 1: Fig. S1 and Additional file 1: Table S2) with the bacter-

ial genera belonging to phylum Firmicutes, Bifidobacterium, Bacteroides, and

Prevotella, dominating enterotypes 1 to 4. These enterotypes clustered stably with
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Fig. 1 Characteristics of four infant enterotypes associated with temporal and geographic distribution. A
Geographic (top) and temporal (bottom) prevalence of 13,776 stool samples used in this study. B Four
enterotypes identified using Jensen–Shannon distance and partitioning around medoid (PAM) clustering in
the first three years after birth. The colored ellipses cover 90% of the samples belonging to the enterotype
group. The blue cloud (left) represents the local density estimated from the coordinates of stool samples.
Box plots on the right show the relative abundance of the major bacterial contributor of each enterotype. C
Prevalence of each enterotype in the first 3 years. D Longitudinal development of microbiome maturation
based on the microbiota age throughout 3 years. The blue cloud represents the local density estimated
from the coordinates of stool samples. E Temporal and geographic distribution of different enterotypes
across 17 countries
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various sample sizes as well as in different datasets (Additional file 1: Figs. S2-4),

strongly indicating the reliability of enterotype clustering in infant gut microbiota.

To better understand the four enterotypes and to explore the temporal distributions

of the infant microbiota in the first 3 years of life, we identified the emergence windows

of each enterotype (Fig. 1B, C and Additional file 1: Fig. S5A-B). For enterotype 1 (E1,

n = 3062) dominant bacteria varied at the genus level (Additional file 1: Fig. S5A-B). In

contrast, enterotypes 2 (E2, n = 5264) and 3 (E3, n = 5052), represented by a relatively

high abundance of the genera Bifidobacterium and Bacteroides, respectively, were ob-

served constantly in the first 3 years of life. Enterotype 4 (E4, n = 398) dominated by

the anaerobic Prevotella did not appear until the second year of life. Apart from the

emergence windows, we also found that the community characteristics varied over time

for each enterotype. Although the four enterotypes presented an increased pattern dur-

ing early development both in diversity and microbiome maturation, E3 and E4 exhib-

ited relatively higher alpha diversity and larger microbiome maturation rate than E1

and E2 after the first year of life (Fig. 1D and Additional file 1: Fig. S5C, Wilcoxon test,

P < 0.001), which might represent an advanced developmental stage of the gut micro-

biota in infants.

To investigate the geographical distribution of the infant microbiota in the first 3

years of life, we subsequently classified the four enterotypes in the populations of differ-

ent countries. An evident geographical stratification of enterotypes was observed (chi-

square test, P < 0.001) (Fig. 1E and Additional file 1: Fig. S6). For example, among de-

veloping countries such as India, Bangladesh, South Africa, Peru, and Brazil, E2 was

prevalent throughout the first 3 years of life. In contrast, developed countries in North-

ern Europe, such as Finland, Norway, and Estonia presented a Bacteroides-predominat-

ing E3 for most of the months. Besides these geographical differences, there was a clear

trend of enterotype transition over time. For example, in Finland, the existence of E1

and E2 on the early stage was replaced rapidly by the large proportion of E3 with the

growth of infants (Fig. 1E), which indicates a strong correlation between developmental

stages and transition of enterotypes. Differences in the emergence windows and com-

munity characteristics of each enterotype as well as the enterotype preference in diverse

countries suggest that the gut microbiota of these infants may be in distinct develop-

mental stages, thereby representing different degrees of maturity.

Distinct enterotypes correspond to different developmental stages of the infant gut

microbiota

To further characterize the gut microbiota in the early stages of life along with the

chronological ages and geographical distributions of infants, we compared the relative

abundance of gut bacteria at the species or strain levels in four enterotypes based on

1165 metagenomic sequencing profiles from four countries (China, Luxemburg, Italy,

and the USA).

As shown in Fig. 2A, the differences in gut microbiota were much greater among

enterotypes than among countries, regardless of the infant age (ANOVA test, R2 of

enterotypes 4.65% vs R2 of nations 2.88%, P < 0.001). Specifically, no remarkable

country-specific species were observed in this study, suggesting that the stratification of

enterotypes may not directly result from geographical factors. In contrast, enterotype-
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specific species were found and were strongly associated with the main bacterial con-

tributors of each enterotype, although the abundance of these species varied with the

chronological age of the infants (Fig. 2B). This result indicates that even at the species

level, distinct enterotypes may be clearly distinguished from each other and chrono-

logical ages may be an important factor associated with enterotypes in the development

of infant gut microbiota.

To unveil the reasons underlying the differentiation of the gut microbiota in infants

of different chronological ages and countries, we analyzed the microbiota at the strain
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Fig. 2 Species-level prevalence and strain-level association pattern of enterotypes. A Temporal distribution
of the top 24 most dominant species among four enterotypes (n = 1165). The size of each circle is
proportional to the relative abundance of each species. Only the species with relative abundance > 0.2 are
shown. B The relative abundance of Bacteroides spp. and Bifidobacterium spp. varies over time. The shaded
regions indicate the 95% confidence intervals for the fit of the lines. C–E Phylogenetic trees of different
strains of Bifidobacterium longum denoted with developmental stages (C), enterotypes (D), and countries
(E), respectively. Each node in the phylogenetic tree represents a specific strain from one infant. F Strain-
level association between enterotypes and developmental stages in the top ten most dominant species.
The height of each peak and bar indicates the number of strains enriched in this enterotype. Red asterisk
on the right indicates a significant correlation (chi-square test, P < 0.001) between enterotypes and
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trees of top 10 species, where a higher AI value indicates a closer phylogenetic relationship among the
strains in the same group (enterotype or country). H Pie diagrams of different enterotypes or countries in
the top five subclades of representative species
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level. Unique marker genes were extracted from each sample and aligned to construct

phylogenetic trees for the top ten most abundant species, and then subclades of each

tree were counted (Additional file 1: Fig. S7). As an example, phylogenetic trees of Bifi-

dobacterium longum for diverse developmental stages, enterotypes, and countries are

shown (Fig. 2C–E). Notably, strains classified into E1 and E2 were precisely correlated

to early developmental stages of the gut microbiota, while those from E3 and E4 were

associated with later stages (Fig. 2C, D, chi-square test, P < 0.001). Regarding the geo-

graphic environment, the direct correlation was much weaker. Infants who belonged to

the same developmental stages tended to share the same enterotype strain, regardless

of the country of origin. For strains belonging to the same country, enterotypes varied

in parallel with infant developmental stages (Fig. 2C–E). The strong correlation be-

tween enterotypes and developmental stages demonstrates that the age factor plays an

important role on the stratification of enterotypes. The geographical stratification of

enterotypes to some extent reflects the differences of developmental stages of infants in

these countries.

To verify the correlation between enterotypes and the development of the gut micro-

biota, we further determined the enterotype association pattern in other species (Add-

itional file 1: Fig. S7). Consistent with the observation in Bifidobacterium longum, the

association between enterotypes and developmental stages was much stronger than that

between enterotypes and geographical factors (Fig. 2F, G). Enterotypes dominated by

Bacteroides and Prevotella exhibited a more mature pattern than the other two entero-

types, while strains from the same country were classified into different enterotypes

due to the differences in the maturity of the gut microbiota (Fig. 2H), suggesting that

the stratification of enterotypes among different countries can correspond to different

developmental stages of the infant gut microbiota.

The developmental process of infant gut microbiota is deterministic and predictable

To explore the developmental process of gut microbiota in the early stage, we stratified

1336 infants (only infants with more than three time points were included) into nine

age groups with 4-month intervals to determine the enterotype transitions across differ-

ent ages. As shown in Fig. 3A, a common inter-enterotype shift tendency was present

throughout the entire period. The most frequent transition was observed in the first

year of life. During this period, more than half of the infants (52.17%) in E1 shifted to

E2, and some of the subjects previously belonging to E1 (9.24%) and E2 (9.12%) transi-

tioned to E3. This transition, however, decelerated soon afterwards. In the second year,

the microbiota became more stable, with over half of the infants (56%) without inter-

enterotype variation, and in the third year, the ratio was up to 79.6%.

To quantify the transition of different enterotypes in early life microbiota, we used a

Markov chain-based approach to model the enterotype transition probabilities (Fig.

3B). E1 showed a high frequency of transition to other enterotypes, with a relatively

higher transition probability to E2 and E3 (0.37 and 0.39, respectively) compared to its

self-transition probability (0.22). This may be the major reason for the disappearance of

E1 in the following 2 years after birth (Fig. 3A). Further, E2 showed a tendency to tran-

sition to E3 (0.38). For this reason, although E2 corresponded to the majority of the in-

fants in the first year of life, starting from the second year, E3 outnumbered E2 and
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became dominant in infant populations (Fig. 3A). Changes in the abundance of their

respective enterotype bacteria also accounted for the decline in E2 and the rise in E3

(Additional file 1: Fig. S5B). To estimate the transition and development of the four

enterotypes in the future, we implemented a random forest model with a minimum gap

from 30 to 60 days. It was observed that the transition of enterotypes in the early days

of life was predictable with an AUC greater than 0.8, and the three enterotype bacteria

(Bacteroides, Bifidobacterium, and Prevotella) played a crucial role in this prediction

(Additional file 1: Fig. S8A). This result supported our assumption that the transition

among enterotypes was a crucial path from stages of immaturity to maturity.

We further tracked the process of enterotype fluctuation by measuring the time-

series changes of gut bacteria in infants, which helped us understand the alternation of

microbes during the early development from a precise time scale. Each sample at the

former time point served as the potential source to predict the origin of microbes at

the latter time point in each enterotype. The results of source tracking exhibited
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distinct patterns in each enterotype (Fig. 3C). We found a remarkably small proportion

of microbes from the other three enterotypes imported into E1. In contrast, E3 ac-

cepted a large number of bacteria from E1 and E2. This tendency was consistent with

the transition of enterotypes and strongly suggested that E1 might be the microbial

source of the other enterotypes. Additionally, E3 contained the most microbes from the

other enterotypes, thereby indicating its microbial sink status. Although we observed a

limited frequency of microbial transmission from E4 to E2 and E3, a high prevalence of

self-transmission of microbes in E4 (Fig. 3B, C) enhanced its stable feature compared

to E1 and E2 and thus implied its maturation.

Since we have demonstrated that the less mature enterotypes (E1, E2) have an appar-

ent tendency to transit to more mature enterotypes (E3, E4), a problem on the under-

standing of the reason underlying this transition awaits solution. We used an ecological

model to explore the internal driving forces of each enterotype to elucidate potential

factors affecting the microbiota dynamics (Fig. 4D). As shown in Fig. 3E, in the four

enterotypes, the alpha diversity of the gut microbiota was positively correlated with the

increasing age of infants, which indicated the gradual maturation of all enterotypes al-

though the pace varied. However, the stochasticity ratios in E1 and E2 (~ 90%) were

relatively constant and significantly higher than those in E3 and E4 (16–78%). Stochas-

ticity ratios dropped sharply with increasing age in E3 (from 75.3 to 16.1%) and E4

(from 78.3 to 33.3%), which implied that these enterotypes were governed by the deter-

mined selection and presented a more stable community structure.

We subsequently measured the microbial interactions associated with the four enter-

otypes to explore the possible causations and trends of enterotype transition. A co-

occurrence network at the species level revealed the difference in bacterial interactions

(Additional file 1: Fig. S8B) and enhanced the credibility that the community structure

of E3 and E4 was much more stable than that of E1 and E2. In these networks, both E1

and E2 presented a weak bacterial interaction, with most of their taxa separated from

each other. In E3 and E4, however, the interaction was more frequent and the connec-

tion among species was much closer (chi-square test, P < 0.001). Particularly in E4, sev-

eral species formed a compact Prevotella-centered cluster, which might contribute to

the stability of their community structure and promote the maturation of the infant gut

microbiota. Interestingly, we also found that the decrease of Bifidobacterium in E2 and

the increase of Bacteroides in E3 were associated with the change in abundance of their

corresponding bacteriophages (Additional file 1: Fig. S8C), suggesting that bacterio-

phages might be involved in regulating the abundance of enterotype bacteria during the

transition of enterotypes.

Multiple clinical factors are associated with the prevalence of enterotypes

To identify other factors that might affect microbiota dynamics, we analyzed external

clinical factors obtained in this study (Additional file 1: Table S1). Intriguingly, the

transition of enterotypes in early life was influenced neither by antepartum (maternal

gestation age, the mode of delivery) nor by postpartum factors (the duration of breast-

feeding) (Additional file 1: Table S3).

We then implemented PERMANOVA analysis (n = 2287) and found that although

multiple clinical factors could influence gut microbiota, the effects were much weaker
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compared with the infant age and the geographical factor (Fig. 4A), indicating that the

bacterial community of infant gut experienced a rapid transition in the early age and

the developmental stages played an essential role in this process. Considering individual

differences may mask the feature of gut microbiota, we then explored the association

between clinical factors and enterotypes separately. Among all the infants clustered into

E1, over half were delivered by C-section (59.4%, hypergeometric test, P < 0.001). In

contrast, in the remaining three enterotypes, children delivered via the vaginal route

constituted a significant majority (hypergeometric test, P < 0.001) with 59.3% in E2,

89.6% in E3, and 78.9% in E4 (Fig. 4B). Such divergence was also observed at the genus

level, in which the gut microbiota of C-section and vaginally delivered infants were

dominated by the genera belonging to the phylum Firmicutes and genera Bifidobacter-

ium or Bacteroides, respectively (Additional file 1: Fig. S9A). In addition, infants with

E1 showed the lowest gestational age (Wilcoxon test, P < 0.001) (Fig. 4C). This ten-

dency was more remarkable in preterm infants (Additional file 1: Fig. S9B), which clus-

tered into E1 2–5 times more than those into E2 and E3 in the first 3 months (Fig. 4D).

The correlation was also observed between enterotypes and the duration of breastfeed-

ing; infants who were breastfed for a short (< 60 days) or long (> 300 days) term tended

to be enriched in E1 and E2 (Fig. 4E). Despite the effects of clinical factors exerted on
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gut microbiota were weak (Fig. 4A), there were associations between these factors and

the prevalence of enterotypes.

Divergence and transition of the metabolic capacity are associated with the development

of infant gut microbiota

To evaluate the potential roles of enterotype differentiation and transition on infant

growth and development, we analyzed the functional variations of four enterotypes

based on metagenomic data (n = 1165). As expected, the four enterotypes grouped into

distinct clusters at the functional gene level (Fig. 5A). Consistent with our previous ana-

lysis, E3 and E4 were markedly similar in functional gene profiles, although they pos-

sessed distinct dominant bacteria. E1 and E2 varied considerably, which suggested that

these two enterotypes exhibited distinct functions although they both corresponded to

the stage of the very early life.

Furthermore, the metabolic pathways showed marked enterotype- and age-specific

patterns (Fig. 5B). A myriad metabolic pathway involved in arginine biosynthesis and

branched amino acid biosynthesis were depleted in E1. In contrast, these amino acid

biosynthesis pathways were enriched in all age groups of E2. The enriched metabolic

pathways in E3 and E4 were similar, most of which were involved in glycolysis, starch

degradation, and chorismate, phosphopantothenate, and queuosine biosynthesis.

We then discriminated bacterial contributors to the enriched pathways and found

that the enriched amino acid biosynthesis in E2 was largely attributed to the genus Bifi-

dobacterium (Additional file 1: Fig. S10). Additionally, we compared the bacterial taxa

with the largest contributions to the functional features of the four enterotypes between

the first 2 years (Fig. 5C). Bifidobacterium longum and Bifidobacterium breve accounted

for the highest number of significantly enriched metabolic modules in the first year,

whereas they were replaced by Bacteroides vulgatus in the second year. This was con-

sistent with the trend observed in the enterotype transition that E2 was initially pre-

dominant in infants, but was later exceeded by E3 (Fig. 3A).

It has been demonstrated above that different enterotypes are related to different

functions, and as infants grow, E1 and E2 shifted to E3 and E4. We next examined the

longitudinal samples of each individual to investigate the association between entero-

type transition and metabolic changes. We only chose infants with at least three sam-

pling time points and excluded those without enterotype transition. Among the 257

infants with metagenomic sequencing samples, 119 were retained for downstream ana-

lyses. Nearly all these infants showed a dramatic synchronization between the transition

of enterotypes and metabolic functions (t-test, adjusted P < 0.05) (Additional file 1: Fig.

S11). For example, in infant TT0132A, the relative abundance of many amino acid bio-

synthesis pathways (L-arginine and L-isoleucine) and nucleotide biosynthesis (5-ami-

noimidazole ribonucleotide) decreased sharply when E2 shifted to E3 from day 133 to

205, while the relative abundance of E3-associated pathways (starch degradation and di-

acylglycerol biosynthesis) exhibited a gradual increase (Fig. 5D).

We finally divided infants who experienced stable transition (n = 61) into two groups,

group “E1/E2 to E3/E4” (n = 53), which started with E1 or E2 and shifted to E3 or E4

at one stage of growth, and group “E3/E4 to E1/E2” (n = 8), which showed an opposite

direction in enterotype transition. Among the 32 significantly different pathways
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between enterotypes (Fig. 5B), fourteen pathways diverged between these two

groups (Additional file 1: Fig. S12). For example, L-ornithine biosynthesis and L-

arginine biosynthesis showed decreased abundance in group “E1/E2 to E3/E4” with

increasing age, but increased in the other group. An opposite trend was observed

in the metabolic pathways related to phosphopantothenate biosynthesis and gly-

colysis (Fig. 5E and Additional file 1: Fig. S12). Collectively, these findings indi-

cated that there was a strong correlation between the functional variation and the

transition of enterotypes during the development of infants, and the shift from E1

and E2 to E3 and E4 was a common trend not only at the taxonomic but also at

the functional level.
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Discussions
The dynamics of microbial communities in the infant gut have been highly discussed in

recent years [2]. In this study, with over 10,000 longitudinal fecal samples of neonates

spanning 17 countries, we analyzed the infant gut microbiota with the largest popula-

tion to date and clustered four robust enterotypes for the first time. The results show

that each of these enterotypes was extremely distinct from each other and was not only

driven by different bacteria but was also associated with different phases of early devel-

opment. In addition, a geography-related pattern of enterotypes was observed in the

global populations. Our strain-level analysis further indicated that the stratification of

enterotypes in different countries can be associated with different developmental stages

of the infant gut microbiota. The explicit enterotype transitions and corresponding

functional variations observed in this study illustrate the developmental trends of infant

gut microbiota from the immature to the mature stages.

The enterotype concept has been debated since it was proposed in 2011 [24]. Many

investigations have been performed on adult enterotypes [25, 26], while little has been

researched on infants. A major critique raised by researchers is that enterotypes are not

discrete states that separate individuals [27]. However, in this study, we observed that

the enterotype clustering of infants was much more robust and consistent than that of

adults, which might be due to the simplicity of the gut microbiota and limited influen-

cing factors in early age. Apparent barriers among adult enterotypes, especially between

Bacteroides- and Prevotella-dominated communities, were observed in previous studies

[25, 28]. Unlike those of adults, infant enterotypes are vulnerable and tend to shift to

another type. This inter-enterotype transition may result from the undergoing growth

and physiological development of infants as well as external factors such as variable di-

ets [5, 9]. This frequent transition stabilizes with age, thus denoting the maturation of

gut microbiota from infants to adults. Batch effect is inevitable in meta-analyses due to

different processing methods in different studies. In our study, however, no study-

specific enterotype was observed during the clustering process, indicating that the

enterotype clustering is independent of studies.

The TEDDY study divided the early development of infants into three distinct phases

based on the diversity and richness of the gut microbiota. With over ten thousand fecal

samples, they emphasized the effect of environmental factors on early development, es-

pecially the vital role of breast milk in this process [3]. The findings in our study are

basically consistent with such a division that implies frequent fluctuations in the gut

microbiota during the first few years of life, while the fluctuation recedes as neonates

develop. In addition, the increasing metabolic capacity of amino acid and the import-

ance of Bacteroides in the maturation of the infant gut are also in line with their obser-

vations. However, a novel finding in our study is that we observed a geography-related

pattern in the stratification of enterotypes, as we have included multi-population co-

horts covering 17 countries. Moreover, our study provides a new perspective on the

transition of gut microbiota during the early development. This deterministic and pre-

dictable transition promotes gut microbiota from immaturity to maturity (Additional

file 1: Fig. S13). The gut microbiota of infants in the TEDDY study was characterized

with priority colonization of Bifidobacterium, while our study suggests that before the

Bifidobacterium-dominant stage, there is an earlier Firmicutes-dominant stage, particu-

larly in preterm infants, which is strongly associated with immaturity.
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We further found that Prevotella was in relatively low abundance in the first few

years of life and the Prevotella enterotype did not appear until the second year after

birth. This finding was supported by a study that mentioned that the emergence of the

Prevotella enterotype occurs much later than that of the Bacteroides enterotype [29].

The anaerobic characteristic and complicated carbohydrate-associated pathway of Pre-

votella indicate a more mature trait, which may account for the late appearance of this

enterotype. Due to its low prevalence (13% in the second year and 6.2% the third year)

in our study, the Prevotella enterotype was overshadowed by the other three more

abundant enterotypes when using the full dataset, in which most samples that should

have been classified into the Prevotella enterotype (72.9%) were falsely assigned to E3

(the Bacteroides enterotype). However, if we clustered enterotypes by sampling the

same number of samples from each year, four distinct enterotypes were clearly ob-

served, regardless of the sampling size selected. This clustering result is reproducible

when using different clustering methods or even metagenomic datasets. These results

emphasize the importance of sampling balance for enterotype clustering. Additionally,

previous analyses of enterotypes among school-age children found that the Bifidobac-

terium enterotype showed the lowest gene number and diversity compared to the other

two adult-like enterotypes [30], further demonstrating that the gradual decrease of the

Bifidobacterium enterotype was correlated with the development of the infant gut

microbiota.

Several studies have emphasized the importance of clinical factors like gestational

period and breastfeeding option in early life [9, 31]. In this study, we confirmed that

the maturity of gut microbiota in preterm infants was much delayed compared with

that of full-term infants. Only 2287 samples were included in the multivariate analysis

due to the lack of information from public studies. Although associations between clin-

ical factors and the prevalence of enterotypes were observed in this study, their effects

on gut microbiota were much weaker in the PERMANOVA analysis. We speculated

that the divergence between two kinds of analyses may result from the variances of in-

dividuals because the geography and the infant age imposed great effects on gut micro-

biota, which may mask the influences of other factors. In addition, as most of preterm

infants were delivered by C-section and fed with breastmilk, the associations we ob-

served in the univariate analysis may be attributed to the influence of prematurity.

Another contribution of this study is that we introduced an ecological model to esti-

mate the tendency of enterotype transitions. Some ecological concepts, such as the β-

mean-nearest taxon distance (βMNTD) and Raup–Crick metric, have been widely ap-

plied in many natural ecosystems [32, 33]. We adapted this model to the gut microbial

community and found that, in the two enterotypes (E1 and E2) in the early stages of

life, the rate of stochasticity remained higher during the entire stage of life, while in the

other two, it decreased sharply with the increasing age. Given that a high rate of sto-

chasticity in a community indicates its disorder and instability [32], the modeling of

stochasticity and selection on different enterotypes explain the trends of shifting from

E1 and E2 towards E3 and E4 in the first 3 years of life. Functional features associated

with this enterotype shift confirmed that as the infant developed, the four enterotypes

displayed a determined metabolic transition, thereby altering the gut microbiota from

the composition observed in an immature childhood to that observed in a mature

adult-like stage. Nevertheless, research with higher resolution, such as a longer scale
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span and more frequent sampling data, is required to understand the role of gut com-

mensals in different stages of life as well as in different cohorts. Apart from this, the

healthy status of the subjects should be associated with different growth patterns to de-

termine outcomes of development in different communities in early life.

Conclusions
In this study, we presented a comprehensive and quantitative enterotype analysis to

elucidate the maturation of gut microbiota from infant to adult-like configuration

using 13,776 longitudinal fecal samples from 1965 infants between 1 and 3 years of

age, based on multi-population cohorts covering 17 countries. By leveraging the ex-

tremely large datasets and enterotype-based microbiome analysis in this study, we

deciphered the colonization and transition of the gut microbiota in infants from a

new perspective. The four enterotypes were correlated with different developmental

stages of infants and exhibited obvious spatial and temporal patterns. We for the

first time introduced an ecological model to estimate the tendency of enterotype

transitions and demonstrated that the transition of infant gut microbiota was deter-

ministic and predictable.

Materials and methods
Study cohorts and data retrieval

A Chinese cohort of newborns was recruited at the Wenzhou People’s Hospital, and in-

formed consent was obtained from their parents or guardians. The subject’s mother

was non-vegetarian and with no antibiotic use during pregnancy and had no history of

smoking, alcohol consumption, or any other systemic or metabolic diseases. In total,

101 healthy children born at term were included. All children were of Han ethnicity,

and their parents were permanent residents of Wenzhou city, China. Fecal samples

were collected at birth, 6, 12, and 18 months of age. Stool was stored in study-provided

sterile containers and kept at −20°C and transferred to −80°C upon return to the la-

boratory. DNA extraction from fecal samples was performed as per methods described

previously [34]. The resulting DNA was stored at −80°C until sequencing. For each

sample, a random-fragment library (insert length of ~300 bp) was constructed using

the Nextera DNA Sample Preparation Kit (Illumina) with dual indexing and sequenced

on the HiSeq 2500 platform (Illumina) to produce 150-bp paired-end reads. Sequencing

generated an average of 84.4 million reads per sample, and 88.1% of the samples had

>10 million reads. Initial FASTQ files were filtered prior to subsequent analysis using

FASTQC. Additionally, sequencing data of 14,821 longitudinal fecal samples were re-

trieved from 19 public datasets [6, 8–23]. Of these datasets, three cohorts included

metagenomic sequencing data and the others were 16S rRNA sequencing data; seven

cohorts included preterm infants and twelve cohorts were infants born at term. Chil-

dren with abnormalities related to growth (such as Down’s syndrome, Turner syn-

drome, Fallot’s tetralogy, multiple disabilities, and cystic fibrosis), and children treated

with antibiotics during fecal sample collection were excluded. Finally, 1956 healthy chil-

dren from 23 cities in 17 different countries were included in the study, and their fecal

samples covered the first 3 years of life (1–36 months).
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16S rRNA data processing

For 16S rRNA sequencing data profiling, raw reads were analyzed using the open-

source software package QIIME [35]. This pipeline selected operational taxonomic

units (OTUs) using a reference-based method and then created an OTU table. Briefly,

high-quality 16S rRNA gene sequences were assigned to OTUs using the script pick_

closed_reference_otus.py with a 97% identity threshold. OTUs were subsequently

mapped to a subset of the Greengenes database [36]. Abundances were recovered by

mapping the demultiplexed reads to the representative OTUs and by producing the

final taxonomic profiles. Low-abundance OTUs, whose relative abundance did not

reach 0.1% in at least 10% of the samples, were excluded.

Metagenomic data processing

For metagenomic sequencing data profiling, human DNA sequences were identified

and removed using KneadData (https://huttenhower.sph.harvard.edu/kneaddata/) by

aligning raw reads to the hg19 human reference genome. The adapter and index se-

quences were trimmed and sequences were quality-filtered using Trimmomatic [37]

with the following parameters: -jar trimmomatic-0.36.jar PE -phred33 ILLUMINACLIP:

TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 HEAD-

CROP:8 MINLEN:36. The relative abundance of bacterial species was calculated using

MetaPhlAn [38] with default parameters. Taxonomic tables with relative abundance

were merged using the “merge_metaphlan_tables.py” script. The abundance of meta-

bolic pathways was determined using HUMAnN2 [39]. Low-abundance filtering was

applied to exclude taxonomic and functional features whose relative abundance did not

reach 0.1% and 0.01%, respectively, in at least 10% of the samples.

Enterotype clustering

The enterotype clustering was performed at the genus level according to the previous

protocol [24]. The genus with the highest relative abundance in each year was consid-

ered as the main contributor of each enterotype. For E1, the main contributors were

classified as phylum Firmicutes since the dominant genera possessed a similar relative

abundance. To confirm clustering stability, we randomly selected different samples for

enterotype clustering and reclassified enterotypes using each cohort. 16S rRNA gene

sequencing data and metagenomic sequencing data were also used to reclassify entero-

types, respectively. We further clustered enterotypes by sampling the same number of

samples from each year. Regardless of the sampling size selected, they were clearly clus-

tered into four distinct enterotypes. Except for the partitioning around medoid (PAM)

method, the Dirichlet multinomial mixtures (DMM) approach was also conducted to

verify the clustering results [40].

Microbiota maturation modeling

Random forest (RF) regression was performed to evaluate the microbiota age as previ-

ously described [41]. Briefly, the model was trained on 10% randomly selected full-term

infants (> 37 weeks of gestation) belonging to each enterotype in the final dataset. To

estimate the minimal number of the top ranked age-discriminatory taxa required for

prediction, the rfcv function implemented in the “randomForest” package was applied
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over 100 replicates. This model was then applied to all datasets, and the age of the in-

fants predicted by this model was considered as microbiota age.

Strain-level taxonomic and phylogenetic analysis

Bacterial strains that were present in multiple samples were identified using StrainPh-

lAn [42]. The sample-based strain reconstruction and reference databases of each clade

and all the reconstructed genomes were analyzed to build multiple sequence align-

ments and phylogenetic trees.

We used an aggregation index (AI) to quantify the clustering effects through each

variance. A cluster was defined as the largest subtree in each phylogeny with all the

samples belonging to the same country or enterotype, which contained at least three

samples. We defined the aggregation index of a country or enterotype for each species

as follows:

AI ¼
P

N sð Þ2
N að Þ2 � Nc

" # 1
10

where Na represents the number of all samples in each phylogenetic tree, Nc the

number of clusters in each phylogenetic tree, and Ns the number of samples in each

cluster. The AI values increased with the aggregation of clusters in each phylogenetic

tree. All phylogenetic trees were visualized using the R package “ggtree”.

Tracking the dynamics and bacterial interactions of enterotypes

All samples were divided into nine groups with 4-month intervals, and the enterotype

of each infant was considered to be the most frequent enterotype during each time

scale. The inter-enterotype transition rate was quantified and visualized using a Markov

chain based on a previously published R script [43]. Source tracking was applied using

the R package “FEAST” [44]. To predict potential sources by month, we only focused

on subjects with over three time points in our study. For each month, we randomly se-

lected 100 samples that served as sources and sinks, and ten iterations were performed

in this process to obtain average predictions.

Evaluation on the stochasticity of the gut microbiota assembly

A two-step procedure was performed to estimate the rates of stochasticity in each com-

munity [33, 45]. First, the observed degree of phylogenetic turnover of each pairwise

community comparison was quantified with the β-mean-nearest taxon distance

(βMNTD) using the R function “comdistnt” (abundance weighted = TRUE; package

“picante”) [46, 47]. The βMNTD value quantifies the phylogenetic distance between

each OTU in one community (k) and its closest relative in a second community (m):

βMNTD ¼ 0:5
Xnk

ik¼1

f ik min Δik jm
� �þ

Xnm

im¼1

f im min Δim jk
� �

" #

where f ik is the relative abundance of OTUi in community k, nk is the number of

OTUs in k, and min(Δikjm) is the minimum phylogenetic distance between OTUi in

community k and all OTUsj in community m.
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The degree to which βMNTD deviates from a null model expectation measures the

degree to which the community composition is limited by selection on OTU ecological

niches. The difference between the observed βMNTD and the mean of the null distri-

bution was measured in units of standard deviation of the null distribution and is re-

ferred to as the β-nearest taxon index (βNTI):

βNTI ¼ βMNTDobs−βMNTDnull

sd βMNTDnull

� �

where βMNTDobs is the observed βMNTD, βMNTDnull is the null value of βMNTD,

and sd indicates the standard deviation of the βMNTDnull distribution. We quantified

the βNTI for all pairwise comparisons using a separate null model for each comparison.

βNTI values < −2 or > +2 indicate significantly less than or greater than the expected

phylogenetic turnover, respectively. |βNTI| values < 2 indicate the dominance of sto-

chastic processes in communities [32, 48].

Second, a Raup–Crick metric was calculated to estimate the degree of turnover in

OTU composition using R package “vegan” and R code of a previous study [49]. After

modification, the Raup–Crick index (RCI) represents the dissimilarity between two

communities relative to the null expectation. RCI values between −0.95 and +0.95 de-

note drift acting alone, which indicates stochastic processes exceeding determined pro-

cesses in communities [49]. As a result, the rates of stochasticity were recognized from

the proportions of community pairs that were between |RCI| < 0.95 and |βNTI| < 2.

Bacteriophage identification and prediction model construction

We adopted a modified de novo CRISPR pipeline used in a previous study to identify

bacteriophages [50, 51]. Thirteen enterotype-associated bacteria were first chosen to

construct a direct repeat (DR) database. Reference genomes of these bacteria were

downloaded from the NCBI database. DRs were identified from bacterial genomes

using Piler with default settings [52]. We then extracted the interspaces from our meta-

genomic reads as CRISPR spacers using CRASS [53]. After comparing with contigs via

BLASTn (mismatch ≤ 1, and E-value ≤ 10−5), the target spacers were selected. DRs

from the same region were compared with the DR database using BLASTn (E-value ≤

10−10 and identity = 100%). Significant hits were inferred as the phage source of the

spacer (protospacer).

The RF package in R was used to predict the transition of enterotypes. All subjects

sampled less than three time points were discarded. The remaining subjects were ran-

domly divided into an independent training set (90%) and a testing set (10%). After ten-

fold cross-validation, 27 most important features were selected to predict the variation.

We applied this model twice with a minimum gap of 30 and 60 days, respectively.

Functional analysis

Metagenomic data were functionally profiled using HUMAnN2 [39]. Gene family abun-

dance at the community level was calculated to show the contributions of known and

unknown bacterial species. The pathway abundance was computed both at the commu-

nity level and for each species using community- and species-level gene abundances

along with the structure of the pathway. Functional clustering was performed based on
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Bray–Curtis dissimilarity matrices of significantly different genes identified through

Kruskal–Wallis tests.

Statistical analysis

A traditional batch-correction method [54] was applied to remove batch effects. The

variance explained by the enterotype was much larger than that of the study both be-

fore and after correction. All statistical analyses were conducted in R within RStudio

and visualized using package “ggplot2.” Because of the lack of sufficient metadata, all

samples with clinical information were divided into four discrete groups (1, 6, 12, 18

months), and the quantification of the variance was calculated using PERMANOVA as

implemented by the “adonis” function in the R package “vegan.” Enterotype characteris-

tics and variations associated with clinical factors were compared using chi-square tests

for categorical variables and Wilcoxon rank-sum tests for continuous variables. For

simple, independent comparisons, P-values < 0.05 were considered significant. For all

analyses regarding multiple comparisons, we used the Benjamini–Hochberg method to

correct for multiple testing.
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