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The capacity and reliability of biological memory could be exceeded by a constantly growing flux of information to remember and
operate by. Yet, our memory is fragile and could be easily impaired, and the prevalence of memory disorders is increasing in
correlation with the population’s mean age. As expected, auxiliary memory devices (such as writing pads and computers) are
abundant but are operated indirectly using significant effort compared with biological memory. We report a working prototype of
a simplified, 4 KB random-access memory (RAM) that can be written to or read from using thought and could be embedded more
seamlessly than other artificial memory aids. The system analyses EEG signals to extract attention levels, which trained subjects
can use to write messages into an RFID sticker, or read from it on a display. We describe basic modes of using memory by a single
subject, emulate common forms of social communication using this system, and highlight new forms of social usage and allocation
of memories that are linked to specific persons. This preliminary prototype highlights the technical feasibility and the possibilities
of implantable thought-operated memory devices and could be developed further to provide seamless aid to people suffering from

memory disorders in the near future.

1. Introduction

Our ability to store and retrieve information is critical for
learning, social interaction, and experience and hence for our
survival [1]. However, it is also a fragile faculty and could be
damaged or lost relatively easily. Memory disorders and
dementia, which are hallmarks of medical conditions ranging
from mild cognitive impairment (MCI) to Alzheimer’s dis-
ease (AD), are a significant problem which is growing steadily
[2-4], for which treatment is extremely limited and in-
adequate [5]. Our ability to create short-term or long-term
memories could be severely damaged by head trauma, in-
farcts, diseases, and even the side effects of certain drugs [6].

On the other hand, biological memory could be assisted
by simple means such as external documentation, e.g., by
writing and audio recording. However, two challenges could
be anticipated. First, the amount of information that we come
across and are required to remember properly is constantly
increasing, for example, the number of individuals that we

need to maintain direct contact with. Excessive flow of in-
formation could hinder the task of indirectly documenting
this information. Second, auxiliary memory devices such as a
notebook or mobile phone could be easily lost, stolen, or
damaged and are thus of limited reliability. Information can
be stored on a database which is accessible everywhere, such
as a cloud, but this access requires network connectivity,
which is still largely limited and discontinuous.

We could therefore envision an auxiliary memory device
which is direct, in order to allow seamless documentation
and retrieval of information, and has the ability to be em-
bedded or implanted, as to reduce the chances for random
loss of the memory stored on it. Such auxiliary memory
could function in parallel to our native capacity to remember
as a backup or failsafe system that comes into action when
needed.

Comparison to other studies of artificial memory devices
shows prototypes like the implanted silicon chip in the work
of Berger et al. [7] that was implanted in rats and monkeys
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and can process information similar to actual neurons. This
chip does not store data but can serve as a prosthesis for a
damaged part in the hippocampus. Another surgical implant
used for patients with hearing disabilities is the Cochlear
implant which provides a sense of sounds with an electric
device stimulating the auditory nerve [8]. This device does
not store or share data but is used to convert sound waves
into an electrical stimulus of the nerve. Another study was
done by Sum-Gyun Yi et al. which fabricated MoS2-based
flash memory devices by stacking MoS2 and hexagonal
boron nitride (hBN) layers on an hBN/Au substrate and
demonstrated that these devices can emulate various bi-
ological synaptic functions, including potentiation and de-
pression processes, spike-rate-dependent plasticity, and
spike-timing dependent plasticity [9]. This fabricated
memory mimics the work of a synapse in a specific brain.
These studies represent a variety of implant studies in the
field of implants regarding memory or neural abilities. All
are invasive and do not store or share data.

Another era of study deals with how psychology works
or cultures created collective memory in history. These
studies argue on humans’ abilities to work together and
using language as a mean of collaboration [10, 11]. These
studies are theoretical and do not implement but show how
we, as humans, collaborate and create more by using this
ability.

The creation of the Internet, the cloud of data, and the
Internet of things (I0T) enhance our ability to communicate
wildly and store and retrieve data massively while wearing
communicating devices that can monitor, store, and send
data between devices and through the Internet [12, 13]. The
need to help memory disabilities and IOT open the ability to
create new methods of storing memory and sharing it with
others thus helping and enhancing human capabilities.

In this study, we aim to do so with a new and preliminary
artificial memory prototype.

Our purpose in this study was to outline and demon-
strate a working prototype of such memory device. To this
end, we used simple components which were wired as
depicted in Figure 1(a). A commercially available headset
was used to acquire EEG signals from human subjects, and a
custom-written algorithm was used to extract the level of
attention exhibited by each subject as previously described
[14]. A controller recorded and analyzed the data in real
time, and communicated with a “memory,” based on a
simple RFID tag, which was stuck on the subject’s neck
(Figure 1(b)). Based on their level of attention, the controller
carried out one of four functions: none, write 0, write 1, or
read. In the terms of this demonstration, the controller is a
computer capable of communicating with the RFID tag,
writing bits to it, and displaying its content, e.g., as simple
text. The system here has been implemented using either
commercially available Arduino parts, or a standard laptop
computer.

There are several types of RFID tags [15], namely,
passive, active, and semi active. In our experiment, we used a
passive sticker that can be activated and communicated only
by a near electric field. Moreover, there are different tags and
protocols of near field communication (NFC). Here, we used
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a MIFARE Classic ISO/IEC 14443 Type A standard which
enables 4 KB memory divided to 16 sectors. Every sector
holds 4 blocks of 32 hexadecimal memory digits. The first
block of every sector holds a 6-digit security key (16° op-
tions) that prevents access to the data and prevents reading
or writing if it is incorrect, providing a layer of security to the
communication between the controller and the memory
[16].

Moreover, there are different types of RFID frequencies,
the lower frequency 125/134.2 kHz is useful up to 30 cm and
can create distance security; however, it is less optimal for
longer distances. Frequencies of 868/959 MHz (UHF) or
2400 MHz can give longer distance abilities (3 to 100 m) [17].
In our experiment, we used a 13.56 MHz RFID circuit, which
supports communication at up to 1 m.

2. Methods

2.1. Subjects. For this study, 9 subjects (5 women, 4 men,
ages 18-43, average age 31.7 £10.9 years, 0’ 118.27) were
recruited. We chose controlling attention levels since it is a
parameter that is well researched and tested in EEG data and
already used in other works. There are some hardware and
applications that already use it in different ways like com-
puter games or for research [14, 18, 19]. The reason for the
four ranges is to create different letters and mode in a
language of two digits (0/1) and to differ between read, write,
and no request at all as explained in Figure 1. First, each
subject underwent a short (average ~15min) phase of
training of the system until they were able to achieve specific
attention of one of four levels. These levels were defined
based on a scale of 0-100% attention, and each was used to
code a specific function: 0-29% read from memory, 30-59%
baseline for “no action” and to differ between reading and
writing, 60-79% write “0” to memory, and 80-100% write
“1” to memory. Each subject was allowed to achieve her/his
own speed in switching between attention levels, with an
average of 3.5+ 1.2s spent at each level at the end of the
training phase. Attention levels defining the ends of the scale
were achieved by experiencing passive activity versus a
difficult mathematical problem as previously described
[14, 18, 19]. In the testing phase, the subjects were requested
to read or write 0/1 by achieving the desired level of attention
described above. The study design was reviewed and ap-
proved by the Institutional Review Board at Bar-Ilan Uni-
versity. All methods were performed in accordance with the
relevant guidelines and regulations. Informed consent was
obtained from all subjects prior to participating in this study.

2.2. Hardware and Software. EEG data were acquired using a
Neurosky Mindwave mobile plus kit headset that provides
raw-sampled wave values (128 Hz or 512 Hz, depending on
hardware), signal quality metrics, eSense attention meter
values (0 to 100), and EEG band power values for delta,
theta, alpha, beta, and gamma.

EEG signals were obtained from neurosky mobile al-
gorithm analysis. The Attention meter algorithm (eSens)
indicates the intensity of mental “focus” or “attention.” The
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FIGURE 1: Description of the system used in this study. (a) Schematic representation. An EEG headset was used to directly acquire EEG data
from the subjects. The EEG was processed and classified on a controller connected to the RFID memory circuit. Based on the attention levels
measured from the subject, the controller performed a specific function on the memory: read memory content (0%-29%), no action
(30-59%), write 0 (60-79%), or write 1 (80-100%). (b) The RFID memory chip as a sticker on one of the subjects of this study.

value ranges from 0 to 100. The attention level increases
when a user focuses on a single thought or an external object
and decreases when distracted. Users can observe their
ability to concentrate using the algorithm. In educational
settings, attention to lesson plans can be tracked to measure
their effectiveness in engaging students. In gaming, attention
has been used to create “push” control over virtual objects.

eSense Attention meter indicates the intensity of a user’s
level of mental “focus” or “attention,” such as that which
occurs during intense concentration and directed (but
stable) mental activity. Its value ranges from 0 to 100.
Distractions, wandering thoughts, lack of focus, or anxiety
may lower the Attention meter level. For each different type
of eSense (i.e., Attention and Meditation), the meter value is
reported on a relative eSense scale of 1 to 100. On this scale, a
value between 40 and 60 at any given moment in time is
considered “neutral” and is similar in notion to “baselines”
that are established in conventional brainwave measurement
techniques (though the method for determining a Think-
Gear baseline is proprietary and may differ from other
methods). A value from 60 to 80 is considered “slightly
elevated” and may be interpreted as levels tending to be
higher than normal (levels of Attention or Meditation that
may be higher than normal for a given person). Values from
80 to 100 are considered “elevated,” meaning they are
strongly indicative of heightened levels of that eSense.
Similarly, on the other end of the scale, a value between 20
and 40 indicates “reduced” levels of the eSense, while a value
between 1 and 20 indicates “strongly lowered” levels of the
eSense. These levels may indicate states of distraction, agi-
tation, or abnormality, according to the opposite of each
eSense [20].

The signals were broadcast via Bluetooth to a controller
for processing and classification. We used an Arduino Uno
device connected to BlueSMiRF silver Bluetooth antenna,
which translated the signals from the mindwave mobile
headset device using a custom-written code. To process and
classify the signals, an additional code was written using
Arduino language (based on C/C++). The base program
handles the Attention signals and determines the levels to

classify. An NFC (near field Communication) Reading/
Writing antenna shield (13.56 MHz band) was connected
to the controller. A Mifare classic RFID tag with a 4KB
memory storage was used to store the data written or to
broadcast the data when reading. Arduino and NFC antenna
shields were connected to a DELL 15-4200U (2.3 GHz/4 GB
RAM) laptop with windows 7 operating system which was
used as display monitor.

3. Results

Most subjects were capable of achieving desired levels of
attention to be able to perform reading and writing 0/1 tasks
and in a reproducible manner (Figure 2(a)). Subjects typi-
cally returned to baseline after 1 or 2 writing actions (either
write 0 or write 1) and were able to maintain a maximum of 3
writing actions without returning to baseline (Figure 2(b)).
Analysis of the transitions between attention levels revealed
that all subjects were capable of switching rapidly between
levels, achieving a velocity of up to ~80% per second, but
these transitions became slower with time (Figure 2(c)),
eventually reaching a maximum velocity of 5% per second
after 60 seconds of writing onto the memory. Interestingly,
the ability to maintain transition efficiency did not correlate
with subject age, as hypothesized at an early stage of this
study, bolstering the role of training in subject performance
(Figure 2(d)). Only 25% of the messages were written
without incorrect bits, with most messages having 1 in-
correct bit (Figure 2(e)). No bias to a specific error bit (0 or
1) was found despite the unequal allocation of attention
levels to the different bits.

We used the system to investigate the possibility for
social communication between individuals, mediated by
writing to and reading from neighboring memories. Social
communication presents a prevalent framework of com-
munication (e.g., social networks accessed via mobile de-
vices), which we aimed to emulate using our system. Our
basic purpose was to show that the system not only supports
common modes of social networking, but also allows new
concepts for using memory.
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F1GURE 2: Performance of the thought-operated memory device. (a) Performance histograms of 3 representative subjects, summarizing their
ability to achieve and maintain a specific attention level during 10 writing and reading tasks (green =read, blue =no action, orange = write 0,
yellow = write 1); vertical coordinate, Frequency, indicates the number of times a subject reached a curtain attention level; horizontal
coordinate, Attention, indicates the level of attention reached divided to sections (4-11, 12-19, 20-28, 29-36, 37-44, 45-52, 53-60, 61-68,
69-76, 77-84, 85-92, 93-100). (b) A representative memory task. Here, the subject was asked to write onto her memory the string
“11010101” and then read it. This specific task was carried out without errors (25% of all tasks were error-free). (c) Velocity analysis from 3
representative short tasks, showing the transition between attention levels slowing down with time. (d) A plot of mean velocity vs. subject
age, showing no correlation between these parameters. (e) Analysis of the abundance of errors in writing tasks, showing that ~25% of the

tasks were error-free, and ~33% of the tasks had 1 incorrect bit.

In the first series of tests described above, the basic mode
of operation of this device was studied: subject A writes to A
(same subject) > A reads from A (Figure 3(a)). Sub-
sequently, two subjects (generically termed Bob and Mary)
used the system to write a message from Bob to Mary, by
having Bob write to Mary’s memory and Mary reading from
her Memory (Figure 3(b)), and to emulate “mind reading,”
by having Bob write to his own memory and Mary reading
from Bob’s memory (Figure 3(c)). These tests were handled
and discussed to emphasize the potential of this work not
only to store and retrieve self-memory data but in order to
share memories between subjects as well. Bob reading and
writing his own memory is a self-memory method. Mary
reading from Bob’s memory enables memory sharing from
Bob’s memory to Mary’s.

Other modes that the system can support, although not
investigated here, are sharing of memories between subjects
(Figure 3(d)) or from a single person to a public
(Figure 3(e)), two modes that are enabled in typical social
networks today; however the system also supports the
outsourcing of another person’s memory (Figure 3(e)),
which is not a standard social networking mode. Further
designs are now being tested in our laboratory that im-
plement different compartments, accessible by authorized
individuals other than the one to whom the memory is
linked, which support private allocation of information for
memory outsourcing.

Although the specifications were defined arbitrarily in
this system (e.g., attention levels, free pace and duration
between actions), similar measurements could theoretically
be made in other configurations. However, several principles
were implemented in this particular design. First, the at-
tention levels were nearly evenly distributed across the
complete scale. Second, the writing actions were clustered
together to enable rapid transition between them. Third,
writing and reading actions were separated by the baseline

range. Our findings show that the first and third principles
were important in achieving reproducibility and a flowing
writing uninterrupted by reading, but the second principle
was less successful in ensuring that writing was not inter-
rupted by baseline phases.

4. Discussion

The prototype described here is extremely preliminary in the
sense that it is motivated by seamless embedding of memory
without being seamless in itself. However, this is a technical
barrier that is being tackled, or has been tackled successfully
in some cases. RFID circuits such as the one used here are
completely implantable [15, 21-23], and their interference
with existing devices such as pacemakers has been studied
[22]. The portability of other components of the system is
being improved towards complete implants, or at least
wearable or in patch form. EEG measurements themselves
could be made using sensor pads or implantable sensors
[24-27], eliminating the need for a carried EEG headset.
Display of the content that is retrieved from the memory
could be done by means of contact lens [28, 29], or, less
directly, on glasses such as Google glass. Eventually, a system
similar to the one described here could be entirely im-
plantable. Moreover, the capacity of 4 KB implemented here
could certainly be increased in future designs.

The specific method of writing and reading from the
device could be improved. Attention is a parameter that can
be readily extracted from raw EEG signals [14, 18, 19], and
our observations show that trained subjects could switch
between desired levels of attention sufliciently for the system
to recognize the appropriate function to be carried out.
However, most (~75%) messages contained at least 1 in-
correct bit. This suggests that either there is a better pa-
rameter to guide the system by or that the short training
provided in this study was not sufficient. Further
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FIGURE 3: Social communication emulated with the memory device. (a—c) Three operation modes, top panels show schematic representation
of the network, with histogram overlays below summarizing the reading and writing (both 0 and 1) performance achieved by the subjects
during 10 tasks. Black rectangles represent memory devices. Arrow directions represent writing (arrow leading from person to device) or
reading (arrow leading from device to person). (a) The basic mode of operation where same subject writes on his/her own memory and reads
from it. (b) Two subjects, nicknamed Bob and Mary, emulating social communication. Bob writes onto Mary’s device, and Mary reads from
her device. (c) Bob writes onto his own device, and Mary reads this content from her device. (d-f) Potential modes of social usage of the
memory device described here. (d) Complete sharing of memories between two subjects; (e) sharing memories from a person’s memory to a
public; and (f) a public authorized to use another person’s memory by means of outsourcing.

experiments are underway to investigate additional pa- Implantable memory devices raise their own issues of
rameters within EEG data that could be used and to evaluate ~ privacy, possibilities for unauthorized reading, and in-
the potential precision of their utilization. advertent manipulation. Physical proximity, as required in
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the described prototype, is an important protective factor
but limits the social applications of such devices. To enable
the full scale of uses, implantable memory devices should be
designed with specific layers of security addressing these
special challenges, such as interference from adjacent devices
and other implants and potential attacks made against the
person through the implanted device.

Comparing this work with other artificial memory de-
vices introduced earlier shows the potential of a noninvasive
prototype that can be used to store and share data between 2
or more persons and to use one mind or more as a “cloud”
similar to sharing thoughts and memories in social networks
or the Internet today. The ability to communicate in a
standard network like NFC described here may offer a
connection to other devices and may correlate to other
languages in future work. In contrast, converting this
prototype to an invasive one as other introduced implants
may give other abilities of extending human memory and
brain capacity capabilities that were not found in today’s
implants [30].
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