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Abstract
We analyse mathematical models in order to understand how microstructural features
of vascular networksmay affect bloodflowdynamics, and to identify particular charac-
teristics that promote the onset of self-sustained oscillations. By focusing on a simple
three-node motif, we predict that network “redundancy”, in the form of a redundant
vessel connecting twomainflow-branches, togetherwith differences in haemodynamic
resistance in the branches, can promote the emergence of oscillatory dynamics. We
use existing mathematical descriptions for blood rheology and haematocrit splitting
at vessel branch-points to construct our flow model; we combine numerical simula-
tions and stability analysis to study the dynamics of the three-node network and its
relation to the system’s multiple steady-state solutions. While, for the case of equal
inlet-pressure conditions, a “trivial” equilibrium solution with no flow in the redun-
dant vessel always exists, we find that it is not stable when other, stable, steady-state
attractors exist. In turn, these “nontrivial” steady-state solutions may undergo a Hopf
bifurcation into an oscillatory state.We use the branch diameter ratio, together with the
inlet haematocrit rate, to construct a two-parameter stability diagram that delineates
regimes in which such oscillatory dynamics exist. We show that flow oscillations in
this network geometry are only possible when the branch diameters are sufficiently
different to allow for a sufficiently large flow in the redundant vessel, which acts as the
driving force of the oscillations. These microstructural properties, which were found
to promote oscillatory dynamics, could be used to explore sources of flow instability
in biological microvascular networks.
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1 Introduction

Sustained oscillations in themicrocirculation have been known to occur for some time.
They have been observed in vivo (Kimura et al. 1996) and in vitro (Forouzan et al.
2012), and studied via mathematical modelling (for example, Kiani et al. 1994; Carr
and Lacoin 2000; Geddes et al. 2010). Such theoretical studies have confirmed the
existence of oscillatory solutions that are self-induced, i.e. they emerge in the absence
of external forcing or the imposition of oscillatory boundary conditions. In this work,
we seek to identify the microstructural features of vascular networks which promote
oscillatory dynamics. Understanding such relationships is important in order to pre-
dict the behaviour of large-scale vascular networks and the tissue oxygenation they
provide. While several theoretical studies have demonstrated that network geometry
can affect the emergence of blood flow oscillations (see, for example, Geddes et al.
2007; Davis and Pozrikidis 2014a; Karst et al. 2015), to our knowledge no explicit
mechanism has been proposed for how specific structural features of microcapillary
networks, together with the inherent properties of blood flow, act to generate oscil-
latory dynamics. Therefore, in this work, we consider a simple three-node network
motif as a model case study to investigate how geometrical features of the network
promote oscillatory instability of steady blood flow. Our findings could be used in
future work to identify motifs in larger networks that act as sources of instability and
trigger oscillatory dynamics.

When blood flows in microcapillaries its viscosity is governed by the concentration
of red blood cells (RBCs), such that the hydraulic resistance depends nonlinearly on
the haematocrit level, a phenomenon known as the Fåhræus–Lindqvist effect (Fåhræus
and Lindqvist 1931). On the other hand, the splitting of haematocrit at a vessel branch
point depends (nonlinearly) on the partitioning of bloodflowbetween daughter vessels,
a phenomenon known as “plasma skimming” (Krough 1921). Together, these two
effects result in coupled nonlinear relations between haematocrit concentrations and
flow rates in the different vessels of the network. Such intrinsic nonlinearities have
been shown to drive the emergence of multiple equilibria and oscillatory dynamics
(Karst et al. 2015).

The complex rheology of microcapillary blood flow and its strong dependence on
the haematocrit and vessel diameter were originally studied by Fåhræus and Lindqvist
(1931). Later on, Pries et al. (1994) derived a widely used mathematical model to
quantify these effects. While the Pries et al. (1994) viscosity model is a fundamental
element of almost every study of blood flow in the microcirculation, a variety of
models for plasma skimming have been used. The haematocrit splitting rules vary
from simple, single-parameter equations (Klitzman and Johnson 1982; Fenton et al.
1985) to complicated models based on experimental measurements (Pries et al. 1989)
and discrete-RBC simulations (Bernabeu et al. 2020).

The functional form of the haematocrit splitting models has been shown to sig-
nificantly affect the emergence of self-sustained oscillations; specifically, a dominant
factor is the rate at which the haematocrit flux into a specific daughter branch increases
as the total flow rate into that branch increases. For example, Davis and Pozrikidis
(2011, 2014a, b) showed that regular networks, such as honeycomb or tree networks,
are only prone to oscillations when physically unrealistic splitting rules, with very
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large haematocrit-flux gradients, are used. Nevertheless, other research (Karst et al.
2015; Gardner et al. 2010) has shown that when the more biologically-sound haemat-
ocrit splitting model of Pries et al. (1989) is used, multiple equilibria and oscillations
may occur if some “redundancy” is introduced into the system; this was achieved by
adding a vessel to connect two main flow branches. The term “redundancy” is used
here because, in certain conditions, the additional connecting vessel can support a
“zero-flow” solution where it transports neither plasma nor haematocrit. These find-
ings suggest that self-induced oscillations aremore likely to occur in vascular networks
with irregular topological structures, which are, in fact, also characteristic of tumour
vasculature (Jain 2005).

Cancer cells influence and respond to local environmental conditions; this leads to
rapid and localised angiogenesis, and the formation of networks whose morphologies
differ dramatically from those of healthy tissues (Jain 2005). It is hypothesised that
the abnormal structure of tumour vasculature leads to spatio-temporal variations in
blood flow and haematocrit distribution, which manifest at the macroscopic level
as cycling hypoxia (Michiels et al. 2016; Gillies et al. 2018). This phenomenon is
characterized by periodic episodes of oxygen deprivation, followed by periods of
reoxygenation, in localised tumour regions. Tumour cells exposed to such fluctuating
hypoxia dynamics experience a selective advantage for malignant growth (Höckel
et al. 1996) and resistance to chemo- and radiotherapy (Harrison and Blackwell 2004;
Gray et al. 1953; Horsman et al. 2012). In spite of the obvious impact on tumour
behaviour, the mechanisms and structural irregularities that contribute to oscillatory
tumour blood flow remain unclear. We postulate that the existence of many redundant
vessels in tumour networks, combined with the intrinsic nonlinearities of microscale
blood flow, can play a significant role in such tumour blood flow fluctuations.

As a first step towards better understanding the microscale mechanisms that lead
to unsteady flows and cycling hypoxia in tumours, we revisit the simplest model for
network redundancy—a three-node network in which the two main flow branches are
connected by a redundant vessel. Motivated by irregular tumour networks, where reg-
ulatory angiogenic mechanisms may be disrupted, and a range of vascular diameters
may prevail, we consider different branch diameters in our model. We will show that
such differences can have a significant affect on the existence of oscillatory dynam-
ics. We combine numerical simulations and stability analysis to study the blood flow
dynamics of the three-node network. By varying the branch diameter ratio (represent-
ing structural effects) and the inlet haematocrit level (representing the effect of local
conditions), we construct a two-parameter stability diagram that delineates regimes
in which multiple equilibria and oscillatory solutions exist. Using the haematocrit
splitting model of Pries et al. (1989), we demonstrate how features of the model,
particularly its nonsmoothness, affect the emergence of oscillatory instability.

In Sect. 2, we describe the model for blood flow in a three-node network and intro-
duce the method we use to simulate its time evolution. In Sect. 3, we use dynamic
simulations and linear stability analysis to characterise the steady and dynamic
behaviours of the flow in the network.We summarise our conclusions in Sect. 4. Tech-
nical details relating to the analysis carried out in Sect. 3 are presented in “Appendix”.
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2 Model for Unsteady Blood Flow in a Three-Node Capillary Network

Westudy the unsteady flowof blood through a series of cylindrical capillaries that form
a three-node network. The dependent variables are the nodal pressures, vessel flow
rates, and haematocrit distributions. We start in Sect. 2.1 by formulating the coupled
equations describing the flow dynamics in a single vessel as a function of its inlet
and outlet conditions. Then, in Sect. 2.2, we formulate the three-node network model,
describing how the blood flow and haematocrit in the different vessels are related at
vascular junction points (internal nodes). A computational algorithm for simulating
the time evolution of the flow in the network is given in Sect. 2.3.

2.1 Blood Flow Dynamics in a Single Vessel

We start by describing the flow in a single vessel. Since we focus on blood flow in
microcapillaries, we neglect inertial effects and consider viscous flow in a cylindrical
vessel whose length, L , is much larger than its diameter, D. Under the assumption of
radial symmetry, the flow is assumed to follow Poiseuille’s law which, after averaging
over the vessel length, L , takes the form:

�p(t) = R(t)Q(t), (1)

where Q(t) is the total volumetric flow rate and �p(t) = p(x0, t) − p(xL , t) is the
pressure drop along the vessel (x0 and xL denote the vessel entrance and end points,
respectively; for straight vessels: L = xL − x0). Additionally,

R(t) = 128

π

μ(t)L

D4 ,

represents the vessel-averaged haemodynamic resistance, andμ(t) denotes the vessel-
averaged viscosity which is given by

μ(t) = 1

L

∫ xL

x0
μ (H(x, t), D) dx . (2)

Following Pries et al. (1994), we assume that the apparent blood viscosity, μ,
depends on the vessel diameter, D (given in units of microns) and the discharge
haematocrit, H = H(x, t), represents the ratio of RBC flux to total flow rate, as
follows:

μ(H , D) = ηβ

[
1 + β (η45 − 1)

(1 − H)c − 1

(1 − 0.45)c − 1

]
. (3)

In Eq. (3),

β =
(

D

D − 1.1

)2

, η45 = 6e−0.085D + 3.2 − 2.44e−0.06D0.645
,
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C =
(
0.8 + e−0.075D

) (
1

f
− 1

)
+ 1

f
,

and

f = 1 + 10

(
D

10

)12

.

In order to calculate the average viscosity in Eq. (2), the spatio-temporal distribu-
tion of haematocrit has to be evaluated. When considering haematocrit transport, we
assume the case of a plug flow, i.e. the radially averaged velocity ofRBCs is equal to the
radially averaged plasma velocity; we assume that we can neglect the Fåhræus effect
(Fåhræus 1929). While this assumption is made to simplify the analysis, we note that
Karst et al. (2015) have shown that including the Fåhræus effect does not significantly
impact the system dynamics. Under these assumptions, the haematocrit distribution
within each vessel is governed by the following one-dimensional advection equation:

∂H

∂t
+U (t)

∂H

∂x
= 0, (4)

where the radially averaged blood velocity U (t) is given by

U (t) = 4Q(t)

πD2 .

By integrating Eq. (4) along the length of the vessel, it is straightforward to show that
the vessel-averaged haematocrit,

H(t) = 1

L

∫ xL

x0
H(x, t)dx,

is such that

dH

dt
= U (t)

L
[H (x0, t) − H(xL , t)] . (5)

Similarly, averaging Eq. (3) and differentiating with respect to time, we deduce that
the average viscosity, μ(t), evolves as follows:

dμ

dt
= U (t)

L

ηβ2 (μ45 − 1)

(1 − 0.45)c − 1

[
(1 − H (x0, t))

C − (1 − H(xL , t))C
]
. (6)

Equations (5) and (6) can be solved if H (x0, t) and H(xL , t) are known.
It is straightforward to deduce from Eq. (4) that H(x, t) is constant along the

characteristic curves

dx

dt
= U (t). (7)
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Fig. 1 Schematic of the
three-node network. The blue
arrows indicate the possible flow
directions in each vessel. All
vessels have the same length L ,
while the vessel diameters (D
for vessels 2, 3, 5 and 6; αD for
vessels 1 and 4) are indicated in
black (Color figure online)

Integrating Eq. (7) with respect to t , we have that

xL − x0 −
∫ t

t−τ(t)
U (s)ds = 0, (8)

where τ(t) is the time taken for haematocrit to propagate along a vessel of length
L = xL − x0. The inlet haematocrit H(x0, t) depends on the haematocrit in the parent
vessel(s) (see Sect. 2.2). Since the haematocrit is constant along the characteristic
curves, if the inlet haematocrit in a specific vessel is known, then the corresponding
outlet haematocrit is given by

H(xL , t) = H (x0, t − τ(t)) , (9)

where τ(t) is defined implicitly by Eq. (8). In cases for which
∫ t
0 U (s)ds < L (the

initial inlet haematocrit, H(x0, 0), has yet to propagate along the length of the vessel),
we assign initial conditions for the outlet haematocrit, H(xL , t) = H(xL , 0).

We note that if the velocity changes sign during a simulation, additional complex-
ities can arise. For example, in some cases, the haematocrit may not have reached the
vessel end-point before it starts to propagate backwards. These complexities will not
be discussed here, for the sake of brevity, and because no such sign changes occurred
for any of the simulations of the three-node network reported in the current work.

2.2 Three-Node NetworkModel

We consider unsteady blood flow within a three-node microcapillary network in order
to derive a simple model to investigate how structural features of the network may
invoke multistability and oscillatory dynamics. The three-node network consists of
six vessels (numbered 1–6), all of length L , and has two inlets and a single outlet (see
Fig. 1). Motivated by the irregular structure of tumour vasculature, we focus on the
effect of asymmetry in the diameters of the two main flow branches. We assume that
the diameters of vessels 2, 3, 5 and 6 are identical and denote by D their diameters.
We assume further that the diameters of vessels 1 and 4 are identical and denote by α

the ratio of their diameters to those of vessels 2, 3, 5 and 6. As we show below, this
difference in vessel diameters plays an important role in the emergence of oscillatory
dynamics in the three-node network.
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Blood flow dynamics are greatly affected by the local haematocrit level due to its
affect on blood rheology. While macroscale haematocrit levels are generally uniform
in vascular networks (H ≈ 0.45 in humans), microscale haematocrit levels can be
extremely heterogeneous due to plasma skimming effects (Pries et al. 1992). In order
to study the combined effect of geometrical features and local haematocrit conditions,
we assign a constant haematocrit discharge H0 at both inlets. In this study, the inlet
haematocrit, H0, and the diameter ratio, α, serve as the two key parameters governing
the system dynamics.

We impose constant and equal pressure differences between both inlets and the
outlet nodes: a discussion of alternative boundary conditions is included in Sect. 3.2.

In Sect. 2.1, we considered flow in a single vessel, assuming that the boundary con-
ditions (pressure difference and inlet haematocrit) for this vessel could be determined
from the flow in other vessels. We now formulate a system of algebraic equations
for the nodal pressures based on mass conservation applied at internal nodes. Each
internal node (marked with red circles in Fig. 1) represents a junction between three
vessel segments (see Fig. 2). Accordingly, application of conservation of mass at an
internal node yields

Qa + Qb + Qc = 0, (10)

where the indices a, b, and c refer to fluxes from the central node, where the pressure
is p0, towards connected nodes with pressures pa , pb, and pc, respectively, as shown
in Fig. 2. This notation is generic, i.e. it does not relate to a specific junction; later, we
will use the notation Qi (i = 1, 2.., 6) to denote fluxes in specific vessels within the
three-node network. Combining Eqs. (1) and (10), we arrive at the following equation
for the nodal pressure at a generic junction

p0 = Ka pa + Kb pb + Kc pc
Ka + Kb + Kc

, (11)

where

K j = π

128

D4
j

Lμ j
, j = a, b, c

represents the vascular conductivity [1/R j in Eq. (1)] as a function of the specific
diameter, Dj , and average viscosity, μ j , in the vessel connecting node 0 and the
nodes marked with j = a, b, c. If we apply Eq. (11) at all internal nodes of the
network, and prescribe the pressures of the inlet and outlet nodes, then we obtain a
system of algebraic equations for the nodal pressures. In order to close these equations,
knowledge of the average viscosity within all network vessels, μi (i = 1, 2, . . . , 6), is
required. In order to determine the viscosity, we must also calculate the corresponding
discharge haematocrit values, Hi (x, t).

In Sect. 2.1, we studied haematocrit propagation through a single vessel. For a
network, we must relate the haematocrit at the entrance to that vessel and the haema-
tocrit at the end of the parent vessel (or vessels) that supply it with haematocrit. For
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Fig. 2 Schematic of a generic
vascular junction point. Arrows
indicate the direction assigned as
having a positive flux in a
particular vessel (Color figure
online)

example, consider the node connecting vessels 2, 3, and 5 in Fig. 1 (denoted as node
2–3–5 from now on). If the flows through vessels 2 and 3 converge into vessel 5, then
the haematocrit at the entrance to vessel 5 is determined by applying a mass balance
to the RBCs,

H5(x0, t) = H2(xL , t)Q2(t) + H3(xL , t)Q3(t)

Q5(t)
. (12)

Here, the vessel edges x0 = 0 and xL = L refer to points in the coordinate
system for a specific vessel ordered so that the pressure at x0 is higher than that at xL .
Alternatively, if the flux in vessel 3 changes direction, such that the flows in vessels 3
and 5 diverge from vessel 2, then a haematocrit splitting rule is applied,

H3(x0, t) = Q2H2

Q3
F3|(xL ,t) and H5(x0, t) = Q2H2

Q5
F5|(xL ,t), (13)

where the functions F3 and F5 = 1 − F3 (due to haematocrit conservation) define
the splitting rules for vessels 3 and 5, respectively. In the simplest nonlinear models,
e.g. the model of Klitzman and Johnson (1982), the splitting rule depends solely on
the flux ratio between the daughter and parent branches. More generally, however, the
splitting rule may also depend on the branch diameters and haematocrit. In this work,
we use themodel of Pries et al. (1989). For the three-node network under consideration,
haematocrit splitting only occurs at either node 2–3–5 or node 1–3–4, and we denote
the splitting function at node 2–3–5 as F3 = F(ψ), where ψ = Q3/Q2, while the
splitting function at node 1–3–4 is F3 = F∗(ψ∗), whereψ∗ = Q3/Q1. For illustrative
purposes, here we define the splitting function at node 2–3–5:

F(ψ) =

⎧⎪⎪⎨
⎪⎪⎩

0, ψ < ψ0
eA(ψ−ψ0)

B

eA(ψ−ψ0)
B+(1−ψ−ψ0)

B ψ0 ≤ ψ ≤ 1 − ψ0

1, ψ > 1 − ψ0

(14)

where

A = −6.96

D2
ln

(
D3

D5

)
, B = 1 + 6.98

1 − H0

D2
, and ψ0 = 0.4

D2
.
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In Eq. (14), we have used the fact that the haematocrit in vessel 2 is equal to the
inlet haematocrit, H0. The splitting function in node 1–3–4, F∗(ψ∗), can be readily
obtained by replacing D2 by D1 and D5 by D4 in the splitting function’s coefficients
A, B, and ψ0, following Eq. (14).

It is important to note that at bifurcations, the conserved quantities are the total
flow,

∑3
i=1 Qi = 0, and the haematocrit flow,

∑3
i=1 Qi Hi = 0, but not the haemat-

ocrit concentration. Due to the nonlinear form of the splitting rule, the proportion of
haematocrit flux bifurcating into the favoured daughter branch may be larger than the
proportion of total haematocrit and plasma flux bifurcating into this branch (‘plasma
skimming’), leading to increased haematocrit concentration in the favoured daughter
branch relative to the parent branch. The nonlinearity of the splitting rule facilitates
non-uniform distribution of haematocrit between the different vessels.

With all the components for modelling blood flow within a microcapillary network
defined, we now explain how we construct model solutions for the nodal pressures,
vessel flow-rates, and average haematocrit.

With the haematocrit distributions known at an initial time, the nodal pressures can
be found using Eq. (11), and the flux (and average velocity) in each vessel can be deter-
mined using Eq. (1). Then, the inlet haematocrit for each vessel can be deduced from
the outlet haematocrit of its parent vessel(s) (13) or (12). Evaluating the haematocrit
propagation time, τ , using Eq. (8), and assigning to Eq. (9), the right-hand sides of
Eqs. (5) and (6) are determined, such that the time evolution of the average haematocrit
H and viscosity μ can be calculated. The numerical algorithm for implementing the
outlined model is given below.

2.3 Dynamic Simulation Algorithm

The following algorithm was used to generate numerical solutions for the time-
dependent flow and haematocrit propagation in the capillary network:

1. The initial inlet haematocrit Hi (x0, 0), outlet haematocrit Hi (xL , 0), and average
haematocrit Hi (0), are prescribed for each vessel (i = 1, 2, . . . , 6), such that
they are equal at a specific vessel. The corresponding initial values of the average
viscosity, μi (0), are then calculated in each vessel. A constant haematocrit value,
H0, is prescribed in the inlet vessels. In such vessels: H(x0, t) = H(xL , t) =
H(t) = H0.
Constant pressures, pin = �P and pout = 0, are prescribed at the inlet and
outlet nodes, respectively, such that a constant overall pressure-difference, �P , is
imposed between both inlet nodes and the outlet node.

2. We adopt the methodology employed by Davis and Pozrikidis (2011) to solve
Eq. (11) for the internal nodal pressures at each time step using a Gauss–Seidel
iterative method. Iterations are continued until the relative change in value of each
nodal pressure on subsequent iterations is less than a prescribed tolerance of 10−20.

3. The fluxes Qi and average velocities Ui are calculated for all vessels (i =
1, 2, . . . , 6) using Eq. (1).

4. At each timestep (n = 1, 2, . . . , N , tn = n�t ; �t denotes the magnitude of the
time increment), and in each vessel (i = 1, 2, . . . , 6), the haematocrit propagation
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time, τ ni , is calculated by numerically integrating Eq. (8). The integral in Eq. (8)
is evaluated for t − τ set equal to each discrete time in the interval

[
0, tn

]
. The

approximated value of t−τ is then determined as the time atwhich the left-hand side
of Eq. (8) changes sign. When the flow in the vessel does not change its direction,

the search for the value of t − τ can be restricted to the interval
[
(t − τ)n−1

i , tn
]
,

where (t − τ)n−1
i is the retarded time from the previous timestep. This feature is

crucial in order to obtain reasonable run times of the simulation code.
5. The haematocrit at each vessel end point, Hi (xL , t), is evaluated using Eq. (9).
6. Depending on the flow directions in the vessels connected to each internal node,

either a haematocrit flux balance Eq. (12) or a splitting rule Eq. (13) is used to
update the inlet haematocrit value, Hi (x0, t), in the daughter branch(es).

7. The average haematocrit and viscosity values in each vessel are numerically
advanced in time by applying Euler quadrature to Eqs. (5) and (6).

8. Steps 2–6 are repeated until t = t N .

The above algorithm was implemented in MATLAB. The code is available at the
following GitHub repository: https://github.com/yaronbenami/blood_flow.

3 Characterising the Steady and Dynamic Behaviours of a
Three-Node Network

In order to streamline the analysis of the three-node network considered in Fig. 1, we
nondimensionalise the governing equations. Fluxes are normalised by the steady-state
flow rate in vessel 2 so that

Qi = Q̃i

Q̃(0)
2

,

where the superscript (0) denotes a steady-state value and, hereafter, tildes denote
dimensional quantities. When pressure boundary conditions are prescribed, Q̃(0)

2
changes as the system parameters α and H0 vary. However, this scaling was cho-
sen because it renders the dimensionless formulation of the haematocrit splitting rule
less cumbersome.

Average vessel resistances, as defined by Eq. (1), are scaled by the constant resis-
tance in vessel 2,

Ri = π D̃4

128μ̃ (H0, D) L̃
R̃i = μ (Hi , αi D)

α4
i μ (H0, D)

,

where D = D̃/1µm as appropriate for using the viscosity function of Pries et al.
(1994) [Eq. (3)], αi = α for i = 1, 4 and αi = 1 otherwise (see Fig. 1).

The spatial coordinate is scaled by L̃ , such that for each vessel x ∈ [0, 1]; time is
nondimensionalised by the time for haematocrit to propagate through vessel 2 when
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the flow is steady

t = Ũ (0)
2

L̃
t̃ .

Under these scalings, the dimensionless parameters governing the systembehaviour
are

α, H0, and D,

and the parameter values used in this work are such that α ∈ [0.25, 2.25], H0 ∈ [0, 1],
and D = 20.

3.1 Steady-State Solutions

For the three-node network, if the same pressure is imposed at both inlets, then a
steady solution with no flow in vessel 3 always exists. In this case, the haematocrit
in all vessels is equal to H0, except for vessel 3, which has no haematocrit. It is
straightforward to show that the dimensionless flux in the upper branch (scaled by
Q̃(0)

2 ) is given by

Q(0)
1 = Q(0)

4 = 1

R(0)
1

= α4μ (H0, D)

μ (H0, αD)
. (15)

Henceforth, we refer to this steady solution as the “trivial solution”, and vessel 3 as
the “redundant vessel”, because there is always a steady state for which it transports
neither haematocrit nor plasma. With Q(0)

3 = H (0)
3 = 0 for the trivial solution, the

pressure drops along vessels 1 and 4 (and 2 and 5) are equal (i.e. �p(0)
1 = �p(0)

4 and

�p(0)
2 = �p(0)

5 ) for all values of the parameters α and H0. If we impose equal inlet-

pressure conditions, then the pressure drop along the redundant vessel is �p(0)
3 = 0,

which is consistent with the definition of the trivial solution as a state for which
Q(0)

3 = 0.
In previous work, Gardner et al. (2010) showed that the three-node network admits

multiple steady-state solutions. They also showed that the network possesses three
solutions if the inlet haematocrit, H0, exceeds a threshold value. However, they did
not characterise the stability of the steady-state solutions. Therefore, in this section, we
characterise themultiple steady-state solutions of the network in order to subsequently
study their stability characteristics (in Sect. 3.2).We start by formulating the equations
that define the two non-trivial steady-state solutions:

• Case I—flux flows from the bottom to the top branch (node 2–3–5 to node 1–3–4).
• Case II—flux flows from the top to the bottom branch (node 1–3–4 to node 2–3–5).

These solutions differ in the node at which the haematocrit splitting rule is imposed:
for Case I, the haematocrit splitting rule is imposed at node 2–3–5, while for Case II
it is imposed at node 1–3–4.
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At a steady state, the haematocrit in each vessel is independent of spatial position x
[we set ∂/∂t = 0 in Eq. (4)], and, thus, the resistance is also independent of x . Further,
the pressure difference in vessel i depends on the flux via

�p(0)
i = R(0)

i Q(0)
i , (16)

where from Eq. (1),

R(0)
i = μ(H (0)

i , αi D)

μ (H0, D) α4
i

. (17)

If we consider the steady-state pressure drop along the loop formed by the three
internal nodes, then we have that

�p(0)
3 + �p(0)

4 − �p(0)
5 = 0. (18)

For Case I (i.e. flux flows from the bottom to the top branch), substituting (16) and
(17) into (18) yields

μ(H (0)
4 , αD)

α4 Q(0)
1 +

(
μ(H (0)

3 , D) + μ(H (0)
4 , αD)

α4 + μ(H (0)
5 , D)

)
Q(0)

3

− μ(H (0)
5 , D) = 0. (19)

In Eq. (19), we have also exploited the mass balance Eq. (10) at nodes 1-3-4 and 2-
3-5, which yields Q(0)

4 = Q(0)
1 +Q(0)

3 and Q(0)
5 = 1−Q(0)

3 , respectively. Additionally,
imposition of equal inlet pressures yields

�p(0)
1 − �p(0)

3 − �p(0)
2 = 0. (20)

Substituting (16) into (20), together with the prescription of inlet haematocrit H0,
we find that

μ(H0, αD)

α4 Q(0)
1 − μ(H (0)

3 , D)Q(0)
3 − μ(H0, D) = 0. (21)

Equations (19) and (21) should be supplemented by expressions for the haematocrit
in vessels 3, 4 and 5. The haematocrit splitting rule (14) at node 2–3–5 can be written
as

H (0)
3 = F(Q(0)

3 )

Q(0)
3

H0. (22)
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Equation (22), together with haematocrit mass balance (12), yields the following
expression for the haematocrit in vessel 5,

H (0)
5 = H0

(
1 − F(Q(0)

3 )

1 − Q(0)
3

)
, (23)

while the haematocrit mass balance at node 1–3–4 yields the following expression for
the haematocrit in vessel 4,

H (0)
4 = H0

(
Q(0)

1 + F(Q(0)
3 )

Q(0)
1 + Q(0)

3

)
. (24)

Equations (19)–(24) define the nontrivial steady-state solution for Case I, where
blood flows from the bottom to the top branch. For Case II, where blood flows from the
top to the bottom branch, a similar analysis leads to the following system of equations:

μ(H (0)
4 , αD)

α4 Q(0)
1 −

(
μ(H (0)

3 , D) + μ(H (0)
4 , αD)

α4 + μ(H (0)
5 , D)

)
Q(0)

3

− μ(H (0)
5 , D) = 0, (25)

μ(H0, αD)

α4 Q(0)
1 + μ(H (0)

3 , D)Q(0)
3 − μ(H0, D) = 0, (26)

H (0)
3 = H0

Q(0)
1

Q(0)
3

F∗(Q(0)
3 /Q(0)

1 ), H (0)
4 = H0

(
Q(0)

1 − F∗(Q(0)
3 /Q(0)

1 )

Q(0)
1 − Q(0)

3

)
,

and H (0)
5 = H0

(
1 + Q(0)

1 F∗(Q(0)
3 /Q(0)

1 )

1 + Q(0)
3

)
. (27)

Here, we have exploited conservation of mass at nodes 1–3–4 and 2–3–5, which
now means that Q(0)

4 = Q(0)
1 − Q(0)

3 and Q(0)
5 = 1 + Q(0)

3 . We note that for both

Cases I and II we assume Q(0)
3 > 0, thus the change of flux direction manifests via

sign changes between Eqs. (19), (21) and (25), (26), respectively.
Equations (19)–(24) or (25)–(27) can be solved numerically to obtain the steady-

state solutions in terms of the system parameters α and H0. Naturally, both sets of
equations reduce to the trivial solution when Q(0)

3 = 0. As the trivial solution exists
for all parameter values, a bifurcation should occur when one of the nontrivial solu-
tions for Q(0)

3 approaches Q(0)
3 = 0. The strategy we use to identify such bifurcation

points is to first find nontrivial steady-state solutions to Eqs. (19)–(24) and (25)–(27)
for sufficiently large values of H0—one for each direction of flow in the redundant
vessel. Then, we use numerical continuation to track these solution-branches as H0
decreases. In Fig. 3, we present the multiple steady-state solutions found using this
numerical tracking technique for α = 0.45. For all calculations, we assumed a nomi-
nal, dimensionless diameter of D = 20 (which corresponds to a dimensional diameter
of 20µm). As mentioned above, for both Cases I and II, Q(0)

3 is considered positive.

123



85 Page 14 of 36 Y. Ben-Ami et al.

Fig. 3 Steady state solutions for Q(0)
3 as a function of the inlet haematocrit, H0, when α = 0.45. Each

solution branch is illustrated with a different line colour, with the black line representing the trivial solution.
Solid and dashed lines correspond to stable and unstable solutions, respectively. The region of Hopf insta-
bility analysed in Sects. 3.3–3.4 is not indicated in this figure. The grey area bounded by the dash-dotted
lines is the region in which the steady-state solutions have no haematocrit in vessel 3. The inset shows
an enlarged image of the two bifurcations: (i) the saddle-node bifurcation, HS , from which the red and
blue solutions originate; (ii) the transcritical bifurcation, HT , at which the blue and black (trivial) solutions
exchange stability (Color figure online)

However, to illustrate the two flow directions in Fig. 3, we denote Q(0)
3 < 0 as the

solution associated with Case I and Q(0)
3 > 0 as the solution associated with Case II.

For fixed values of α, tracking the nontrivial solutions as H0 decreases eventually
leads to one of the following scenarios:

(i) If the flux in the redundant vessel is directed towards the higher resistance vessel
(i.e. Q(0)

3 < 0; solid blue line in Fig. 3), then the nontrivial and trivial solutions
(blue and black curves in Fig. 3, respectively) meet at a transcritical bifurcation,
denoted HT (HT = 0.3365 in Fig. 3).

(ii) If the flux in the redundant vessel is directed towards the lower resistance vessel
(i.e. Q(0)

3 > 0; red curve in Fig. 3), then the nontrivial solution branch ceases to
exist at a saddle-node (fold) bifurcation at which H0 = HS < HT (HS = 0.3288
in Fig. 3).

The thin dash-dotted black lines in Fig. 3 denote the critical fluxes, |Q(0)
3 | = 0.4/D

(bottom line) and |Q(0)
3 /Q(0)

1 | = 0.4/(αD) (top line) atwhichhaematocrit propagation
through the redundant vessel is initiated. These lines indicate where the flux ratio
between the redundant vessel and its parent vessel (vessel 2 for the bottom line and
vessel 1 for the top line) attains the critical valueψ0 in the haematocrit splitting model
(14) for the two flow configurations. Only where the ratio of the fluxes in vessels 3 and
2 (bottom line) or 3 and 1 (top line) exceeds these threshold values, will haematocrit
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enter vessel 3. Thus, H (0)
3 = 0 in the grey region bounded by these two lines. Following

Karst et al. (2015), we term these critical values “skimming thresholds”.
The function used in Eq. (14) imposes nonsmoothness of the splitting rule at the

skimming threshold. The emergence of a fold bifurcation at one of the skimming
thresholds (dash-dotted black lines in Fig. 3) might lead to the conjecture that the
nonsmoothness of the haematocrit splitting function is responsible for the emergence
of the fold bifurcation. However, a separate analysis, using a smooth splitting rule
(see Sect. 3.4), yields a qualitatively similar bifurcation diagram which, for the sake
of brevity, is not presented here. We conclude that the bifurcation structure shown in
Fig. 3 is due to the network configuration, rather than the specific splitting rule.

3.2 Stability of the Trivial Solution

The bifurcation diagram presented in Sect. 3.1 suggests that the trivial solution
exchanges stability with nontrivial steady-state solutions at a transcritical bifurca-
tion point. To verify this finding, we conducted dynamic flow simulations, using the
trivial solution to initialise the network flow. Figure 4 shows how the vessel-averaged
haematocrit (Fig. 4a, b) and fluid flux in the redundant vessel (Fig. 4c, d) change
over time when we fix the ratio of the vessel diameters and inlet haematocrit so that
α = 0.5 and H0 = 0.45. The simulations evolve to either a different (nontrivial)
steady state (Fig. 4a, c) or an oscillatory state (Fig. 4b, d). The two different dynamics
were obtained by imposing small perturbations (±10−6) on the inlet haematocrit of
vessel 2 at the first time step; a positive perturbation resulted in evolution to a non-
trivial steady state (Fig. 4a, c), while a negative perturbation resulted in the onset of
oscillatory dynamics (Fig. 4b, d). The insets in Fig. 4c, d illustrate the different flow
directions in vessel 3. A positive flux in the redundant vessel Q3 > 0, i.e. blood flows
from the higher (α < 1) to the lower resistance branch, leads to a nontrivial steady
state (corresponding to the red line in Fig. 3), while Q3 < 0 may lead to oscillatory
dynamics.

In light of these findings, we performed a linear stability analysis of the trivial
steady-state solution in order to characterise its local stability. We made the following
ansatz for the flux, average resistance, and haematocrit in the i-th vessel:

Qi (t) = Q(0)
i + εqi exp(λt) + O(ε2), Ri (t) = R(0)

i + εri exp(λt) + O(ε2),

and Hi (x, t) = H (0)
i + εhi exp

[
λ

(
t − α2

i

Q(0)
i

x

)]
+ O(ε2), (28)

where Q(0)
i , R(0)

i , and H (0)
i represent the trivial steady-state solution given by Eq. (15),

with Q(0)
3 = H (0)

3 = 0 and H (0)
i �=3 = H0. Further, ε � 1 denotes a small perturbation

of the trivial state and the complex parameter λ = σ + iω represents the growth-rate,
σ , and oscillation-frequency, ω, of the perturbation, respectively. The expression for
the haematocrit, in which hi represents the O(ε) perturbation to the haematocrit at a
vessel inlet x = 0, satisfies Eq. (4) at O(ε).
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Fig. 4 Simulation results showing that the trivial steady-state is unstable. When perturbed, the system
evolves either to a different steady-state solution (a, c) or to oscillatory dynamics (b, d), the long-time
dynamics depending on the sign of the haematocrit perturbation. The time evolution of H , the average
haematocrit (a, b) and Q3, the fluid flux in the redundant vessel (c, d), are presented for different perturba-
tions from the trivial solution with α = 0.5 and H0 = 0.45. The insets in (c, d), illustrate the direction of
flow in each vessel; the different flow directions in vessel 3 lead to either a steady state in (a, c) or a stable
limit cycle in (b, d) (Color figure online)

We note here that the above perturbation equations are for Case I (blood flows from
the bottom to the top branch, i.e. Q(0)

3 < 0 in Fig. 4). While the dynamic simulations
have shown that the flow direction in the redundant vessel affects the attractor to which
the system evolves, we will now show that it does not affect the stability of the trivial
solution (the effect of the flow direction in the redundant vessel will be clarified in
Sect. 3.3, where the stability of the nontrivial steady-state solutions will be examined).

To obtain the haematocrit perturbation in vessel 3, we state the haematocrit splitting
rule at node 2–3–5:

H3(0, t) = F (Q3)

Q3
H0. (29)
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Substituting from (28) in (29), with Q(0)
3 = 0, and equating terms of O(ε), we

deduce that

h3 = 0. (30)

This is because when we use the model of Pries et al. (1989), F(Q(0)
3 = 0) = 0

and ∂n F/∂ψn|
Q(0)
3 =0

= 0 for all n [see Eq. (14)]. We note further that the trivial

steady-state is only possible for haematocrit splitting models with F(Q(0)
3 = 0) and

∂F/∂ψ |
Q(0)
3 =0

= 0. Additionally, the linear stability of the trivial solution depends

on the value of ∂2F/∂ψ2|
Q(0)
3 =0

, which is identically zero in Eq. (14). These features

will be important when we discuss the effect of smoothing the splitting function in
Sect. 3.4.

Applying the haematocrit mass balance, Eq. (12), at nodes 2–3–5 and 1–3–4, we
find that

h5 = H0q3 and h4 = −R(0)
1 H0q3. (31)

In Eq. (31) we have used Eq. (15) from which we have that Q(0)
4 = Q(0)

1 = 1/R(0)
1 .

Since no haematocrit splitting occurs when we perturb about the trivial steady-state
[h3 = 0; see Eq. (30)], Eqs. (30)–(31) are applicable for negative and positive values
of Q3. This explains why the stability of the trivial state is independent of the flow
direction in the redundant vessel.

To complete the haematocrit distribution, we apply mass balance at node 4–5–6 to
obtain

h6 = 1

1 + R(0)
1

[
h4 exp

(
−R(0)

1 α2λ
)

+ R(0)
1 h5 exp (−λ)

]
. (32)

Having defined the haematocrit perturbations in terms of the fluxperturbationq3,we
now relate the hydrodynamic-resistance perturbations to the haematocrit perturbations.
In the unsteady case, the pressure difference is related to the flux via the average
resistance [Eq. (1)], where the nondimensional average resistance reads,

Ri (t) = μi (t)

μ (H0, D) α4
i

, (33)

and

μi (t) =
∫ 1

0
μ (Hi , αi D) dx .

123



85 Page 18 of 36 Y. Ben-Ami et al.

Expanding Ri as a regular power series in the small parameter ε � 1, we obtain
Eq. (17) at leading order, and at O(ε), we have

ri = Q(0)
i

α6
i

[
1 − exp

(
− α2

i

Q(0)
i

λ

)]
1

μ (H0, D)

dμ

dH
|(H0,αi D)hi . (34)

Then, we relate the fluxes and resistances in the different vessels by applying Eq. (1)
to the three constraints on the pressure drops in the network. At O(ε), Eq. (18) reads

R(0)
3 q3 + R(0)

1 q4 − q5 + 1

R(0)
1

r4 − r5 = 0, (35)

where we have used the result from Eqs. (30) and (34) that r3 = 0. Since we impose
a constant pressure difference �P between the inlet and the outlet nodes, we may
assume, without loss of generality, that the O(ε) perturbation to �P is zero. Then,
we have that

0 = �p(ε)
1 + �p(ε)

4 + �p(ε)
6 ,

0 = �p(ε)
2 + �p(ε)

5 + �p(ε)
6 , (36)

where �p(ε)
i (i = 1, 2, . . . , 6) denote O(ε) pressure differences. Substituting for

�p(ε)
i from Eqs. (1) and (28) into Eq. (36), we deduce that

R(0)
1 (q1 + q4) + q6 + 1

R(0)
1

r4 +
(
1 + R(0)

1

R(0)
1

)
r6 = 0 (37)

and

R(0)
1 q1 − q2 − R(0)

3 q3 = 0, (38)

where, since we impose constant inlet haematocrit values (H1 = H2 = H0), we have
assumed, without loss of generality, that h1 = h2 = 0; this leads, via Eq. (34), to
r1 = r2 = 0.

Three additional equations are obtained by balancing the flow at each node:

q1 + q2 − q6 = 0,

q1 + q3 − q4 = 0,

q2 − q3 − q5 = 0. (39)

Equations (30)–(39) form a transcendental eigenvalue problem for λ. In practice,
however, when perturbing about the trivial steady-state solution, λ attains only real
values. In order to show this, it is helpful to consider the simpler problem of fixed-
flux boundary conditions. In this case, we fix q1 = q2 = 0 instead of imposing zero

123



Structural Features of Microvascular Networks Trigger... Page 19 of 36 85

O(ε) pressure drops between the inlet and outlet nodes [Eqs. (37) and (38)]. Then,
the eigenvalue problem reduces to a single equation,

1 + R(0)
3 + R(0)

1 = H0

μ (H0, D)

×
{

1

α4λα

[
1 − exp (−λα)

] dμ

dH
|(H0,αD) + 1

λ

[
1 − exp (−λ)

] dμ

dH
|(H0,D)

}
, (40)

where λα = α2R(0)
1 λ. For any choice of λ, the imaginary parts of the two terms on

the right-hand side have the form

−Cαω

[
1 − sin(α2R(0)

1 ω + θ)

sin θ
exp(−α2R(0)

1 σ)

]
,

and

−Cω

[
1 − sin(ω + θ)

sin θ
exp(−σ)

]
,

where λ = σ + iω, θ = tan−1(ω/σ), and C and Cα are positive coefficients. It
can be readily shown that these two terms are both positive (when ω < 0), both
negative (when ω > 0), or both zero (when ω = 0). Since the left-hand side of
Eq. (40) has no imaginary part, it follows that the equation is only satisfied for real λ.
The same argument can be applied (although the calculations are more cumbersome)
when pressure boundary conditions are imposed (results not shown).We conclude that
the trivial solution cannot undergo a Hopf bifurcation and that transitions to the two
attractors shown in Fig. 4 occur when the trivial solution exchanges stability with one
of the nontrivial steady-state solutions, as shown in Fig. 3. With ω = 0, linear stability
analysis of the trivial solution cannot explain the transition to the oscillatory state
shown in Fig. 4b, d. In Sect. 3.3, we demonstrate that the onset of oscillatory dynamics
occurs via a Hopf bifurcation from one of the nontrivial steady-state solutions.

In order to find the critical conditions for instability of the trivial steady-state solu-
tion, we analyse Eq. (40) in the limit as λ → 0:

1 + R(0)
3 + R(0)

1 − H0

μ (H0, D)

[
1

α4

dμ

dH
|(H0,αD) + dμ

dH
|(H0,D)

]
= 0. (41)

With R(0)
1 and R(0)

3 determined by Eq. (17), Eq. (41) defines the critical curve
in (α, H0) parameter space on which the trivial solution loses stability when flux
boundary conditions are imposed. By taking the limit as λ → 0 of Eqs. (30)–(39), an
additional critical curve is obtained, defining the conditions under which the trivial
solution loses stability when pressure boundary conditions are imposed.

The mechanisms driving instability of the trivial steady-state solution can be
explained as follows. Suppose, without loss of generality, that a small flow pertur-
bation, with zero haematocrit, enters redundant vessel 3 from junction 2–3–5 (as
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Fig. 5 Stability diagram of the
trivial solution in the (α, H0)

parameter space. The solid lines
mark the critical curves for equal
inlet-pressure [Eqs. (30)–(39),
blue] and fixed-flux [Eq. (41),
red] boundary conditions. The
black dashed line represents the
asymptotic solution for α � 1,
while the black dash-dotted lines
mark the asymptotes for H0
when α 
 1. The blue crosses
indicate the transcritical
bifurcation points of the
steady-state solutions (HT ) for
fixed inlet-pressure conditions as
discussed in Sect. 3.1 (Color
figure online)

mentioned above, since the linear stability of the trivial solution does not depend on
the flow direction in the redundant vessel, it suffices to consider this case). Conse-
quently, the haematocrit and resistance in vessel 4 decrease while those in vessel 5
increase. This leads, at supercritical conditions, to more flow being redirected towards
vessel 4, creating a positive feedback mechanism which destabilises the trivial solu-
tion.

At the critical conditions (λ = 0) given by Eq. (41) (when flux boundary conditions
are imposed), the perturbations in the pressure-drop along the three internal nodes
(vessels) caused by the increase in the resistance of vessel 5 and the corresponding
decrease in the resistance of vessel 4 [the terms in brackets in Eq. (41)] are balanced
by the pressure drop due to the flow perturbation in vessels 3, 4, and 5. This condition
yields a relationship between a particular value of α and the critical H0 for instability
of the trivial solution. For inlet haematocrits that are larger than the critical value, this
balance cannot hold due to the increase in the resistance perturbation, resulting in the
positive feedback mechanism described above.

We sketched the critical curves by discretising α in the range [0.25, 2.25] and
solving numerically for H0(α) using a continuation scheme, where α is a continuation
parameter. In Fig. 5, we plot the critical curves thus obtained for the two types of
boundary conditions. To confirm that the critical curves correspond to the transcritical
bifurcation points, HT , evaluated in Sect. 3.1, we calculated discrete values of HT (α)

by locating the bifurcations in the steady-state solution diagrams for a range of values
of α. Comparison with the critical curve in Fig. 5 indicates good agreement, providing
independent validation of our stability analysis.

Figure 5 shows that for a given value of α, the critical haematocrit for the fixed-
pressure condition is always larger than the corresponding value for constant-flux
conditions, suggesting enhanced instability of the latter. From a mechanistic perspec-
tive, we note that under the assumption of Poiseuille flow, the flow rate is proportional
to the pressure gradient,

Q ∝ ∂ p

∂x
. (42)
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This means that imposing a flux condition is equivalent to applying a condition on
the derivative of the pressure. Typically, a condition on a derivative is less restrictive
than a condition on the variable itself, leading to a reduced parameter range of stability.
Our findings are consistent with experimental results reported by Storey et al. (2015).
They conducted experiments involving mixtures of two fluids in slightly different
network geometries and found that imposing flux boundary conditions produced a
larger region of instability than imposing pressure boundary conditions.

We now analyse the stability diagram in the limits of α � 1 (α 
 1), represent-
ing the cases when the diameter of the top branch is much smaller (larger) than the
diameters of the bottom branch and the redundant vessel.

Limit of˛ � 1

From Fig. 5, we note that the critical stability curves for both types of boundary
conditions are similar when α � 1. In this limit, R(0)

1 = μ (H0, αD) /α4μ (H0, D)

is the dominant steady-state resistance such that

R(0)
3 ∼ O(1) � R(0)

1 . (43)

Additionally, R(0)
1 is of a similar magnitude to the resistance perturbations [see

Eq. (34)] on both branches,

H0

μ (H0, D)

dμ

dH
|(H0,D) ∼ H0

μ (H0, D) α4

dμ

dH
|(H0,αD) ∼ R(0)

1 . (44)

When flux boundary conditions are imposed, Eq. (41) reduces to

μ (H0, αD) − H0

[
α4 dμ

dH
|(H0,D) + dμ

dH
|(H0,αD)

]
= 0, when α � 1. (45)

When pressure boundary conditions are imposed, analysis of Eqs. (30)–(39) in the
limit α � 1 shows that a nonzero solution is only possible if the flux perturbations
satisfy the following scaling

R(0)
1 q1 ∼ q2 ∼ R(0)

1 q3. (46)

Assigning scaling (46) to equations (30)–(39) in the limit α � 1 yields an equation
which is identical, at leading order, to Eq. (45). The dashed black line in Fig. 5
corresponds to the solution of Eq. (45); this line is indistinguishable from the two
solid curves for α � 0.4.

Limit of˛ � 1

It is clear from Fig. 5 that for both types of boundary conditions, the critical curves
tend to different constant values of H0 when α 
 1. In this limit, the steady-state
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resistance in the branch with diameter αD is small:

R(0)
1 � R(0)

3 ∼ O(1), (47)

and the perturbation to the resistance in this branch is much smaller than the pertur-
bation in the branch with diameter D:

1

α4

dμ

dH
|(H0,αD) � dμ

dH
|(H0,D). (48)

Therefore, all the terms which include α in Eq. (41) for fixed-flux conditions (or
Eqs. (30)–(39) for fixed-pressure conditions) are negligiblewhenα 
 1, rendering the
two sets of equations independent of α, a result which is consistent with the numerical
results in Fig. 5. When flux boundary conditions are imposed, Eq. (41) reduces to

H0

μ (H0, D)

dμ

dH
|(H0,D) = 1 + R(0)

3 , when α 
 1. (49)

When pressure boundary conditions are imposed and α 
 1, analysis of Eqs. (30)–
(39) shows that a nonzero solution is only possible when the flux perturbations are of
similar magnitude, that is,

q1 ∼ q2 ∼ q3. (50)

Assigning the scaling in Eq. (50) to Eqs. (30)–(39) yields

H0

μ (H0, D)

dμ

dH
|(H0,D) = 1 + 2R(0)

3 , when α 
 1. (51)

The black dash-dotted lines in Fig. 5 correspond to the asymptotic values of the
critical haematocrit, H0, when α 
 1. For both types of boundary conditions there
is excellent agreement between the asymptotic values of the critical inlet haematocrit
for instability and the values given by Eqs. (41) or (30)–(39). We note further that
since the left-hand sides of Eqs. (49) and (51) are monotonically increasing in H0,
the asymptote for the pressure boundary conditions is larger than that for the flux
boundary conditions.

3.3 Oscillatory Solutions

Given the oscillatory dynamics predicted by the dynamic simulations in some cases,
it is of interest to identify regions of parameter space in which they exist. To this end,
we performed linear stability analysis of the nontrivial steady state solutions where,
as hinted by Fig. 4, the flux in the redundant vessel flows from the lower to the higher
resistance branch (this assumption will be justified a posteriori). In order to cover
the full range of solutions, we consider separately Cases I and II from Sect. 3.1. As
demonstrated in Sect. 3.1, the key difference between these cases is the node at which
the haematocrit splitting rule is imposed.
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We use the same ansatz as in Eq. (28) to perturb the steady-state equations. While
the full analysis is presented in “Appendices A and B”, important differences between
perturbations to the trivial and nontrivial states are emphasised here. For Case I, when
blood in the redundant vessel flows from the bottom to the top branch (analysis for
Case II is presented in “Appendix B”), Eqs. (19)–(24) define the steady-state solu-
tions. Linearising the splitting function at node 2–3–5 [Eq. (29)] about its steady state
[Eq. (22)], we deduce that

h3 = H0

(
F(Q(0)

3 )

Q(0)
3

− ∂F

∂ψ
|
Q(0)
3

)[
q2 − q3

Q(0)
3

]
. (52)

In contrast to the perturbation of the trivial state, here Q(0)
3 �= 0, leading to h3 �= 0.

The haematocrit mass balance at node 1–3–4 yields the following expression for the
perturbation to the haematocrit in vessel 4:

h4 = H0

(
Q(0)

3 − F(Q(0)
3 )

)
(
Q(0)

1 + Q(0)
3

)2
[
q1 − Q(0)

1

Q(0)
3

q3

]
+ Q(0)

3

Q(0)
1 + Q(0)

3

h3 exp

(
− λ

Q(0)
3

)
.

(53)
In Eq. (53), we note the exponential term on the right-hand side, which represents

the effect of the time-delay between haematocrit entering vessel 3 and its propagation
into vessel 4, induced by the nonzero value of Q(0)

3 . This time delay plays a key role
in the emergence of oscillatory dynamics.

The equations governing theperturbationsv = {h3, . . . , h6, r3, . . . , r6, q1, . . . , q6}T
can be written as a linear system of the form

A(λ, V (0))v = 0, (54)

where the matrix A(λ, V (0)) depends on the eigenvalue, λ = σ + iω, and the steady-
state solution, V (0) = {Q(0)

1 , Q(0)
3 , H (0)

3 , H (0)
4 , H (0)

5 }, which satisfies Eqs. (19)–(24)
for Case I (or Eqs. (25)–(27) for Case II). Full statements of the equations governing
the perturbations v are presented in “Appendices A” (Case I) and B (Case II). Equation
(54) constitutes a transcendental eigenvalue problem. In practice, we determine the
system’s iso-σ (iso-growth-rate) contours in the (α, H0) parameter space by seeking
solutions for {H0, ω} as a function of α that satisfy

Re {det (A)} = 0

Im {det (A)} = 0 (55)

for specific values of σ . To carry out the bifurcation analysis, we used a numerical
continuation scheme to obtain iso-σ curves in the (α, H0) parameter space, with α

as the continuation parameter. We initialised the continuation scheme using solutions
estimated from the dynamic simulations presented in Sect. 2.3 (for a given combination
of values ofα and H0,we estimatedω andσ by evaluating the oscillation frequency and
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growth rate within a short time period after the bifurcation commenced). The resulting
stability diagram is presented in Fig. 6, for iso-σ curves corresponding to Cases I
(α < 1) and II (α > 1), respectively. The solid black line marks the critical curve for
stability of the trivial steady-state solution and the dashed black line represents the
skimming threshold of the redundant vessel. In the grey region that separates the critical
stability curve of the trivial steady-state solution and the skimming threshold, there is
no haematocrit in the redundant vessel, although |Q(0)

3 | > 0. Remarkably, in this case,
the nontrivial steady states are stable; none of the contours with positive growth-rates
cross the skimming threshold, indicating that oscillatory instability can only occur for
values of inlet haematocrit H0 above this threshold. The requirement for haematocrit
to be present in the redundant vessel in order to generate oscillatory dynamics can be
attributed to the effect of time-delays in the system: when no haematocrit is present
in the redundant vessel (H (0)

3 = h3 = 0), perturbations in Q3 lead to instantaneous
changes in the haematocrit (and, consequently, the resistance) in vessel 4 (or vessel 5
when the flow in vessel 3 is in the opposite direction). Thus, we conjecture that in the
absence of time delays, self-induced oscillations cannot be sustained.

Figure 6 suggests that oscillations only occur in the presence of multiple equilib-
ria. (The oscillatory regime is always above the critical curve of the trivial solution,
indicating the presence of other nontrivial steady-state solutions.) However, the exis-
tence of multiple equilibria is not a necessary condition for the existence of oscillatory
states. For example, Karst et al. (2015) studied a slightly different network geometry
and identified small regions of parameter space in which oscillatory solutions exist in
the presence of only a single steady-state solution. These regions, however, seem to
exist only when the diameter of the redundant vessel is very small.

In Fig. 6, the iso-σ contours do not form closed contours, but they originate from
the skimming threshold. We conclude that there is a jump between negative and pos-
itive growth rates at the skimming threshold. This discontinuity arises because there
is a nonsmooth Hopf bifurcation—a consequence of the singularity in the system’s
Jacobian at the skimming threshold, which arises when the exponent B in Eq. (14)
is such that B < 2. For the parameter regime used in Fig. 6, B ∈ [1.14, 1.37] on
the skimming threshold and, hence, we have a nonsmooth bifurcation (the effect of
smoothing the splitting function is discussed in Sect. 3.4). The nonsmooth Hopf bifur-
cation at the skimming threshold was reported by Karst et al. (2015), who determined
the critical conditions for oscillations in a different network geometry, using a similar
haematocrit splitting model.

Interestingly, Fig. 6 reveals an additional stable region in a neighbourhood of α = 1
(i.e.f where the vessel diameters in the two branches are similar), suggesting that a
critical difference in the flux between the two branches is needed to trigger oscillatory
solutions. Recall that the two regions in which oscillatory solutions exist in Fig. 6
correspond to the two flow directions in vessel 3 (oscillations in the bottom-to-top flow
configuration are restricted to α � 1, and to α � 1 when the flow is in the opposite
direction). The fact that the critical curves for the onset of oscillations (σ = 0) in Fig. 6
do not cross the line α = 1 demonstrates that, in this network geometry, oscillatory
solutions can only exist when the flux in the redundant vessel goes from the lower to
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Fig. 6 Bifurcation diagram indicating regions of (α, H0) parameter space in which oscillatory solutions
exist when pressure boundary conditions are imposed. The solid black line marks the critical curve for
instability of the trivial solution (and corresponds to the blue curve in Fig. 5), while the dashed black curve
corresponds to the skimming threshold of the nontrivial solutions. The grey areas indicate regions in which
both nontrivial steady states are stable. The coloured curves, all originating from the skimming threshold,
represent iso-growth-rate contours (the values of σ = Re{λ} are indicated) of the oscillatory solutions; the
critical curves on which σ = 0 are marked in blue. The iso-growth-rate contours represent flow from the
bottom to the top branch (Case I) for α < 1, and vice versa (Case II) for α > 1 (Color figure online)

the higher resistance branch (see the preliminary assumptions at the beginning of this
section).

The oscillatory dynamics can be understood by considering the two sources of non-
linearity: (i) the haematocrit-dependent viscosity of blood (i.e. the Fåhræus–Lindqvist
effect), and (ii) the nonlinear splitting of haematocrit at vessel bifurcations (“plasma
skimming”).While the former induces coupling of the flowand haematocrit concentra-
tion, the latter allows non-uniform haematocrit distributions throughout the network.
Both effects are essential for the feedback mechanisms that generate self-sustained
oscillations: plasma skimming leads to relatively little haematocrit entering the redun-
dant vessel which, in turn, dilutes the haematocrit and, consequently, reduces the
resistance toflow (due to theFåhræus–Lindqvist effect) in the smaller-diameter branch,
so that more flow is redirected to the redundant vessel. The time-delayed negative-
feedback is also a consequence of the haematocrit-dependent viscosity: the increase
in haematocrit in the redundant vessel leads to a delayed increase in the resistance of
this flow path. Since no other sources of nonlinearity are included in our model, we
believe that it represents a minimal model of how the presence of redundant vessels
can promote oscillatory blood flow when physiologically realistic rules are used to
describe the Fåhræus-Lindqvist effect and plasma skimming.

Consider, for example, the feedback between the flow and haematocrit in vessel 3
(the redundant vessel) and vessel 4 when the flow in vessel 3 is directed towards vessel
4 (oscillatory solutions for α � 1 and steady solutions for α � 1). The time evolution
of the fluid flux and haematocrit in this case are presented in Fig. 7 for H0 = 0.5 and
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Fig. 7 Time evolution of Q3, the fluid flux in vessel 3 (a, b), and H3 and H4, the average haematocrit in
vessels 3 and 4, respectively (c, d), showing how a nontrivial steady state (presented by the dashed lines)
undergoes a Hopf bifurcation to an oscillatory solution (solid curves) for different values of the parameter
α. a, c (α, H0) = (0.5, 0.5), while in b, d (α, H0) = (0.9, 0.5). Comparison of the solutions shows that as
α approaches unity, the sensitivity of H3 and H4 to perturbations in Q3 decreases (Color figure online)

two values of α < 1. The following positive feedback mechanism acts on the flux in
vessel 3: when Q3 is increasing, more haematocrit enters vessel 3 (if the state of the
system is located above the skimming threshold), and less haematocrit enters vessel 4
(see the counter-phase behaviour of Q3 and H4 in Fig. 7). In effect, the increase in Q3
dilutes the haematocrit in vessel 4, while there is a time delay before the increase in
the haematocrit entering vessel 3 propagates through the vessel and reaches vessel 4
(see the phase-lag between Q3 and H3 in Fig. 7). The decrease in haematocrit reduces
the resistance in vessel 4, so that eventually more flow is redirected from the bottom
to the top branch, through vessel 3. This half cycle is reversed when the increase in the
resistance of vessel 3 (due to the increase in its haematocrit) becomes large enough
to reduce Q3 (see correspondence between the maxima of H3 and the times at which
Q3 starts to decrease in Fig. 7). While similar arguments can be applied when α > 1,
changes in the haematocrit entering vessel 4 in response to perturbations in Q3 are
governed by the ratio of the steady-state fluxes Q(0)

3 /Q(0)
1 [see Eq. (53)]. For α � 1,

this ratio is large enough to trigger a significant response; for larger values of α, the
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ratio Q(0)
3 /Q(0)

1 is smaller. For example, in Fig. 7a, c, α = 0.5 and Q(0)
3 /Q(0)

1 = 0.853,

while in Fig. 7b, d, α = 0.9 and Q(0)
3 /Q(0)

1 = 0.045. The reduction in the ratio of
fluid fluxes reduces the sensitivity of H4 to perturbations in the redundant vessel (the
amplitude of H4 reduces by 88% in response to a 16% reduction in the amplitude of
Q3 between Fig. 7a, c and Fig. 7b, d) and, thereby, suppresses the positive feedback
mechanism.

In this work, we chose the nominal diameter to be D = 20 (20µm in dimensional
units) as a representative diameter of physiological microcapillaries. Some quantita-
tive differences should be expected when D is changed. The critical value of H0 at
which oscillations emerge is dominated by the skimming threshold.When the nominal
diameter D is decreased, the dominant effect is a reduction in the value of α at which
the critical H0 is minimized (α ≈ 0.55 for D = 20). This happens because, for a
given haematocrit concentration, the change in resistance with the change in diameter
(∼ d

(
μ(H , D)/D4

)
/dD) increases as the diameter decreases. Therefore, the diam-

eter difference between the two branches (i.e. the degree of structural asymmetry)
decreases. By contrast, the size of the stable region in a neighbourhood of α = 1
increases as D decreases. In this case, the resistance of the redundant vessel (diameter
D) increases and, therefore, a larger diameter ratio is needed to drive flow through the
redundant vessel.

While all results presented in this work are for equal inlet pressures and haema-
tocrits, our calculations (not presented here for brevity) suggest that oscillatory
solutions, having qualitatively similar dynamics to the oscillations presented here,
can still exist when there is a relative inlet-pressure and haematocrit difference of a
few percent. This shows that the oscillatory instability is not a unique feature of three-
node networks with identical inlet conditions; rather it exists for a range of boundary
conditions. The susceptibility of the three-node network to oscillatory dynamics for
non-equal boundary conditions should help to realize these oscillations experimen-
tally, as identical inlet conditions are technically challenging to achieve in practice.

3.4 Oscillations with a Smooth Haematocrit Splitting Function

Motivated by the nonsmoothHopf bifurcation to an oscillatory state encounteredwhen
we use the haematocrit splitting model of Pries et al. (1989), it is natural to ask how
smoothing the splitting function will affect the stability of the system. Therefore, we
use a third-order polynomial to smooth the discontinuities in Eq. (14) and consider an
alternative splitting function of the form

F(ψ) =

⎧⎪⎪⎨
⎪⎪⎩

yL(ψ), ψ < ψL
eA(ψ−ψ0)

B

eA(ψ−ψ0)
B+(1−ψ−ψ0)

B ψL ≤ ψ ≤ ψU

yU (ψ), ψ > ψU ,

(56)

where yL(ψ) and yU (ψ) are third-order polynomials and ψL andψU represent points
at which these polynomials intersect the original splitting function. A third-order
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Fig. 8 Effect of smoothing the Pries et al. (1989) haematocrit splitting function on the bifurcation to
oscillatory solutions. The solid lines correspond to iso-growth-rate contours (the value of σ is indicated)
for the oscillatory solutions when the smooth splitting function Eq. (56) is used, while the dashed curves
were produced using the original, nonsmooth splitting function [Eq. (14), as in Fig. 6]. The iso-growth-
rate contours correspond to flow from the bottom to the top branch for α < 1 and vice versa for α > 1.
The skimming threshold is plotted for reference (thick dashed black line). The inset presents the function
S(ψ) [see definition in Eq. (59)] at the location marked by the black rectangle, (α, H0) = (0.58, 0.391),
for the original, nonsmooth (dashed line) and smoothed (solid line) splitting functions. The corresponding

steady-state fluxes Q(0)
3 obtained using the nonsmooth (smooth) models at that parameter combination are

indicated with open (full) blue circles (Color figure online)

polynomial is the simplest functional form for which

F(ψ = 0) = ∂F

∂ψ
|ψ=0 = ∂2F

∂ψ2 |ψ=0 = 0; (57)

these conditions are imposed in order to preserve the stability properties of the trivial
solution. We also require

F,
∂F

∂ψ
continuous on ψL and ψU , (58)

so that the governing equations are smooth throughout the parameter space. The
method used to construct smoothing polynomials that satisfy the above conditions
is described in “Appendix C”.

Figure 8 shows how the stability of the oscillatory solutions changes when the
splitting function in Eq. (14) is replaced by Eq. (56). The results for the original,
nonsmooth function are also included to facilitate comparison. Noticeably, the smooth
splitting function produces closed iso-σ contours that differ from those obtained using
the original, nonsmooth splitting function. Comparing the dashed and solid blue curves
in Fig. 8, smoothing the splitting function appears to increase stability for α � 1.3,
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while for larger values of α this trend is reversed. As expected, sufficiently far from
the skimming threshold, the smooth and nonsmooth haemaotcrit splitting rules yield
stability results that are practically indistinguishable.

Considering the perturbed equations of the nontrivial steady-state solutions, the
haematocrit splitting rule appears only in Eq. (52), where it attains the following
functional form

S(ψ = Q(0)
3 ) = − 1

ψ

(
F(ψ)

ψ
− ∂F

∂ψ

)
ψ=Q(0)

3

. (59)

Therefore, the magnitude of S(Q(0)
3 ) determines the size of h3/q3, the ratio of the

haematocrit to the fluid flux in the redundant vessel. As such, it plays a major role
in the positive feedback mechanism (see discussion in Sect. 3.3), associated with the
onset of self-sustained oscillations.

The inset in Fig. 8 shows how differences between the smooth and nonsmooth
splitting functions affect the behaviour at the point (α, H0) = (0.58, 0.391). This
point is located just above the skimming threshold (unstable using the nonsmooth
splitting rule), but below the curve on which σ = 0 for the smooth splitting rule
(stable). The function S(ψ) shows how the choice of haematocrit splitting rule affects
the linear stability of nontrivial steady-state solutions and, therefore, how smoothing
the splitting rule may change the system dynamics. The very large gradient of S(ψ) in
the nonsmooth model above the skimming-threshold also explains why the solution
becomes unstable immediately above this critical value. The different values of the
steady-state fluxes Q(0)

3 obtained using the smooth and nonsmooth splitting functions
at (α, H0) = (0.58, 0.391) are presented in the inset. At these supercritical-skimming
conditions (F(Q(0)

3 ) > 0 for the nonsmooth model), the system with the nonsmooth

splitting function produces a larger value of S(Q(0)
3 ) than the system with the smooth

splitting function, which results in an oscillatory instability of the former, while the
latter is stable.

From the experimental viewpoint, the functional form of the haematocrit splitting
rule for low flow rates (in a neighbourhood of the skimming threshold) is challenging
tomeasure because of the large noise-to-signal ratio that prevails at low flow rates. The
stability results presented here for the cases of smooth and nonsmooth haematocrit
splitting rules delineate the “boundaries” of possible behaviours for the given network.
We postulate that other functional forms for smoothing the model of Pries et al. (1989)
that satisfy the conditions specified in (57) and (58)will yield bifurcation curveswithin
these two “bounds”.

4 Conclusion

In this paper, we studied microcapillary blood flow in a three-node network, exploring
its multiple equilibria and the transition to oscillations via dynamic simulations and
stability analysis. While multiple steady-state solutions and self-sustained oscillatory
solutions in microcapillary blood flows have been reported previously (see, for exam-
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ple, Karst et al. 2015 and refs. cited therein), to our knowledge, the microstructural
characteristics that promote unsteady behaviour have not previously been identified.
In this work, we have demonstrated that specific structural abnormalities, in the form
of redundant vessels which connect two flow paths with different resistances, are key
to the emergence of oscillations. We have clarified the feedback mechanisms, arising
due to the coupling of these structural features with the intrinsic nonlinearities of blood
flow at the microscale (i.e. Fåhræus–Lindqvist effect and plasma skimming), which
gives rise to oscillatory dynamics.

In our analysis, we defined a vessel as redundant if there is an equilibrium solution
having zero-flow through that vessel. Such a “trivial” solution is typically unstable,
with nontrivial steady-state solutions bifurcating (stable at the bifurcation point) for
sufficiently large inlet haematocrit values. Remarkably, as we demonstrated using
dynamic simulations, starting from the trivial state, the system may evolve to either
a different steady-state solution or an oscillatory solution. The paths leading to these
long term solutions are sensitive to small changes in the inlet conditions, which dic-
tate the direction of flow in the redundant vessel. The sensitivity of the system to
small fluctuations in the boundary conditions may lead to highly unstable behaviour
if such a motif is embedded in larger networks. Additionally, we postulate that the
maximum number of possible steady-state solutions should rise dramatically as the
number of redundant vessels in a network increases, because each redundant vessel
may support three solutions (no flow and/or flow in either direction). The large num-
ber of equilibrium states, together with sensitivity to small fluctuations, may explain
why highly irregular, almost chaotic flow is a characteristic feature of many vascular
tumour networks (Kimura et al. 1996; Brurberg et al. 2007; Gillies et al. 2018).

To quantify the critical conditions for instability as the ratio of branch diameters
(representing the structural driving force) and inlet haematocrit (representing the effect
of local flow conditions) vary, we performed stability analysis of the trivial solution.
We found that the transition from the trivial steady-state solution to oscillations occurs
in two steps—the trivial state loses stability to a nontrivial steady-state solution which,
in turn, undergoes a Hopf-bifurcation. By performing linear stability analysis of the
nontrivial steady-state solutions, we showed further that the combined effects of a
redundant vessel and vessels that offer different resistances to flow (via different
diameters in this work) is key to the emergence of self-induced oscillations. Also,
we identified a feedback mechanism that facilitates the onset of oscillations; here, the
diameter ratio between the two branches (affecting the flux in the redundant vessel)
and the presence of haematocrit in the redundant vessel (allowing for time-delay in
the system) are crucial ingredients for such positive feedback to occur. In future work,
we aim to evaluate the effect of redundant vessels in larger vascular networks and
to explore different motifs which may generate larger feedback loops and, thereby,
larger scale oscillatory dynamics. Such an investigation should consider the coupled
behaviour ofmultiple sources of oscillations, and how their frequencies and amplitudes
aremodulated. Studying the haematocrit oscillations in larger networkswill ultimately
enable us to evaluate their effect on tissue oxygenation, which is of considerable
importance in understanding the process of cycling hypoxia in tumours (as mentioned
in Sect. 1).
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Traditionally, studies of blood flow in large networks did not consider in detail what
type of boundary conditions should be imposed because, in general, the appropriate
choice of boundary conditions for a microcapillary network is unknown. Fry et al.
(2012) showed that the choice of boundary conditions imposed on large-scale micro-
circulatory networks can significantly influence the steady state flow rates.While most
of the analysis in this paper was performed for constant pressure boundary conditions,
we showed that changing to fixed-flux boundary conditions can destabilise the system,
by reducing the critical inlet haematocrit at which the trivial solution becomes unsta-
ble. Therefore, in future work, it would be of interest to examine how the stability of
larger networks (where there are many more internal nodes than boundary nodes) is
affected by changes in the type of boundary conditions imposed.

In this study, we used a haematocrit splitting rule due to Pries et al. (1989); this
model includes a threshold value of the daughter-to-parent flux ratio, such that haema-
tocrit only enters the daughter branch if the flow rate exceeds this critical value (the
“skimming threshold”). The skimming threshold gives rise to a discontinuity in the
splitting rule which, in turn, gives rise to nonsmooth stability diagrams. We used
spline-smoothing to eliminate the points of discontinuity in the model. In so doing,
we obtained solutions which exhibited a smooth transition in parameter space between
steady and oscillatory states, while also converging to the results of the nonsmooth
model sufficiently far from the skimming threshold. In contrast to the steady-state
solutions, the Hopf-bifurcation patterns are sensitive to small changes in the haema-
tocrit splitting rules in the regime when the daughter-to-parent flux ratio is small (in
the neighbourhood of the skimming threshold). This sensitivity of the emergence of
oscillatory dynamics to small changes in the haematocrit splitting rule used introduces
significant challenges regarding how to measure and model the haematocrit splitting
that occurs at such low flow rates.
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Appendix

Appendix A: Linear Stability Equations for Steady-State Solutions withQ3
Directed Towards the Upper Branch (Case I)

Having specified the haematocrit in vessels 3 and 4 in Eqs. (52) and (53), we write the
O(ε) haematocrit mass balance Eq. (12) at nodes 2–3–5 and 4–5–6 as follows:

h5 = H0

(
F(Q(0)

3 ) − Q(0)
3

)
(
1 − Q(0)

3

)2
[
q2 − q3

Q(0)
3

]
− Q(0)

3

1 − Q(0)
3

h3 (60)

and

h6 = H0(
1 + Q(0)

1

)2
[
Q(0)

1 + F(Q(0)
3 )

Q(0)
1 + Q(0)

3

− 1 − F(Q(0)
3 )

1 − Q(0)
3

]

×
[(

1 − Q(0)
3

)
q1 −

(
Q(0)

1 + Q(0)
3

)
q2 +

(
1 + Q(0)

1

)
q3

]

+ Q(0)
1 + Q(0)

3

1 + Q(0)
1

h4 exp

(
− α2

Q(0)
1 + Q(0)

3

λ

)

+ 1 − Q(0)
3

1 + Q(0)
1

h5 exp

(
− λ

1 − Q(0)
3

)
. (61)

The pressure drop along the loop formed between the three internal nodes yields
Eq. (19) at zero order, while at O(ε)

1

μ(H0, D)

[
μ(H (0)

4 , αD)

α4 q1 − μ(H (0)
5 , D)q2

+
(

μ(H (0)
3 , D) + μ(H (0)

4 , αD)

α4 + μ(H (0)
5 , D)

)
q3

]

+ Q(0)
3 r3 + (Q(0)

1 + Q(0)
3 )r4 − (1 − Q(0)

3 )r5 = 0. (62)

Since the pressure differences imposed between the inlet and outlet nodes are fixed,
we can assume that the O(ε) perturbations to these pressure differences are equal to
zero. Therefore, the O(ε) terms of Eq. (36) yield

μ(H (0)
0 , αD)

μ(H0, D)α4 q1 − q2 − μ(H (0)
3 , D)

μ(H0, D)
q3 − Q(0)

3 r3 = 0, (63)
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and

[
1 + 1

μ(H0, D)α4

(
μ(H0, αD) + μ(H (0)

4 , αD)
)]

q1 + q2 + μ(H (0)
4 , αD)

μ(H0, D)α4 q3

+
(
Q(0)

1 + Q(0)
3

)
r4 +

(
1 + Q(0)

1

)
r6 = 0. (64)

Equations (60)–(64), together with Eqs. (52) and (53), and the relation between
vessel haematocrit and resistance in Eq. (34), form the eigenvalue problem in Eq.
(54) for the case when flow in the redundant vessel is directed towards the top branch
(Case I).

Appendix B: Linear Stability Equations for Steady-State Solutions withQ3
Directed Towards the Bottom Branch (Case II)

We write the O(ε) perturbations to the steady-state solution given by Eqs. (25)–(27).
At O(ε), Eq. (27) yields

h3 = H0

(
F∗(Q(0)

3/1)

Q(0)
3/1

− ∂F∗

∂ψ
|
Q(0)
3/1

) [
q1 − q3

Q(0)
3/1

]
, (65)

h4 = H0
F∗(Q(0)

3/1) − Q(0)
3/1

Q(0)
1

(
1 − Q(0)

3/1

)2
[
q1 − q3

Q(0)
3/1

]
− Q(0)

3/1

1 − Q(0)
3/1

h3, (66)

and

h5 = H0Q
(0)
1

Q(0)
3/1 − F∗(Q(0)

3/1)(
1 + Q(0)

3

)2
[
q2 − q3

Q(0)
3

]
+ Q(0)

3

1 + Q(0)
3

h3 exp

(
− λ

Q(0)
3

)
.(67)

The O(ε) of the haematocrit mass balance at node 4–5–6 yields

h6 = H (0)
4 − H (0)

5(
1 + Q(0)

1

)2
[(

1 + Q(0)
3

)
q1 +

(
Q(0)

1 − Q(0)
3

)
q2 −

(
1 + Q(0)

1

)
q3

]

+ Q(0)
1 − Q(0)

3

1 + Q(0)
1

h4 exp

(
− α2

Q(0)
1 − Q(0)

3

λ

)

+ 1 + Q(0)
3

1 + Q(0)
1

h5 exp

(
− λ

1 + Q(0)
3

)
. (68)
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The pressure drop along the loop formed between the three internal nodes yields,
at O(ε),

1

μ(H0, D)

[
−μ(H (0)

4 , αD)

α4 q1 + μ(H (0)
5 , D)q2

+
(

μ(H (0)
3 , D) + μ(H (0)

4 , αD)

α4 + μ(H (0)
5 , D)

)
q3

]

+ Q(0)
3 r3 − (Q(0)

1 − Q(0)
3 )r4 + (1 + Q(0)

3 )r5 = 0. (69)

Since the pressure differences imposed between the inlet and outlet nodes are fixed,
we can assume that the O(ε) perturbations to these pressure differences are equal to
zero. Therefore, the O(ε) terms of Eq. (36) yield

μ(H (0)
0 , αD)

μ(H0, D)α4 q1 − q2 + μ(H (0)
3 , D)

μ(H0, D)
q3 + Q(0)

3 r3 = 0, (70)

and

[
1 + 1

μ(H0, D)α4

(
μ(H0, αD) + μ(H (0)

4 , αD)
)]

q1 + q2 − μ(H (0)
4 , αD)

μ(H0, D)α4 q3

+
(
Q(0)

1 − Q(0)
3

)
r4 +

(
1 + Q(0)

1

)
r6 = 0. (71)

Equations (65)–(71), together with the relation between vessel haematocrit and
resistance in Eq. (34), form the eigenvalue problem in Eq. (54) for the case when flow
in the redundant vessel is directed towards the bottom branch (Case II).

Appendix C: Calculation of the Smoothing Third-Order Polynomial

The smoothed haematocrit splitting function takes the form introduced in Eq. (56), in
which the polynomials that satisfy the conditions specified in Eqs. (57) and (58) read

yL(ψ) = aLψ3 for ψ ≤ ψL and

yU (ψ) = 1 + aU (ψ − 1)3 for ψ ≥ ψU , (72)

where ψL and ψU are the points of intersection of yL(ψ) and yU (ψ), respectively,
with the original splitting functions [Eq. (56)]. These points of intersection are found
by numerically solving the nonlinear equations

ψL

3
− F(ψL)

∂F/∂ψ |ψL

= 0 and
ψU − 1

3
− F(ψU ) − 1

∂F/∂ψ |ψU

= 0, (73)
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which allow us to calculate the polynomial coefficients as

aL = F(ψL)

ψ3
L

and aU = F(ψU )

(ψU − 1)3
.
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