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Abstract

The explosive growth in semiconductor integrated circuits was made possible in large part

by design automation software. The design and/or analysis of synthetic and natural circuits

in living cells could be made more scalable using the same approach. We present a compiler

which converts standard representations of chemical reaction networks and circuits into

hardware configurations that can be used to simulate the network on specialized cyto-

morphic hardware. The compiler also creates circuit–level models of the target configuration,

which enhances the versatility of the compiler and enables the validation of its functionality

without physical experimentation with the hardware. We show that this compiler can trans-

late networks comprised of mass–action kinetics, classic enzyme kinetics (Michaelis–Men-

ten, Briggs–Haldane, and Botts–Morales formalisms), and genetic repressor kinetics,

thereby allowing a large class of models to be transformed into a hardware representation.

Rule–based models are particularly well–suited to this approach, as we demonstrate by

compiling a MAP kinase model. Development of specialized hardware and software for sim-

ulating biological networks has the potential to enable the simulation of larger kinetic models

than are currently feasible or allow the parallel simulation of many smaller networks with bet-

ter performance than current simulation software.

Author summary

We present a “silicon compiler” that is capable of translating biochemical models encoded

in the SBML standard into specialized analog cytomorphic hardware and transfer func-

tion–level simulations of such hardware. We show how the compiler and hardware

address challenges in analog computing: 1) We ensure that the integration of errors due

to the mismatch between analog circuit parameters does not become infinite over time
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but always remains finite via the use of total variables (the solution of the “divergence

problem”); 2) We describe the compilation process through a series of examples using

building blocks of biological networks, and show the results of compiling two SBML

models from the literature: the Elowitz repressilator model and a rule–based model of a

MAP kinase cascade. Source code for the compiler is available at https://doi.org/10.5281/

zenodo.3948393.

Introduction

Digital logic circuits have grown considerably in complexity since the inception of micropro-

cessors. This growth was made possible in large part by technologies that automate the low–

level record keeping, database management, routing, and placement of circuit components

[1]. Digital system designers have long used hardware description languages such as VHDL

(Very High Speed Integrated Circuit Hardware Description Language) and Verilog to design

the logic operations of digital circuits. However, many important computing problems can

benefit from analog, rather than digital, circuit design. Important examples arise from the field

of biomimicry, including neuromorphic chips, which emulate biological neurons [2], and

cytomorphic chips, which emulate the behavior of cellular metabolic, signaling, and genetic

pathways [3, 5–11]. We have previously described programmable cytomorphic chips capable

of emulating a wide range of biological reaction networks [3, 6, 8, 9, 11]. Carefully tuned cyto-

morphic chip–based simulations of stochastic reaction networks can achieve up to a 30,000–

fold speedup over Matlab simulations [11] and a 700–fold improvement over COPASI [12, 13]

on the current (prototype) hardware [6, 8, 9, 11].

However, configuring the chip for a given network currently requires manual intervention,

which is a tedious process that must be repeated for every new biological pathway. Whereas

many design automation tools exist for designing digital hardware, tools for the design and

modeling of special–purpose analog circuits are comparatively rare. Circuit–simulation tools

have been applied to neural biomimetic [14] and prosthetics [15, 16] devices and for simulat-

ing neuromorphic chips [17]. VLSI–inspired methods have been used in tools such as Cello

[18] and iBioSim [19, 20], but we are unaware of any existing system which transforms a high–

level biological model (a chemical reaction network) into a low–level representation for run-

ning on programmable analog hardware. We present a cytomorphic compiler—a software

tool which takes as input biological pathway models encoded in the Systems Biology Markup

Language (SBML) format [21] and generates a cytomorphic chip configuration as output. Our

compiler provides a bridge from existing systems biology standards to cytomorphic hardware,

thereby increasing the versatility of special–purpose biomimetic hardware and bringing biomi-

metic computing closer to practical actualization.

Background

Models of biological networks play important roles in our understanding of disease biology

[22, 23], cancer [24], drug discovery [25], metabolic regulation [26], and many other subjects.

However, simulation of large kinetic network models continues to be a major challenge,

despite recent progress in high–performance simulation software [27–29]. The growth in size

and complexity of biological pathway models has exceeded the growth of simulation hardware

and software. In one study, a whole–cellM. genitaliummodel required 10 hours on a 128 node

Linux cluster in order to simulate a single cell cycle [30]. Large–scale examples of kinetic simu-

lations also arise in genome–scale kinetic models [31, 32]. Common simulation bottlenecks
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arise in parameter fitting and calibration of models, which require many simulations [33].

Thus, improvements in simulation performance are necessary for better and more compre-

hensive model fitting and to enable larger, more robust models.

In many real–world computing tasks, the relevant metric for performance is not the total

computing power of the system, but rather the computations–per–watt. A compelling example

is the adoption of specialized hardware designed for Bitcoin mining, which can easily exceed

40 times the performance–per–watt of a graphics processing unit (GPU) [34]. Cytomorphic

chips operate at tens of milliwatts, yet in many cases still perform equal or faster simulations

than desktop computers operating at tens of watts, representing a more than 1000–fold

improvement in performance–per–watt for general networks [3, 6, 8, 9, 11]. This efficiency

improvement may be used to package more units onto a die, thereby allowing more simula-

tions to run in parallel. In addition, our current prototype hardware, based on a low–yield

manufacturing process, is able to achieve up to a 30,000–fold speedup over Matlab and a 700–

fold improvement over COPASI for stochastic reaction networks [6].

The present work focuses on generalized, digitally–programmable cytomorphic hardware

described previously [3, 6, 8, 9, 11]. The hardware maps the thermodynamic laws that govern

stochastic and deterministic molecular flux in chemical reactions to stochastic and determin-

istic electrical current flux in electronic transistors that also obey these same laws in a mathe-

matically exact fashion. Thus, all biological model variables, including species concentrations,

parameters, and reaction rates are represented in the hardware by electric current values.

However, a naïve approach at solving ODEs in this way can lead to infinite integration errors

due to parameter mismatches in analog circuits, also manifest in numerical integration errors

on digital computers [6, 8, 9, 11] (it is hard to easily match analog parameters to more than 10

bits of precision on digitally programmable analog cytomorphic chips whereas digital compo-

nents can routinely operate at 64–bit precision, even though they are modeling biological cir-

cuits that only operate at 2–5 bits of precision [4, 8, 9, 11]).

Key challenges

A major challenge in simulating biochemical models is ensuring flux symmetry (i.e., when spe-

cies A is converted to species B, the rate of production of B should be exactly the rate of con-

sumption of A). Consider the situation shown in Fig 1. This figure depicts a kinase cascade the

active form of kinase A, represented as AP, which in–turn phosphorylates kinase B, with their

corresponding rates of change:

dA
dt

¼ � kfA
A

1þ A
þ krAA

P

dAP

dt
¼ k0fA

A
1þ A

� k0rAA
P

dB
dt
¼ � kfBAP

B
1þ B

þ krBB
P

dBP

dt
¼ k0fB

B
1þ B

� k0rBB
P

ð1Þ

Since the total amount of the kinase A is constant, the rate of change of A+ AP should be

zero. However, consider the case where perturbations are added to the kinetic constants for

production of of AP (letting k0fA ¼ kfA þ a and k0rA ¼ krA � a) and BP (k0fA ¼ kfA þ b and

k0rA ¼ krA � b). It can be seen from these equations that this will only occur if either α and β
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are zero, or A
AP ¼

b

a
. However, the steady state values of A and AP are already fixed by the equi-

librium ratio of the first step in the cascade. Therefore, for general perturbations α and β the

quantity A + AP will change over time, violating conservation laws. In this example, we consid-

ered a kinase cascade because it shows how the divergence problem clearly violates conserva-

tion laws, but this phenomenon actually applies to all networks that reach a steady state,

regardless of whether conserved quantities exist in the network or not.

To address this problem, the cytomorphic chip is designed to operate on conserved quanti-

ties of the system, which are mapped to conservation laws such as Kirchhoff’s current law in

Fig 1. Demonstration of the divergence problem. In the phosphorylation cascade in (A), the quantities A + AP and B + BP should be constant in time.

However, letting k0fA ¼ kfA þ a and k0rA ¼ krA � a results in the loss of this conservation relationship, as shown by the value of AP in the numerical

integration of this ODE system (B), which exceeds the total starting amount of A + AP = 1. This phenomenon also applies to networks that do not have

conserved quantities, as any steady–state value will tend to drift over time. Using the total quantity representation of Eq (2), this problem can be

eliminated (C).

https://doi.org/10.1371/journal.pcbi.1008063.g001
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electronic circuits, a law that is always precisely obeyed [6, 8, 9, 11]. In the example in Fig 1,

the conserved quantities are A + AP = Atot and B + BP = Btot. The system can be described

using a pair of differential equations corresponding to AP and BP:

dAP

dt
¼ k0fA

Atot � AP

1þ ðAtot � APÞ
� k0rAA

P

dBP

dt
¼ k0fB

Btot � BP

1þ ðBtot � BPÞ
� k0rBB

P

A ¼ Atot � AP

A ¼ Btot � BP

ð2Þ

Chip layout

Here, we briefly review the layout and specifications of the cytomorphic chip. A more com-

plete description of the hardware can be found in [6, 8, 9, 11].

Fig 2 depicts the layout of the cytomorphic chip. The chip is composed of 20 blocks, each

designed to solve a single biochemical reaction of the form:

Aþ BÐ C þ D

where the rate of this reaction is kf � A � B − kr � C � D. In practice, modelers are accustomed to

working with more complex reactions with lumped kinetic expressions such as Michaelis–

Menten kinetics. However, physical processes at the molecular level invariably fall into this

binary mass–action category. In protein complex formation, subunits are added one–at–a–

time, and in enzyme catalysis, substrates bind the enzyme in an intermediate state. We will

show later how lumped kinetic expressions can be used with the hardware.

Fig 2. Layout of the cytomorphic chip. The chip is composed of 20 blocks of reaction units (A). Each block accepts as input total

quantities for reactants Atot and Btot and outputs the total amount of product Ctot, as well as any remaining “free” reactant Afree and

Bfree which has not yet been converted into product. These current–based inputs and outputs are converted into digital signals before

being sent outside the chip in order to prevent signal degradation.

https://doi.org/10.1371/journal.pcbi.1008063.g002
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Methods

Fig 3 shows a high–level overview of the compiler. The compiler accepts as input a SBML [35]

model parsed using JSBML [35, 36], or an Antimony file [37], which is a human–readable for-

mat directly interconvertible with SBML. SBML containing arbitrary rate laws cannot be run

on the cytomorphic hardware. We have devised a method of “expanding” lumped kinetic

expressions such as Michaelis–Menten, Botts–Morales, and repressor binding kinetics that

allows networks using these formulations to be compiled onto the hardware.

The output of the cytomorphic compiler is two files: configuration of the shift registers

(which specify the parameters of each block), and the SRAM (which specifies connections

between blocks). We cover each of these file types below.

Fig 3. A flow diagram for the cytomorphic compiler. The compiler processes the input SBML model to “expand” (see below) lumped kinetic expressions into

constituent bimolecular elementary processes. Elementary reactions are then mapped to blocks on the chip (sometimes to multiple blocks, as in fan–out

reactions described below). Each block is assigned parameter values based on the forward and reverse rate constants of its respective reaction, and potentially

degradation of the product. Blocks are connected together based on the topology of the reaction network, but care must be taken to maintain a single “total”

value for each species, as described in the “Network Building Blocks” section. The final output of the compiler is a configuration for the shift registers (which

store parameter values) for all used blocks and SRAM (which connects block input and output ports).

https://doi.org/10.1371/journal.pcbi.1008063.g003
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Terminology & validation methods

Table 1 lists definitions for terminology used in this article.

In addition to producing programming files for the cytomorphic hardware, the cyto-

morphic compiler produces two other types of output that can be used to validate the com-

piler: (1) A Simulink model containing the blocks, parameters, and connections produced by

the compiler, or (2) a differential equation system called a block simulation based on the block

diagram of Fig 4. Either of these outputs can be used to simulate the circuit behavior over

time, similar to the SPICE analog circuit simulator [38] used in circuit design, except that the

simulations are transfer function–based (i.e. they are based on the block diagram of Fig 4,

which uses gains, multipliers, and summation blocks for each stage instead of individual circuit

components). In fact, these two formats are numerically equivalent, but serve different use

cases. We use Simulink diagrams to visualize the block wiring, whereas we use block simula-

tions to plot and compare compiler output in Jupyter notebooks. In the case of mass–action

networks, the block simulation should correspond exactly to the SBML simulation. However,

the underlying differential equations in the block simulation are based on total quantities,

whereas SBML uses free quantities.

When evaluating the performance of the cytmorphic chip against conventional software

simulation, it should be noted that some practical limitations exist in the current prototype of

the hardware, which makes exact quantitative comparison with software simulations challeng-

ing. These include manufacturing variations in resistance / capacitance, the capacitance of the

block integrator, analog–to–digital converter (ADC) clock speed and transistor mismatch. For

variations that can be measured, we calibrate the compiler to adjust the parameters based on

the magnitude of the variation. As described in detail later and as shown in S7 Fig, we can

compensate for most of the output variation between the expected output and the output gen-

erated by the chip by adjusting the internal gains.

Despite the lower precision of analog simulations as compared to software simulation, it is

often sufficient for running biological simulations. For example, Proctor et al. present simula-

tions of the two stochastic models of the p53 signalling pathway [39]. The authors focus on

whether their proposed models predict 1) the “existence” of sustained oscillations, 2) the shape

of oscillations, 3) the effect of parameter changes or perturbations, and 4) the effect of stochas-

ticity. In doing so, less attention is paid to the precise values of oscillation period, molecular

Table 1. Terminology used in this article.

Term Description

Cytomorphic

Chip

A single chip with 20 reaction blocks.

Antimony A human–readable and writable representation of SBML.

Block simulation A circuit–level simulation (performed on a computer) of a specific configuration of the

cytomorphic chip (including parameters and connections). This simulation is based on the

ODE model of Fig 4, which shows the transfer function for every component in the block. A

block simulation can be performed using either Simulink or libroadrunner [27]. In either case,

the files to run the block simulation are generated by the compiler.

Kinetic

expansion

Classic enzyme kinetics like the Michaelis–Menten rate law are based on lumped processes. A

Michaelis–Menten process represents substrate binding and catalysis in one step but these are

mechanistically two separate processes. The cytomorphic compiler breaks these lumped

expressions down into their constituent components, using lumped constants such as the

Michaelis constant KM to determine rate constants.

Archetype We use this term to denote the canonical form of a rate law expression such as the Michaelis–

Menten formula
VmaxS
KMþS

. See the section “Matching Algorithm for Lumped Kinetics” below.

https://doi.org/10.1371/journal.pcbi.1008063.t001
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concentrations, or parameters, partly because many of them are highly variable or not known.

It is also because biological networks are often quite robust to variations in parameters.

Shift registers & block parameters

For the default configuration of the FF_EN_sw switches in Fig 4, it is apparent that the rate of

production of the block’s main product, C, is given by:

dC
dt

¼ kr ðAtot � Ctot � AFB ENð Þ
Btot � Ctot � BFB EN

KDfw

 !n

þ Cprod

�
CfreeDfree

KDrv

� ��

� kdegðCfreeðratCÞ þ CdegÞ

ð3Þ

Fig 4. Simplified conceptual block diagram of a reaction unit (see [9, 11] for a detailed circuit–level diagram). The

chip has a total of 20 reaction units. Each reaction units block accepts as input total quantities for reactants Atot and Btot
and outputs the total amount of product Ctot, as well as any remaining “free” reactant Afree and Bfree which has not yet

been converted into product. These current–based inputs and outputs are converted into digital signals before being

sent outside the chip in order to prevent signal degradation.

https://doi.org/10.1371/journal.pcbi.1008063.g004
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The forward and reverse rates for each block are determined by a combination of kr and

either KDfw or KDrv. Examining the equation shows that the forward and reverse rate constants

are given by
kr
KDfw

and
kr
KDrv

respectively. Thus, the forward and reverse dissociation constants can

be used to tune the relative forward and reverse rates, whereas the overall reaction rate of all

blocks in the network can be tuned by changing the kr value. Also, any block that produces a

species can also serve as a degradation reaction by utilizing ratC.

SRAM & network building blocks

The chip’s SRAM is used to program connections between the input and output ports of the

blocks. While each protein block is designed to simulate a fundamental second-order bio-

chemical reaction, we can capture more complex dynamics by connecting several blocks

together. Since it is instructive to visualize how total variables affect block connection in non-

trivial ways, we demonstrate topologies involving multiple blocks that simulate a 3-stage feed-

forward network cascade and a “fan-out” reaction. These reactions are chosen because they

form the basis for most larger networks and exhibit several recurrent wiring topology that

appear in more complex building blocks. These building blocks are selected from elementary

types of subnetworks—they are not related to motifs (which are defined by statistical over–

representation in real networks [40, 41]). Instead, building blocks are comprised of simple sub-

networks such as “fan–in” and “fan–out” configurations, where a single species is produced or

consumed by multiple reactions respectively. For a more in-depth discussion on these circuit

networks, we refer interested readers to previous publications [8, 9].

Fig 5 is a graphical abstraction of a single protein block. The currents flowing into the input

ports represent the concentration of reactants in a forward reaction. The currents flowing out

of the output ports represent the concentration of products formed from the reaction. Since

each reactant and product may participate in several downstream reactions, the concentration

currents for Afree, Bfree and Ctot are copied using current mirrors. In what follows, we

use species names S, T, etc. to distinguish species in the network from the port names on the

block (A, B, C, and D).

To simulate a 3-stage feed–forward biochemical cascade, we connect three protein blocks

to simulate a single irreversible production reaction, two reversible substitution reactions, and

an irreversible degradation steps as shown in Fig 6. We need just three protein blocks instead

of four to simulate these reactions because each block is designed to simulate both a second

order reaction and product degradation. In this case, block 3 is wired to simulate both the sub-

stitution reaction between T and U and the degradation of U. To represent the production of S

and its conversion to T, we connect Ctot of block 1 to Atot of block 2. This connection is

repeated between block 2 and 3 for the substitution reaction of T to U. To simulate the reverse

reaction fluxes, we connect output ports that represent the concentration of free products to

input ports Cfree to produce the right concentration of free species. Finally, to account for

the decrease in total variable of species S and T as U degrades, we backpropagate the degrada-

tion flux of U upstream by connect ports rv_up from block 3 and 2 to ports Cdeg from

block 2 and 1 respectively. These design principles hold true for larger feed-forward circuit

cascade as well.

In the “fan–out” reaction shown in S1 Fig, two protein blocks were used to model the two

reversible reactions. Similar to the feed-forward cascade, ports Cfree on block 1 and 2 are

wired to ports Ctot so that the free concentration of U and W can be used to simulate the cor-

rect reverse flux. Since there is no degradation reaction, we do not need to backpropagate any

loss of product via rv_up. Instead, to calculate the unbound concentration of S, we simply

subtract U and W from input which is achieved by closing an internal use-it-and-lose-it
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feedback loop in block 1 and adding a negative current Ctot of block 2 respectively. We have

included two additional examples for a dissociation reaction and a “fan–in” reaction in the

supporting information (S2 and S3 Figs).

Lumped kinetics

The term “lumped kinetics,” as used here, refers to any kind of process in a model that repre-

sents multiple elementary steps, where an elementary step is defined as a bimolecular mass

action reaction (e.g. substrate binding / unbinding, or the catalytic step in enzyme catalysis). A

Fig 5. Input and output ports for the cytomorphic block. The two main inputs Atot and Btot are used to compute the

forward rate. Internally, the block subtracts its own Ctot value from Atot and Btot to compute Afree and Bfree (see Fig 2B).

The chip’s main output is Ctot. If there is another reaction that consumes C, then Ctot should be connected to the Atot or

Btot input of the consumer block. Otherwise, Ctot should be connected to the block’s own Cfree input to allow

calculating the reverse rate. If the reaction is reversible,Dfree may also receive input from another block or be simply

wired to unity in the case of a single product C. Other ports describing the blocks forward and reverse rates are used in

in certain building blocks described below. The chip has 2 copies of Afree, Bfree, fw_up, rv_up, and 5 copies of

Ctot (2 negative and 3 positive). In addition, the chip also copies the values of its Cfree andDfree inputs to the

Cfree_cp and Dfree_cp output ports respectively. These copies are used to route the input values to additional

blocks in fan–in configurations (see below).

https://doi.org/10.1371/journal.pcbi.1008063.g005
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Fig 6. A three–step feed–forward network. This network is comprised of a linear chain of unimolecular mass–action processes (A). To convert this network to a

wiring, we designate blocks 1–3 as the main produces of species S, T, andU respectively. Block 1 produces S, hence its main output port Ctot is connected to the Atot
input of block 2 and so on. This signal is summed with the initial value of T (if non–zero). Since the cytomorphic chip uses currents for computation, summing signals is

achieved simply by connecting multiple signals to the same input port. The last block in the chain, which producesU, also serves as a degradation reactionU � !
kd ⌀. The

block has its ratC parameter set to the degradation rate kd. Additionally, the amount of U degraded must also be subtracted from the total values of S and T. The

rv_up port computes the total loss in C for each block and is propagated to the block immediately upstream by connecting to the Cdeg port. The Antimony/SBML

model for this network (B) is converted to a block simulation that gives identical output to the SBML simulation (C). Since this is a mass–action network, numerical

differences can be made arbitrarily small by adjusting integrator tolerances. All connections created by the compiler are shown in the wiring diagram. More info is

available at https://github.com/cytocomp1/cytocomp/tree/master/case-studies.

https://doi.org/10.1371/journal.pcbi.1008063.g006
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common instance of this is enzyme kinetics: E + SÐ ES � ! E + P, which represents an

enzyme E that converts substrate S into product P. These reactions occur at the following rates:

Eþ SÐ ES; kf E � S � krES

ES � ! Eþ P; kcatES
ð4Þ

The individual forward and reverse rate constants of the binding step are difficult to mea-

sure directly, so these two processes are usually condensed into a single process by assuming

either rapid equilibrium of the binding process (which leads to the well–known Michaelis–

Menten kinetics [42]) or by assuming the enzyme–substrate complex is at steady–state

(Briggs–Haldane kinetics [43]). In either case, the rate law for the resulting lumped process

can be expressed as:

kcatE
S

KM þ S

where KM ¼
krþkcat
kf

for Briggs–Haldane kinetics or kr/kf for Michaelis–Menten kinetics.

Our general approach to simulating these lumped expressions on the cytomorphic chip is

to break them down into the constituent steps of Eq 4. However, this re-creates the problem of

determining the forward and reverse rate constants kf and kr respectively. From the lumped

expression, we can determine kcat and KM. However, we need one additional constraint to

specify both kf and kr. This constraint comes from the upper limit of the chip’s simulation

speed.

Consider the block diagram of a reaction unit containing a negative feedback loop around

the part of the circuit that processes A as highlighted in Fig 7. In designing electronic amplifi-

ers, it is common to account for the so–called phase margin. In an amplifier circuit as well as

in the highlighted feedback loop, there exists the possibility that the output signal can be 180˚

out–of–phase with the input. Since the feedback is negative, the signal will be inverted and

cause constructive interference with the input, leading to instability. Furthermore, this feed-

back loop also possesses a parasitic pole due to the current mirror that produces the Afree sig-

nal. Taken together, these conditions lead to the stability rule [11]:

Btot
KDfw

r
C
<
Afree
Cpar

where Cpar is the parasitic capacitance at the gate node of the Afree current mirror, C = 0.1μF is

the capacitance of the integrator capacitor, and r is the overall rate of the block (used as a scal-

ing factor for both the forward and reverse rates). In the preceding expression, we assumed

that Afree< Btot. The roles of A and B can be reversed if this is not the case. This equation can

be simplified to:

kf <
Afree
Btot

C
Cpar
¼ r ð5Þ

This gives an upper bound for the value of kf based on the global value C
Cpar

and the local

value
Afree
Btot

which depends on the reaction and simulation conditions. These two values can be

condensed into a single constant ρ, called as the margin, which in general varies per reaction.

We will encounter several more examples of lumped expressions that expand into elementary

processes that occur at rate ρ. In practice, we can assume a reasonable lower bound for ρ and
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refine the estimate after simulating the network. If we assume Cpar = 1pF, this gives an upper–

bound of 105 Afree
Btot

. The value of
Afree
Btot

is model and simulation–dependent, but by assuming a rea-

sonable upper bound of 100, we obtain ρ = 1000. This value can be used to run digital simula-

tions for a given hardware configuration which in turn can be used to refine the value ρ.

Returning to enzyme kinetics, the higher the value we choose for kf (and hence kr), the

more rapid the enzyme–substrate binding. Since Michaelis–Menten kinetics are derived based

on an equilibrium assumption, a larger kf will tend to make this assumption more valid. There-

fore, choosing kf � min Afree
Btot

� �
C
Cpar
¼ r yields the best approximation to Michaelis–Menten

kinetics without causing instability.

Fig 8 shows the result of plotting the dynamics of the elementary binding / catalysis network

versus the original Michaelis–Menten lumped single–process network for various values of ρ.

It is worth observing that, from a design standpoint, our compiler uses the two–step net-

work to “approximate” models with lumped processes such as Michaelis–Menten kinetics.

However, from a mechanistic standpoint, Michaelis–Menten kinetics represents an approxi-

mation of the corresponding physical two–step process. In effect, this line of reasoning has

taken us full-circle from a mechanistic representation to a lumped process and back again.

However, for the purpose of practical modeling, this is a necessary detour, since it is feasible to

measure the KM and Vmax values for enzymes, but in general it is not possible to measure bind-

ing apart from catalysis (i.e. the parameters kf, kr, and kcat).

Fig 7. Negative feedback around the circuit for A.

https://doi.org/10.1371/journal.pcbi.1008063.g007
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The meaning of this observation is that while elementary, mass–action processes are biolog-

ically accurate, they are not feasible from a modeling standpoint. Thus, modelers should con-

tinue to use kinetics that can be parameterized with quantifiable parameters, while specialized

hardware should continue to use elementary processes that are conducive to efficient imple-

mentation. Breaking–down these high–level expressions into low–level expressions, what we

hereafter refer to as “expansion”, is one of the main functions of the cytomorphic compiler.

A limitation of this “expansion” method is that when the substrate is not in excess of the

enzyme (i.e. E� S does not hold), then there is significant deviation between the two–step

mechanistic process and the idealized Michaelis–Menten approximation (the mechanistic pro-

cess will tend to lag behind the lumped process), regardless of the value of ρ. However, Michae-

lis–Menten kinetics also relies on the assumption that E� S, and thus would be a physically

inaccurate modeling assumption in this case.

Matching algorithm for lumped kinetics

In order to successfully expand lumped kinetic expressions into constituent components, it

is necessary to (1) identify, from the rate law, what type of lumped expression is represented,

and (2), obtain the values of all lumped constants and use these to compute the individual rate

constants.

One approach to solving (1) would be to simpify and canonicalize the rate law expression

and compare this simplified version with each known kinetic expression on a tree–basis (we

refer to canonical expressions like the Michaelis–Menten formula
VmaxS
KMþS

as “archetypes”). How-

ever, this approach is sensitive to different factorizations of the expression and requires that all

Fig 8. Different margin values and their respective simulations. In these simulations, E = 1, Sinitial = 10, kcat = 1, and KM = 10. For the elementary two–process network,

the reverse binding rate is calculated automatically by the compiler using the supplied value of ρ as kr = ρKM − kcat if
kcat
kr
� 1 or kr = ρKM otherwise.

https://doi.org/10.1371/journal.pcbi.1008063.g008
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archetypes also be in canonical form. Instead, we have opted to use an algorithm for determin-

ing the equivalence of expressions based on hash–coding [44].

In 1971, William Martin observed that, by assigning numeric values to symbols appearing

in a mathematical expression, an equivalence class can be computed for a given expression by

simply evaluating it on a finite field. Two mathematical expressions can thus be evaluated for

equivalence by simply comparing their “hash codes,” so–constructed. Based on this observa-

tion, we have constructed an algorithm that operates on a database of common rate–laws and

their “hash codes.” We call these common rate–law expressions archetypes, and pre–compute

their hash codes according to the algorithm below. We then compute these pre–computed val-

ues to input expressions to determine which type of lumped kinetics a reaction employs. The

algorithm is split into two stages (lines 1–12 and 14–25 in Fig 9 respectively).

The first stage accepts as input an SBML kinetic law expression in the form of an abstract

syntax tree (AST). The leaves of this tree may be either the substrate / product species that par-

ticipate in the reaction, or symbols that refer to numerical constants (such as KM). The algo-

rithm assigns a different prime number to each symbol in the AST if it is a substrate / product

of the reaction (Fig 9 line 7) and unity otherwise. Symbols that are assigned relatively prime

values may be used in finite field expressions (such as addition, multiplication, etc.) and the

results will still contain relatively prime factors, which helps to distinguish the hash code values

after many operations.

On the other hand, when constructing archetypes, any symbolic constant (such as KM) can

in principal contain any value and any symbolic name in a given SBML model. Hence, we

Fig 9. Pseudocode for the Martin matching algorithm.

https://doi.org/10.1371/journal.pcbi.1008063.g009
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assign a value of 1 to these constants. Hence, we must also assign a value of 1 to all constants in

the matching phase.

The first stage then computes the hash code of the expression to the known values for all

archetypes in the database according to Martin’s algorithm (Fig 9 line 9). The output of the

first stage is the matched archetype along with the positions of the substrates and products in

the expression (Fig 9 line 12).

Once the input expression has been mapped to a valid archetype, we can proceed to map

kinetic constants within the expression (for example, to sort out which symbols in the input

expression correspond to KM versus Vmax). For each constant, we assign a numeric value, set-

ting all other constants to unity (Fig 9). The assigned constant, as well as all substrates and

products, must be relatively prime. We then iterate through all SBML parameters (Fig 9 line

21) and substitute the same prime number for the value of this parameter in the input expres-

sion 9 line 23). If the computed hash of the input expression matches the archetype, the param-

eter p in the input expression corresponds to the symbol s in the archetype and we identify the

role of p as being either KM, Vmax, etc. in the returned datastructure.

It is evident from Fig 9 that the complexity of the first stage of the matching algorithm is

O(NsNa), where Ns is the number of symbols in the input expression, and Na is the number of

archetypes in the database. Fortunately, most kinetic models make use of a limited repertoire

of kinetic laws, such as Michaelis–Menten, Botts–Morales, and Monod–Wyman–Changeaux

kinetics. This limits both Ns and Na in most practical models.

The second stage of the algorithm has O(NpNa) complexity, where Np is the number of

symbols in the input expression which map to SBML parameters, and Na is the number of

symbols in the archetype a. For the same reasons as above, these are also capped in most prac-

tical models.

Results and discussion

Gene regulatory kinetics

Another major type of lumped kinetics occurs in models of gene regulatory networks. Con-

sider the LacI repressor, which controls expression of the lac operon (lacO) in bacteria. The

LacI repressor is a homotetramer, but might be better described as a dimer of dimers. Each

dimer subunit contains a DNA–binding site for lacO. The repressor binds to lacO as a two–

step process. Binding of allolactose to LacI causes the repressor to enter an inactive state P

(protruded) with decreased overall affinity, releasing the operator site. Using lumped kinetics,

the transcription rate of the operator is given by [45, 46]:

n ¼ a0 þ a
K2
m

K2
m þ R2

where ν is the transcription rate, α is an experimentally determined rate constant, Km is the

equivalent equilibrium constant of the two binding steps, R is the concentration of the active

repressor, and α0 is the basal level of transcription under fully repressed conditions (the “leak-

age” rate).

In order to expand this process to a simulatable form, we could decompose binding into a

two–step process. However, the cytomorphic chip provides a Hill function that allows this

two–step process to be modeled as a single step (labeled n in Fig 2). Using the Hill function, we

could write the overall binding process as:

Rþ OÐ B; k2
f R

2O � krB
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where R is the active repressor, O is the operator site, and B is the bound (repressed) complex.

Transcription can then be modeled as a simple first–order process without substrate depletion

(both the A_FB_EN and B_FB_EN in Table 2 should be off). This expanded model exhibits

a time delay proportional to τ = kr + (kf � R)2 compared to the lumped expression, which

assumes rapid equilibrium of the binding process. Our approach to minimizing this discrep-

ancy is the same as in the enzyme kinetics case—we maximize the forward rate constant kf
subject to the margin ρ defined in Eq 5. The expanded model can reproduce the dynamics of

complex networks to a high degree of accuracy, as shown below.

In a highly influential study in 2000, Elowitz et al showed that a genetic oscillator (the

“repressilator”) can be constructed from three genetic repressors [45]. To validate the cyto-

morphic compiler’s ability to translate repressor kinetics, we obtained a dynamical model of

the repressilator from the BioModels database [47, 48]. This model contains a total of 12 reac-

tions, half of which are degradation reactions. To reduce the number of blocks required to

encode the model, we condensed the degradation reactions into the production rate laws for

the three genes and proteins in the system:

⌀ � !X; a0 þ a
K2
m

K2
m þ R2

� kd1X ð6Þ

⌀ � ! PX; ktX � kd2PX ð7Þ

and similarly for Y and Z. We constructed a new SBML model based on these simplifications

and generated a block configuration as shown in S4 Fig. The configuration is largely analogous

to the three-stage feed-forward cascade presented earlier and repeated three times for the three

gene and protein species. They differ mainly in how they account for the total variable. In the

case of the repressilator, transcription factors and mRNAs regulate transcription and transla-

tion but they are not directly converted to their downstream molecules the way S is converted

to T and U in the feed-forward cascade. The total variable for each biomolecule in the

Table 2. Tunable parameters for each block.

Parameter Description

ratC Controls the degradation rate of the main product C when this block also serves as a

degradation reaction.

n Hill coefficient for forward binding. Useful in repressor kinetics.

KDfw Forward–binding dissociation constant. Used to specify the forward rate via Eq 3.

KDrv Reverse–binding dissociation constant. Used to specify the forward rate via Eq 3.

kr The overall rate of the block. Can be used to tune the forward and reverse rates

simultaneously (trading speed for stability or vice–versa).

kdeg Auxiliary degradation rate used in the fan–in configuration.

A_FB_EN,B_FB_EN Substrate depletion switches for reactants A and B respectively. When turned off, product of

C does not consume A or B resp. (useful for modeling transcription and translation

reactions).

FF_EN_sw1,2,3,4 Switches controlling the internal forward–reverse rate computation of the block. Only used

in fan–in configurations, which each block must subtract the “main” production rate from

its own rate.

Ctot_sw A switch controlling whether the block’s main output Ctot is supplied externally (not used

in most configurations).

Programmable parameters for each cytomorphic block.

https://doi.org/10.1371/journal.pcbi.1008063.t002
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repressilator is not dependent on their downstream products and consequently, the degrada-

tion fluxes are not backpropagated up the circuit, as seen in the unconnected rv_up ports.

Fig 10 shows a digital SBML simulation of the repressilator model, a block simulation (emu-

lation of the cytomorphic hardware using a digital computer), and the cytomorphic chip data

for this model. The compiler is successful in configuring the wiring between blocks to produce

the oscillations seen in the repressilator. The difference in oscillation amplitudes from the

hardware simulation can be attributed to manufacturing variations in the chip. We hypothe-

sized that these variations could be explained in terms of variation of the internal gains within

the chip. The internal gains are the parameters ratC, KDfw, KDrv, kr, and kdeg in Table 2.

In order to compensate for these variations, we sought to determine if the gains in the digi-

tal block simulation could be adjusted to match the chip data. To perform these adjustments,

we used the Nelder–Mead method with an objective function of the mean–squared–error

(MSE) between the block simulation and the chip data for mRNA and protein levels. In prac-

tice, we found it sufficient to adjust only the KDfw and KDrv gains, which enabled us to

reduce the MSE from 124 nA to 15.6 nA, an 87% decrease. The results of this adjustment

are plotted in S7 Fig. Indeed, this strategy has been previously exploited in analog hardware

for cochlear processors to correct for variation and enable deaf subjects to successfully use

cochlear prosthetics on the first try [3, 49, 50].

Higher–order compilation

While the requirement that all processes in a model be reducible to mass–action kinetics may

seen restrictive, there is a very large class of models that consist only of this type of process.

The field of rule–based modeling is a very active area of research (see [51] for a review). Rule–

based models are composed of multi–state species. For example, a protein can have multiple

phosphorylation sites, and each site can exist in either a “phosphorylated” or “unphosphory-

lated” state. These rules can be used to generate a network of all enumerable molecular states,

or alternately simulated stochastically without enumeration using agent–like methods such

those employed by the simulator NFSim [52].

Rule–based models invariably generate mass–action networks when enumerated or other-

wise reduced to a simulatable form (this is not strictly a requirement, but non–mass action

networks are a rare use–case for rule–based modeling and we do not consider them here). Fur-

thermore, whereas NFSim scales linearly with the number of rules [52], the cytomorphic chip

has constant scaling up to the maximum number of blocks (with the ability to connect to addi-

tional chips and thus increase the maximum network size in the future).

Taken together, these factors suggest that the ideal application of cytomorphic hardware

could be the simulation of rule–based mass–action networks. We therefore selected a model of

a MAPK signaling cascade from the rule–based modeling platform PySB [53] and based on a

previous study [54] to validate our cytomorphic compiler. This cascade consists of the MAPK

ERK and its upstream activators Ras and Raf. A contact map for this model, generated using

RuleBender [55], is shown in Fig 11.

The full block layout and wiring for this model is shown in S6 Fig.

Rule–based models are one approach to managing complexity. They allow the user to spec-

ify models in terms of biomolecules with multiple states (such as multiple phosphorylation

sites and multiple binding sites that can either be occupied or not) and automatically enumer-

ate all possible discrete states. Similarly, electronics designers have long used automated logic

synthesis to generate chip layouts from high–level logic specifications. Just as automated place-

ment and routing was a necessary technology for enabling rapid growth in complexity of
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Fig 10. Comparison of repressilator model simulations. Also shown is an SBML simulation of the original model

(A), a block simulation (B), and data collected from the cytomorphic chip (C). Due to manufacturing variations, blocks

in the cytomorphic chip have different gains, hence the peak heights are different. The time axis on the chip data plot

corresponds to “simulation time,” i.e. the actual duration of running the simulation, as opposed to “model time”, the

time according to the dynamics of the model. To be useful, a hardware simulation should take less time to run than the

timescale according to the model’s dynamics. This allows for multiple in silico expriments to be performed in for the

amount of time a single physical experiment would take. To quantify this ratio, we performed correlation analysis on

the chip data against the block simulation based on the wiring on S4 Fig (D). The cross correlation shows a peak at

� 6.5 seconds, indicating a six–fold difference between model and simulation time. This does not represent a speedup

over a software SBML simulation, but the cytomorphic chip exhibits constant scaling up to the maximum number of

blocks.

https://doi.org/10.1371/journal.pcbi.1008063.g010
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Fig 11. A rule–based MAP kinase model [53, 54] and its corresponding block configuration produced by the cytomorphic compiler. (A) A contact map for the

kinase cascade generated using RuleBender [55]. The contact map shows the molecular species present in the model—Ras, Raf, MAPK/ERK Kinase (MEK), extracellular

signal-regulated kinase (ERK), MAP kinase phosphatase (MKP), and Protein phosphatase 2 (PP2A). When expanded to an SBML mass–action network representation,

this rule–based model expands into a network with 20 reactions and 21 distinct dynamical states. An SBML simulation of the flattened rule–based model (B) and a block

simulation (C) are identical up to 3 significant figures (simulated using libRoadRunner, CVODES solver, absolute and relative tolerances 10−20 and 10−12 respectively).

https://doi.org/10.1371/journal.pcbi.1008063.g011
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integrated circuits (ICs), we believe technologies such as the cytomorphic compiler presented

here will be necessary for rapid growth of biomimetic electronics.

Discussion

Special–purpose hardware is necessarily designed to solve a specific subset of problems. One

must sacrifice generality for the sake of improved performance and / or efficiency on this sub-

set. Our system clearly makes this trade–off of generality for performance. In this section we

discuss limitations, work–arounds, and future plans for improving the generality of the hard-

ware and software.

The most obvious limitation of the cytomorphic hardware is that all processes are con-

strained to bimolecular mass–action reactions. However, a large body of rule–based models

exists which are not hindered by this restriction, since rule–based models can be converted

into mass–action reaction networks [51]. We have also provided an automatic method for

reducing enzyme and repressor binding kinetics to mass–action networks. Nevertheless, our

method requires these lumped kinetic expressions to be explicitly built–in to the compiler.

Our future plans include adding support for user–defined lumped kinetic expression reduc-

tions to allow for kinetic expressions not already handled.

Other less–obvious limitations include dynamic range and forcing function support. The

cytomorphic hardware exhibits less dynamic range than digital simulations because the state

variables in the cytomorphic chip are physical currents. Very large values would tend to be

attenuated due to limitations in the amount of current that can be used by the chip. In most

cases, the overall concentration values used in the model can be rescaled without changing the

model dynamics by also rescaling kinetic constants appropriately. As for forcing functions,

SBML allows model quantities to be defined in terms of user–specified, potentially time–

dependent expressions (called assignment rules). These rules can be used to implement time–

varying input to the system. In control theory, such inputs are called forcing functions. This fea-

ture in SBML allows researchers to test their models against different types of time–varying

input. However, the cytomorphic hardware itself cannot synthesize arbitrary waveforms, thus

preventing this feature from being used. Instead, assignment rules are evaluated at the initial

state of the model. Any subsequent changes are not accounted for. In theory, this could be

remedied by connecting an arbitrary waveform generator to the cytomorphic hardware. We

plan on exploring this possibility as the hardware matures. A similar argument applies to other

SBML input–centric features (e.g. events and rate rules).

One application where a hardware implementation of an ODE solver is particularly useful

is in estimating the parameters of a biological model from known experimental data. Current

methods of parameter estimation iterate between model simulation using an initial set of

parameters, and exploring a new set of parameters that minimizes a loss function [56]. It is

widely recognized that the bottleneck in parameter estimation is the numerical integration of

the system of ODE since it is repeated for every new set of parameters. Furthermore, a robust

statistical approach to parameter estimation must necessarily make use of multiple solutions of

an optimization problem, either as part of a Bayesian approach (e.g. [57]) or uncertainty analy-

sis [58]. Thus, a highly parallel, high performance–per–Watt analog computer for performing

many such simulations is highly sought–after.

In contrast to digital simulations, which are exact, analog simulations suffer from accuracy

problems that are caused by mismatches in component resistances and capacitances due to

manufacturing variations. We have shown that these variations can in principle be compen-

sated for by adjusting the internal gains of each reaction block in the chip (S7 Fig). We hope to
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further develop this procedure to engineer a robust platform for parameter fitting based on

analog computation.

The cytomorphic chip is analog hardware that runs in continuous-time domain. It contains

noise generators that amplify thermal noise to create thermodynamically-accurate random

fluctuations for biochemical reactions. These factors enable the chip to simulate multiple sto-

chastic reactions in parallel to enjoy network–size–invariant speedups. By running the simula-

tion on the cytomorphic chip, we can leverage the chip’s speedup to reduce the time of each

solution to the parameter fitting problem [8, 9]. In more concrete terms, our current prototype

consists of 20 reaction units and can simulation roughly 2 ~1–second repressilator simulations

simultaneously. In contrast, the digital compute we used consumes roughly 100 Watts of

power and can run approximately 30 analogous simulations per second. The cytomorphic

chip can be scaled up to ~3000–fold more reaction units before reaching the same thermal

envelope as the workstation, which is roughly a 200–fold improvement in performance for the

same thermal envelope. Attaining this limit would require addressing significant challenges in

data input / output and signal fidelity, among other considerations, but suggests that analog

hardware may become an attractive platform for simulation in the future.
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Supporting information

S1 Fig. A “fan–out” reaction occurs when multiple reactions consume the same reactant (S
in this case). In such a case, the blocks are termed a consumer group. One of these blocks will

compute Sfree by subtracting its own Ctot value. This Sfree value is then connected to the Atot
input for the second block. In addition, the second block also subtracts its own Ctot value from

the input value of S (via routing from one of the inverted output ports for Ctot). Thus, the com-

puted value Sfree is equal to Stot minus Utot (due to the feedback within the first block) and

minus Vtot (due to the extra Ctot connection).

(EPS)

S2 Fig. A dissociation reaction. A single block only contains a single integrator circuit, which

is used to compute its main output Ctot. When multiple outputs are present, they can, in gen-

eral, possess different degradation rates and be produced and consumed by different sets of

reactions. In order to account for this, the cytomorphic compiler creates two blocks for each

dissociation reaction. The first block computes Ttot and sends its forward and reverse rates to

the Cprod and Cdeg ports of the second block, which computes Utot. The second block uses

the forward and reverse rates to compute the change in Utot according to Eq 3 with Atot = Btot
= 0. The production of Utot will thus be the same as Ttot except each block may have a different

degradation constant ratC and may be independently connected to other blocks that produce

/ consume either of the products.

(EPS)

S3 Fig. A “fan–in” reaction occurs when multiple reactions produce the same species U.

In such a case, the blocks are called a producer group. Since the cytomorphic chip uses “total”

quantities for computations, these different sources for U need to be summed together to pro-

vide a single value for Utot. This is accomplished as follows: (1) designate a single block as the

“main” producer of U. Other blocks that produce U will send their forward and reverse rates
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rate_fw and rate_rv to the main block’s Cprod and Cdeg ports resp. In turn, the main

block sends its own computed value of Utot as well as the total forward and reverse rates for

U to all other blocks in the producer group via fw_tot and rv_tot. Finally, when U is

removed from the system, the total values of its upstream nodes S and Tmust be adjusted

accordingly. Internally, all non–main blocks in the producer group compute the total produc-

tion and consumption of U and subtract their individual contributions to this amount (via

inverting the FF_EN_sw switches in Fig 2B). This left–over amount is the amount by which

the total value of the upstream nodes S and T changes as a result of external sources of U. This

scheme, while complicated, allows total quantities for all species to be computed.

(EPS)

S4 Fig. Wiring diagram of the repressilator model. To validate the cytomorphic compiler

output for repressor kinetics, we constructed an SBML model containing six transcription /

translation / degradation reactions (see Eq 7). The compiler transformed this SBML model

into a block configuration containing nine blocks (A). Each transcription reaction is expanded

to repressor binding (first column) and transcription (second column), whereas each transla-

tion / degradation reaction is represented by a single block (third column). A digital simula-

tion of this block configuration is shown in Fig 10B.

(EPS)

S5 Fig. To verify the correct time alignment ratio between the digital block simulations

and chip data for the repressilator, we computed the cross correlation between the two sig-

nals as a function of the time ratio. The cross correlation shows a peak at� 6.5 seconds, indi-

cating a six–fold difference between model and simulation time. This does not represent a

speedup over a software SBML simulation, but the cytomorphic chip exhibits constant scaling

up to the maximum number of blocks.

(EPS)

S6 Fig. The block layout of the PySB kinase cascade model compiled for the cytomorphic

chip showing 30 blocks representing the 20 SBML reactions. This diagram is a Simulink

model generated automatically by the compiler for validating the output.

(EPS)

S7 Fig. Comparison of chip data for mRNA (left) and protein (right) and a digital SBML

simulation with gain values adjusted to match the chip data. We hypothesized that the accu-

racy difference in the chip versus digital SBML simulation in Fig 10 was due to manufacturing

variations that caused changes in the internal gains of the cytomorphic chip (ratC, KDfw,

KDrv, kr, and kdeg in Table 2, as well as temporal (x–axis) and block output (y–axis) scaling).

In practice, we found it sufficient to adjust only KDfw and KDrv of each block, as well as x and

y–axis scaling, to attain close alignment between the chip results and the simulation. To fit the

SBML simulation to the chip simulation, we used an objective function based on the MSE of

the signals. The fit SBML simulation has an MSE of 15.6 nA versus the original MSE of 124

nA, an 87% decrease. The adjusted gains are shown in S2 Table.

(EPS)

S8 Fig. The fitting procedure for KDfw and KDrv in S7 Fig was repeated for a different set

of reaction blocks. In general, each block exhibits a different gain profile and must be sepa-

rately corrected for.

(EPS)

S1 Table. The KDfw and KDrv gains were adjusted for each of the nine blocks a digital

simulation of the repressilator circuit to match the chip data in Fig 10. These gain
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adjustments refer to the simulation in S7 Fig.

(PDF)

S2 Table. A second replicate of the gain adjustment method for KDfw and KDrv. S8 Fig

shows the simulation results for these gains.

(PDF)
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