
cancers

Article

Chronic Treatment with Multi-Kinase Inhibitors
Causes Differential Toxicities on Skeletal and
Cardiac Muscles

Joshua R. Huot 1, Alyson L. Essex 2, Maya Gutierrez 3, Rafael Barreto 1, Meijing Wang 1,
David L. Waning 4, Lilian I. Plotkin 2 and Andrea Bonetto 1,2,5,*

1 Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
jrhuot@iu.edu (J.R.H.); rafabarreto1@msn.com (R.B.); meiwang@iupui.edu (M.W.)

2 Department of Anatomy and Cell Biology, Indiana University School of Medicine,
Indianapolis, IN 46202, USA; alyessex@iu.edu (A.L.E.); lplotkin@iupui.edu (L.I.P.)

3 Greenfield Central High School, Greenfield, IN 46140, USA; m.gutierrez.0928@gmail.com
4 Department of Cellular and Molecular Physiology, Penn State University, Hershey, PA 17033, USA;

dlw83@psu.edu
5 Department of Otolaryngology—Head & Neck Surgery, Indiana Center for Musculoskeletal Health,

Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
* Correspondence: abonetto@iu.edu; Tel.: +1-317-278-0302

Received: 14 February 2019; Accepted: 18 April 2019; Published: 23 April 2019
����������
�������

Abstract: Despite recent progress, chemotherapy remains the preferred treatment for cancer. We have
shown a link between anticancer drugs and the development of cachexia, i.e., body wasting
accompanied by muscle loss. The multi-kinase inhibitors (MKIs) regorafenib and sorafenib, used as
second-line treatment for solid tumors, are frequently accompanied by several side effects, including
loss of muscle mass and strength. In the present study we aimed to investigate the molecular
mechanisms associated with the occurrence of muscle toxicities in in vivo conditions. Hence, we
treated 8-week old healthy CD2F1 male mice with MKIs for up to six weeks and observed decreased
skeletal and cardiac muscle mass, consistent with muscle weakness. Modulation of ERK1/2 and
GSK3β, as well as increased expression of markers of autophagy, previously associated with muscle
atrophy conditions, were shown in skeletal muscle upon treatment with either drug. MKIs also
promoted cardiac abnormalities consistent with reduced left ventricular mass, internal diameter,
posterior wall thickness and stroke volume, despite unchanged overall function. Notably, different
signaling pathways were affected in the heart, including reduced expression of mitochondrial
proteins, and elevated AKT, GSK3β, mTOR, MEK1/2 and ERK1/2 phosphorylation. Combined, our
data demonstrate detrimental effects on skeletal and cardiac muscle in association with chronic
administration of MKIs, although different mechanisms would seem to contribute to the cachectic
phenotype in the two tissues.
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1. Introduction

We and others have shown that chemotherapeutic drugs, while effectively combating tumors, can
also induce very debilitating side toxicities, including loss of body weight and muscle mass, along
with muscle weakness and fatigue [1]. Altogether, these are hallmarks of cachexia, a comorbidity
diagnosed in roughly 80% of subjects affected with cancer. Cachexia overall significantly increases the
likelihood of disease morbidity and mortality, and will represent the ultimate cause of death for up to
30% of cancer patients [1]. The occurrence of cachexia is ultimately responsible for the onset of a very
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debilitating state, such that the patients are no longer able to tolerate the anticancer therapies, thus
also experiencing discontinuation of treatment and a hastened demise [1]. Along this line, research
from our group highlighted the importance of preserving skeletal muscle among subjects receiving
chemotherapy treatments, primarily as an essential modality in improving survival rates in cancer,
and several studies have demonstrated a correlation between reduced lean muscle mass, dose-limiting
toxicities and patient’s survival [2–5].

According to the most recent statistics, more than 1.7 million new cases of cancer are expected to
be diagnosed by the end of 2019 with chemotherapy administration serving as the preferred treatment
option [6]. In an attempt to effectively halt tumor progression and metastases, waves of new alternative
therapeutics have surfaced in recent years. Among these new classes of drugs are multi-targeted kinase
inhibitors (MKIs), two of which, namely sorafenib and regorafenib, have shown significant survival
rate improvement in various cancers, including hepatocellular carcinoma, metastatic colorectal cancer,
and advanced gastrointestinal stromal tumors [1,7,8]. Despite these promising results, recent studies
have identified a myriad of adverse side effects associated with prolonged administration of MKIs,
including, but not limited to, arterial hypertension, diarrhea, potential hemorrhage, fatigue and muscle
weakness [9–14]. Despite early investigations on adverse effects with MKI treatments, the direct
molecular impact that these drugs have on skeletal and cardiac muscle is largely unexplored, and
studies examining the long-term toxic effects on the musculoskeletal system are lacking.

To better clarify this point we sought to characterize the functional and molecular perturbations
of skeletal and cardiac muscle upon chronic administration of sorafenib or regorafenib in normal
mice and in the absence of a tumor. Our findings indicate differential deleterious effects of chronic
MKI treatment on both muscle types and warrant further investigations into their negative systemic
toxicities, especially when administered in combination with other chemotherapeutics.

2. Results

2.1. Animals Exposed to Regorafenib or Sorafenib Display Impaired Growth

Animals treated with either regorafenib (30 mg/kg/day) or sorafenib (60 mg/kg/day) for up to six
weeks failed to gain weight compared to the vehicle-treated littermates (Figure 1A). Overall, the treated
animals displayed a reduction in net weight change compared to vehicle littermates over the course of
6 weeks (regorafenib: −85%, p < 0.001; sorafenib: −61%, p < 0.01) (Figure 1B). Interestingly, despite
a slightly decreased food consumption in the MKI-treated animals, the three experimental groups
displayed comparable non-significantly different food intakes (Figure S1). Although the treated mice
did not experience dramatic weight loss as typically seen in cachexia, upon normalization to the initial
body weight organs such as liver (regorafenib: −12%, p < 0.001; sorafenib: −8%, p < 0.05), spleen
(regorafenib: −28%, p < 0.001; sorafenib: −11%, p < 0.05), and gonadal adipose tissue (regorafenib:
−30%, p < 0.01; sorafenib: −20%, p < 0.01) showed significant reductions in weight vs. the vehicle-treated
animals (Figure 1C). Skeletal muscle weights of gastrocnemius (regorafenib: −6%, p < 0.01; sorafenib:
−8%, p < 0.05), tibialis anterior (regorafenib: −7%, p < 0.05; sorafenib: −9%, p < 0.01), and quadriceps
(regorafenib: −15%, p < 0.001; sorafenib: −11%, p < 0.01) were significantly less than vehicle littermates,
thus suggesting MKIs administration was associated with muscle wasting (Figure 1D).

2.2. MKIs Promote Skeletal Muscle Weakness

In vivo grip strength measurement revealed concurrent decreases in absolute (regorafenib: −20%,
p < 0.001; sorafenib: −22%, p < 0.001) and specific (regorafenib: −12%, p < 0.05; sorafenib: −27%,
p < 0.05) force for animals treated with either compound (Figure 2A). Analogously, whole muscle
contractility testing of the EDL muscles revealed similar effects in muscle contractility, with regorafenib
reducing both absolute (p < 0.001) and specific force (p < 0.001), and sorafenib lowering absolute force
(p < 0.001) when compared to the control animals (Figure 2B). Consistent with decreases in weight and
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strength, myofibers from MKI-treated animals were significantly smaller than in the vehicle-treated
littermates, as suggested by the assessment of cross-sectional area (CSA) (Figure 2C).
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Figure 1. Animals exposed to regorafenib or sorafenib display impaired growth. (A) Body weight
change (normalized to initial body weight) in mice treated with 30 mg/kg/day regorafenib (blue; n = 8),
60 mg/kg/day sorafenib (red; n = 8), or vehicle (white; n = 8) over the course of 6 weeks. (B) Net body
weight change (initial to final), expressed in grams. (C) Liver, spleen, and gonadal adipose tissue
weights (expressed as weight/100 mg Initial Body Weight). (D) gastrocnemius, tibialis anterior, and
quadriceps muscle weights (expressed as weight/100 mg Initial Body Weight). Data presented as mean
± SEM. Significance of the difference: * p < 0.05, ** p < 0.01, *** p < 0.001 vs. Vehicle.
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Figure 2. MKIs promote skeletal muscle weakness. (A) Assessment of grip strength, reported as absolute
force (expressed in grams) or specific force (expressed relative to body weight (BW)) in mice treated with
30 mg/kg/day regorafenib (blue; n = 8), 60 mg/kg/day sorafenib (red; n = 8), or vehicle (white; n = 8)
over the course of 6 weeks. (B) Assessment of whole muscle contractility of EDL muscle, reported as
absolute muscle force (expressed in grams) and specific force (expressed as kN/m2). (C) Cross-sectional
area (CSA) of tibialis anterior muscles and representative CSA image of tibialis anterior muscle sections
stained with anti-dystrophin antibody. Images taken at 20×, scale bar equals 100 µm. Data presented as
mean ± SEM. Significance of the difference: * p < 0.05, *** p < 0.001 vs. Vehicle.

2.3. Regorafenib and Sorafenib Perturb Cardiac Muscle

Skeletal muscle dysfunction was also accompanied by deleterious modifications to cardiac function
in MKI treated animals. Indeed, heart weight was significantly reduced in the animals receiving
either regorafenib (−12%, p < 0.01) or sorafenib (−8%, p < 0.05), thereby suggesting cardiac toxicity in
response to treatment with MKIs (Figure 3A). Using echocardiography, ejection fraction (Figure 3B) and
fractional shortening (Figure 3C) were found unchanged in the treated animals, although significant
reductions in stroke volume (regorafenib: −26%, p < 0.01) (Figure 3D), left ventricular mass (regorafenib:
−34%, p < 0.001; sorafenib: −14%, p < 0.05) (Figure 3E) and left ventricular inner wall diameter (LVID)
during both diastole (regorafenib: −17%, p < 0.001; sorafenib: −8%, p < 0.01) (Figure 3F) and systole



Cancers 2019, 11, 571 5 of 20

(regorafenib: −24%, p < 0.01; sorafenib: −11%, p < 0.05) (Figure 3G) were detected. Moreover, left
ventricular posterior wall (LVPW) thickness was comparable to the control animals, with the exception
of LVPW during diastole in regorafenib treated animals (−10%, p < 0.05) (Figure 3H,I).
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Figure 3. Regorafenib and sorafenib perturb cardiac muscle. Cardiac function measured by
echocardiography in mice treated with 30 mg/kg/day regorafenib (blue; n = 8), 60 mg/kg/day sorafenib
(red; n = 8), or vehicle (white; n = 8) over the course of 6 weeks. (A) Heart size (relative to initial body
weight). (B) Ejection fraction (EF). (C) Fractional shortening (FS). (D) Stroke volume (SV). (E) Left
ventricular (LV) mass. (F) Left ventricular inner wall diameter (LVID) during diastole. (G) LVID during
systole. (H) Left ventricular posterior wall (LVPW) thickness during diastole. (I) LVPW thickness
during systole. Data presented as mean ± SEM. Significance of the difference: * p < 0.05, ** p < 0.01,
*** p < 0.001 vs. Vehicle.

2.4. MKIs Affect Cachexia-Related Pathways in Skeletal Muscle

In order to gain molecular insight into the pro-cachectic symptoms observed with regorafenib and
sorafenib administration, we analyzed the expression of proteins previously characterized in association
with muscle atrophy in cachexia due to cancer and/or chemotherapy. Neither MKI affected the activation
of catabolic or anabolic signaling proteins, including STAT3, AKT, mTOR, or the downstream mTOR
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effectors 4EBP1 and P70S6K (Figure 4). Interestingly, GSK3β was significantly down-regulated
(regorafenib: −27%, p < 0.01; sorafenib: −56%, p < 0.0001). On the other hand, regorafenib and
sorafenib treatment significantly down-regulated ERK1/2 (regorafenib: −62%, p < 0.001; sorafenib:
−43%, p < 0.05), despite no changes in P38 or the upstream ERK1/2 regulator, MEK1/2. (Figure 4).
Additionally, neither regorafenib nor sorafenib altered the expression of mitochondrial proteins that
we previously linked to skeletal muscle wasting, including OPA1 or cytochrome C [2], whereas only
PGC1α expression was reduced with sorafenib treatment (−38%, p < 0.05) (Figure 4). These findings
suggest little effect of MKIs administration on muscle metabolism and ox-phos potential.
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Figure 4. MKIs determine skeletal muscle atrophy. Representative western blotting and quantification
(expressed as fold change vs. Vehicle) of proteins involved in the regulation of muscle size (STAT3,
AKT, mTOR, 4EBP1, P70S6K, GSK3β, P38, MEK1/2, ERK1/2) (Top), proteins involved in mitochondrial
homeostasis (OPA1, PGC1α, Cytochrome C) (Middle), and protein markers of autophagy-dependent
catabolism (LC3, Beclin 1, Bcl-2 and total ubiquitinated proteins) (Bottom) in whole skeletal muscle
protein extracts from mice treated with 30 mg/kg/day regorafenib (blue; n = 8), 60 mg/kg/day sorafenib
(red; n = 8), or vehicle (white; n = 8) over the course of 6 weeks. Levels of phosphorylated proteins
were normalized to their respective total protein. Tubulin served as the loading control. Data presented
as mean ± SEM. Significance of the difference: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001
vs. Vehicle.
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Alternatively, LC3-II/I (regorafenib: +230%, p < 0.05), Beclin 1 (regorafenib: +43%, p < 0.001;
sorafenib: +33%, p < 0.01) and Bcl-2 (sorafenib: +104%, p < 0.001) levels were significantly increased
in animals receiving MKIs, thereby suggesting that treatment with these chemotherapeutics elevates
protein markers of autophagy-dependent muscle catabolism. On the other hand, the amount of total
ubiquitinated protein was reduced upon sorafenib treatment alone (−23%, p < 0.05; Figure 4), whereas
no significant change was observed in the expression of the ubiquitin ligases Atrogin-1 and MuRF-1
(Figure 5). Taken together, these data support the idea that regorafenib and sorafenib play a causative
role in skeletal muscle atrophy primarily by promoting enhanced autophagy-dependent catabolism.
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Figure 5. Expression of ubiquitin ligases Atrogin-1 and MuRF-1 in skeletal muscle is not affected
by MKIs. mRNA expression for Atrogin-1 and MuRF-1 in the skeletal muscle of mice treated with
30 mg/kg/day regorafenib (blue; n = 8), 60 mg/kg/day sorafenib (red; n = 8), or vehicle (white; n = 8)
over the course of 6 weeks. Data presented as mean ± SEM.

2.5. Regorafenib and Sorafenib Alter Cachexia-Associated Pathways in Cardiac Muscle

Unlike was observed in skeletal muscle, phosphorylation of AKT was enhanced by both regorafenib
(+37%, p < 0.01) and sorafenib (+31%. p < 0.05); consistently, both MKIs increased the phosphorylation
of downstream AKT mediators, including mTOR (regorafenib: +26%, p < 0.05; sorafenib: +37%,
p < 0.05), P70S6K (regorafenib: +51%, p < 0.01; sorafenib: +20%, p < 0.05) and GSK3β (regorafenib:
+45%, p < 0.001; sorafenib: +43%, p <0.01), while 4EBP1 was decreased following regorafenib treatment
(−23%, p < 0.001) (Figure 6). Interestingly, both MKIs induced marked activation of MEK1/2 (regorafenib:
+103%, p < 0.001; sorafenib: +100%, p < 0.01) and of the downstream target ERK1/2 (regorafenib:
+100%, p < 0.001; sorafenib: +120%, p < 0.001). Similar to the skeletal muscle, activation of P38 and
STAT3 was unchanged upon MKI treatment (Figure 6).

Also differing from skeletal muscle, the mitochondrial proteins OPA1 (regorafenib: −31%, p < 0.05;
sorafenib: −63%, p < 0.001) and cytochrome C (sorafenib: −47%; p < 0.05) were significantly reduced
(Figure 6), while neither LC3 nor Beclin 1 were affected by MKIs (Figure 6). On the other hand, Bcl-2
was significantly increased (regorafenib: +42%, p < 0.01; sorafenib: +57%, p < 0.01), whereas the
amount of total ubiquitinated proteins was reduced upon treatment with both regorafenib (−42%,
p < 0.001) and sorafenib (−57%, p < 0.0001) (Figure 6). Interestingly, both drugs determined increased
expression of Atrogin-1 (regorafenib: +19%, p < 0.05; sorafenib: +52%, p < 0.05), whereas MuRF-1 was
unchanged (Figure 7). Furthermore, expression of BNP, a marker of cardiac hypertrophy [15,16], was
also elevated in the heart of animals exposed to regorafenib (+33%, p < 0.001) and sorafenib (+25%),
although in the latter case the difference did not reach statistical significance (Figure S2). Altogether,
these findings identified distinct differences in cardiac muscle compared to skeletal muscle.
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Figure 6. Regorafenib and sorafenib alter cachexia-associated pathways in cardiac muscle.
Representative western blotting and quantification (expressed as fold change vs. Vehicle) of proteins
involved in the regulation of muscle size (STAT3, AKT, mTOR, 4EBP1, P70S6K, GSK3β, P38, MEK1/2,
ERK1/2) (Top), proteins involved in mitochondrial homeostasis (OPA1, PGC1α, Cytochrome C) (Middle),
and markers of protein catabolism, (LC3, Beclin 1, Bcl-2 and total ubiquitinated proteins) (Bottom) in
whole cardiac muscle protein extracts from mice treated with 30 mg/kg/day regorafenib (blue; n = 8),
60 mg/kg/day sorafenib (red; n = 8), or vehicle (white; n = 8) over the course of 6 weeks. Levels of
phosphorylated proteins were normalized to their respective total protein. Tubulin served as the
loading control. Data presented as mean ± SEM. Significance of the difference: * p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001 vs. Vehicle.
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3. Discussion

Novel second line chemotherapeutics, including the MKIs regorafenib and sorafenib, have been
developed over the past decade for the treatment of advanced and metastatic solid tumors. Regorafenib,
an inhibitor of VEGFR, was developed to counteract the angiogenic activity in several solid cancers,
including metastatic colorectal cancer and advanced gastrointestinal tumors [17]. On the other hand,
sorafenib, initially designed to inhibit b-Raf, VEGFR and PDGFR, was shown to effectively prolong
survival among patients affected with metastatic hepatocellular carcinoma [8,18–22]. Despite their
potent anti-proliferative effects, several toxicities frequently accompany MKI administration, and
whether prolonged administration of such compounds promotes side effects per se, including muscle
loss and weakness, is yet to be determined.

In order to clarify this point we exposed normal, healthy mice to doses of chemotherapeutics
that had been previously described in the literature as effective in counteracting tumor growth in
rodent models, and that, due to the prolonged time of administration, were also likely to cause side
effects [18,23]. Interestingly, based on the 2005 USFDA guide for the dose conversion between animals
and humans (as also discussed in [24]), the dosing used in our study was comparable to the ones
generally prescribed to subjects with cancer in the clinical setting (e.g., 160 mg for regorafenib or 800
mg for sorafenib, daily, for subjects weighing about 60 kg). To the extent of investigating the causative
mechanisms for the occurrence of defects in skeletal and cardiac muscles, the animals were sacrificed
when a condition of mild-to-severe cachexia had become evident, as we previously described in models
of cancer- and chemotherapy-induced cachexia [3,25]. In this case, the animals were exposed to the
MKIs for up to six weeks in order to allow the appearance of toxicities associated with administration
of such drugs. This is also in line with observations reported in a phase II study aimed at evaluating
tolerability and efficacy of sorafenib in patients with refractory cancers, showing that the drug was
administered for an average of 68 days and up to 344 days [26].

The present findings indicate that both regorafenib and sorafenib negatively affect growth and
promote skeletal and cardiac muscle wasting in normal mice. Ours is not the first evidence suggesting
a role of MKIs in causing muscle-associated deficits. Indeed, regorafenib was recently shown to worsen
the survival outcomes in refractory metastatic colorectal cancer patients, in particular in association
with low skeletal muscle mass [27–29]. Along the same line, sorafenib administration in experimental
animals was reported to cause body weight loss [18], and Antoun et al. concluded that sorafenib
was likely to cause muscle wasting in patients affected with advanced renal cell carcinoma due to the
specificity for the Raf kinase, normally involved in the regulation of muscle mass [19]. Similar to other
multi-targeted kinase inhibitors, such as imatinib and sunitinib, sorafenib treatment was also shown
to cause abnormal mitochondrial functions and, in turn, alterations of the energy metabolism, likely
responsible for muscle weakness [30]. Interestingly, other studies failed to demonstrate changes in
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body weight in tumor hosts exposed to regorafenib [31] or sorafenib [32], although in both cases only
tumor-bearing mice were tested.

Here we did not report severe decline in body weight over the course of the 6 weeks of treatment.
Instead, significant retardation in growth with both sorafenib and regorafenib treatment was evident
with respect to the vehicle-treated animals. Although the growth retardation observed may represent
a limitation of our study and is likely attributable to the fact that younger animals (i.e., 8 weeks of
age) were administered MKIs, compared to previous studies which utilized older weight-stable mice
(i.e., 14–16 weeks of age) [33], this subject matter remains of particular interest and may warn against
administration of such agents in pediatric cancer patients. This is especially true considering that other
multi-target kinase inhibitors, including imatinib, were previously shown to cause growth failure in
children affected with chronic myeloid leukemia primarily by perturbing the GH:IGF-1 axis [34].

In our study we also detected a significant decrease in heart weight after six weeks of treatment
with regorafenib or sorafenib. This, combined with the increased expression of the ubiquitin ligase
Atrogin-1, generally indicative of enhanced protein catabolism [35], and with the reduction in left
ventricular mass and inner wall diameter, is supportive of a phenotype consistent with cardiac cachexia
in the mice receiving MKIs. Our results are in line with previous findings showing significant reductions
in heart size in 12-week old mice treated with sorafenib in conjunction with myocardial infarction [36].
Notably, in our experimental model alterations in cardiac phenotype (e.g., reduced heart size, LV mass,
LVID) were not accompanied by reductions in ejection fraction or fractional shortening with either
MKI, in line with the previous study from Duran et al. conducted in animals exposed to sorafenib [31].
In contrast, earlier observations demonstrated significant decrease in cardiac function with two weeks
of sorafenib treatment [37]. These different outcomes could be attributed to the different time point
taken into consideration (2 weeks vs. 6 weeks), and to the fact that isoflurane-induced anesthesia was
not applied at time of measurement. Indeed, Pachon et al. demonstrated that the use of anesthetics
might suppress changes in both ejection fraction and fractional shortening [38].

Despite the knowledge that other chemotherapeutics induce cardiac and skeletal muscle
perturbations, studies delving into distinct molecular signatures in skeletal and cardiac muscles
that may be contributing to the occurrence of muscle atrophy with regorafenib and sorafenib are scarce.
Our study has highlighted differential molecular alterations that occur in skeletal and cardiac muscle
relative to signaling pathways that have been previously implicated in regulating muscle growth and
that have been linked to the occurrence of a cachectic muscle phenotype.

The most striking differences were found in the activation of ERK1/2 MAPK. In particular, while
ERK1/2 phosphorylation was reduced in the skeletal muscle of animals receiving regorafenib or
sorafenib, we showed opposite trends in the cardiac muscle. Interestingly, although still being debated,
activation of the signaling dependent on MEK1/2 and ERK1/2 in the heart seems to be directly linked
with hypertrophy, as also elegantly reviewed in [39]. This may represent a discrepancy with the
phenotype described in the mice receiving MKI treatment, resulting in cardiac atrophy. However,
despite the fact that the animals presented smaller hearts, we did not see any change in cardiac
function. Altogether, these observations may suggest that compensatory mechanisms take place
after chronic administration with MKIs, as also suggested by the activation of signaling pathways
normally associated with the growth of the cardiac muscle (such ERK1/2 and AKT/mTOR/P70S6K).
Our speculations are further supported by the fact that expression of BNP, a known marker of cardiac
hypertrophy [15,16], was significantly upregulated in the hearts of mice chronically exposed to MKIs.
On the other hand, ours is not the first evidence that anticancer drugs can cause cardiac toxicity
accompanied by ERK1/2 activation, as also recently showed in [40].

Similarly, here we demonstrated that neither regorafenib nor sorafenib determined changes in
the phosphorylation of AKT in skeletal muscle, despite reduced ser9 phosphorylation of GSK3β.
Interestingly, ERK1/2 has also been implicated in the regulation of GSK3β, in that it specifically associates
with and primes GSK3β for deactivation via ser9 phosphorylation [41,42]. It is plausible that skeletal
muscle changes in GSK3β with MKI administration are contingent on ERK 1/2 activity as opposed to



Cancers 2019, 11, 571 13 of 20

AKT. On the other hand, within cardiac muscle both MKIs promoted elevated phospho-AKT levels
as well as increased GSK3β phosphorylation. Similarly (yet opposite to skeletal muscle), increased
ERK1/2 phosphorylation is associated with increased GSK3β phosphorylation further suggesting that,
at least in the case of MKI treatments, this kinase might rather be regulated by ERK1/2, similar to
previous observations generated in animals exposed to radiations [41].

Interestingly, the expression of markers of the ATP-ubiquitin-dependent protein degradation (e.g.,
ubiquitin ligases Atrogin-1 and MuRF-1 and protein ubiquitination), typically altered in cachexia [43],
were only modestly affected by MKI treatments, thus suggesting that other mechanisms were likely
involved in promoting skeletal muscle wasting. Along this line, regorafenib and sorafenib are known
to elevate autophagic markers, including Beclin1 and LC3, within various tumor cells [38], although
the systemic autophagic impact of these MKIs has yet to be reported in muscle. Here we demonstrated
that both sorafenib and regorafenib induced elevations in Beclin 1 and LC3-II/I in skeletal muscle, thus
supporting the idea that autophagy activation may trigger muscle depletion in our experimental model,
similar to previous findings in a cancer cachexia setting [44]. Conversely, no changes were detected
in cardiac tissue. Interestingly, Bcl-2, an anti-apoptotic protein and negative regulator of autophagy
by means of its direct interaction with Beclin 1 [45], was markedly upregulated following sorafenib
treatment in both skeletal and cardiac muscles, and only in the heart upon regorafenib administration.
Notably, similar increases in Bcl-2 levels were recently reported in a model of cardiotoxin-induced
muscle injury [46]. Altogether, our findings may suggest an attempt to inhibit autophagy in order to
preserve muscle mass.

In the present study we also showed that mitochondrial proteins, such as OPA1 and cytochrome
C, that we previously reported down-regulated in models of cancer- or chemotherapy-induced muscle
wasting [2,43], were reduced in cardiac muscle with MKI treatment, whereas these same proteins
were unchanged in skeletal muscle, also in line with previously published evidence investigating
the mitochondrial toxicity induced by sorafenib [31,47] or supporting the MKI-induced disruption of
mitochondrial membrane polarization in tumor cell lines [48].

Lastly, here we demonstrated that sorafenib and regorafenib do not alter STAT3 phosphorylation
in either skeletal or cardiac muscle, despite the fact that minimal changes in phospho-STAT3 were
previously observed in the heart following administration of sorafenib [49–52] or in tumor hosts [53].
Interestingly, Toledo et al. previously showed that daily treatment with sorafenib (90 mg/kg per os)
was able to counteract cancer-induced muscle protein depletion in the C26 mouse model [36]. Notably,
the authors claimed sorafenib negatively regulates the activation of STAT3, a transcription factor
that we reported to be markedly elevated in the muscle of tumor hosts and directly involved in the
pathogenesis of cancer-associated cachexia [25], thus also partially explaining the beneficial effects
observed in tumor hosts. Altogether, such observations may initially appear in disagreement with our
study, showing, on the contrary, loss of muscle mass following administration of sorafenib, despite the
absence of changes in STAT3 phosphorylation in either skeletal or cardiac muscles. However, since in
the study by Toledo et al. [36] the sorafenib-related effects were tested exclusively in animals bearing
solid tumors and for shorter periods (up to 2 weeks), at this time we are prevented from performing a
direct comparison with the model described in our study. Regardless, we could speculate that the
beneficial effects associated with STAT3 blockade in the muscle of animals bearing highly inflammatory
tumors (such the C26 colorectal adenocarcinomas) are likely to overcome the toxicities of the drug
per se.

4. Materials and Methods

4.1. Animals

All experiments were conducted with the approval of the Institutional Animal Care and Use
Committee at Indiana University School of Medicine (Animal Welfare Assurance n. D16-00584, Protocol
n. 10759MD/R/E, approved on 13 August 2014) and were in compliance with the National Institutes of
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Health Guidelines for Use and care of Laboratory Animals. The animals were acclimated for at least one
week upon delivery and before any manipulation. Eight-week-old CD2F1 male mice (n = 8; Envigo,
Indianapolis, IN, USA) were maintained on a Teklad Global Rodent Diet (#2018X; Madison, WI, USA)
and were administered per os (daily, by gavage regorafenib (30 mg/kg/day; Selleck Chemicals #S1178,
Houston, TX, USA) or sorafenib (60 mg/kg/day; Selleck Chemicals #S7397) dissolved in Cremophor
EL/ethanol (50:50) and diluted in sterile water over the course of six weeks [18]. Control mice received
an equal volume of vehicle. Mice were weighed daily. Food intake was measured on a daily basis by
weighing the amount of food consumed for each cage. On day 42, the animals were euthanized under
light isoflurane anesthesia. Tissues were collected, weighed, and snap frozen in liquid nitrogen and
stored at −80 ◦C for further analysis. Tibialis anterior muscles were frozen in liquid nitrogen-cooled
isopentane, mounted in OCT and stored at −80 ◦C for morphological analyses, as shown in [54].

4.2. Grip Strength Measurement

Forelimb strength was assessed using a commercially available automatic grip strength meter
(Columbus Instruments, Columbus, OH, USA), as previously described [55]. The absolute force
(expressed in grams) and the normalized force (expressed as grams of force/body weight) were
recorded. To reduce procedure related variability, the same operator analyzed an average from
several repeated peak force measurements in the same animal in a blind manner. For this assay, five
measurements were performed, and the top three measurements were used for the analysis. Moreover,
to avoid bias of habituation, the animals were tested once a week during the experimental period.

4.3. Muscle Cross-Sectional Area (CSA)

Ten µm-thick cryosections of tibialis anterior muscles taken at the mid-belly were processed
for immunostaining. Samples were marked with a PAP pen, blocked in phosphate buffered saline
(PBS) containing 8% bovine serum albumin for one hour at room temperature, and incubated at 4 ◦C
overnight with dystrophin primary antibody (Developmental Studies Hybridoma Bank, Iowa City, IA,
USA; #MANDRA1(7A10)) diluted in PBS. After the overnight incubation, samples were incubated
with a secondary antibody (AlexaFluor 594 # A-11032; ThermoFisher Scientific, Waltham, MA, USA)
for one hour. Samples were then washed with PBS, mounted, and imaged using an Axio Observer.Z1
motorized microscope (Zeiss, Oberchoken, Germany). For determination of the CSA, muscle fibers
(n = 300–500 per sample) were measured by tracing the perimeter of each individual fiber using a
Cintiq pen tablet input device (Wacom, Vancouver, WA, USA) and Image J 1.43 software [56,57].

4.4. Whole Muscle Contractility

Whole muscle contractility of the extensor digitorum longus (EDL) muscles was determined as
previously described [58]. EDLs were dissected from hind limbs; stainless steel hooks were tied to
the tendons of the muscles using 4–0 silk sutures, and the muscles were mounted between a force
transducer (Aurora Scientific, Aurora, ON, Canada) and an adjustable hook. The muscles were
immersed in a stimulation chamber containing O2/CO2 (95/5%) and bubbled Tyrode solution (121 mM
NaCl, 5.0 mM KCl, 1.8 mM CaCl2, 0.5 mM MgCl2, 0.4 mM NaH2PO4, 24 mM NaHCO3, 0.1 mM EDTA,
5.5 mM glucose). The muscle was stimulated to contract using a supramaximal stimulus between
two platinum electrodes. Data was collected via Dynamic Muscle Control/Data Acquisition (DMC)
and Dynamic Muscle Control Data Analysis (DMA) programs (Aurora Scientific). At the start of
each experiment the muscle length was adjusted to yield the maximum force. The force–frequency
relationships were determined by triggering contraction using incremental stimulation frequencies
(0.5 ms pulses at 1–150 Hz for 350 ms at supramaximal voltage). Between stimulations, the muscle
was allowed to rest for 3 min. At the end of the force measurement, the length (L0) and weight of the
muscle was measured to facilitate determination of the specific force. Specific force is the absolute
force normalized to the muscle the cross-sectional area, calculated as shown in [59]. The investigators
were blinded to the treatment of subjects.
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4.5. Echocardiography

The potential cardiac influence of MKIs was determined in regorafenib- or sorafenib-treated mice
via echocardiography using the Vevo® 2100 system (Fujifilm VisualSonics Inc., Toronto, ON, Canada).
Six weeks after daily injections of MKIs, mice were placed under isoflurane anesthesia for assessment of
cardiac function and muscle mass alteration with a heart rate maintained at 400–500 beats per minute.
M-mode scanning of the left ventricular chamber was used for analysis of left ventricular (LV) ejection
fraction (EF), fractional shortening (FS), stroke volume (SV), LV internal diameter (diastole/systole)
(LVIDd/s) and LV posterior wall thickness (diastole/systole) (LVPWd/s).

4.6. Western Blotting

Total protein extracts were obtained by homogenizing 50 mg quadriceps muscle tissue or
whole-heart tissue in RIPA buffer (150 mM NaCl, 1.0% NP-40, 0.5% sodium deoxycholate, 0.1% SDS,
and 50 mM Tris, pH 8.0) completed with inhibitor cocktails for proteases (Roche, Indianapolis, IN, USA)
and phosphatases (Thermo Scientific, Rockford, IL, USA). Cell debris were removed by centrifugation
(15 min, 14,000× g) and the supernatant collected and stored at −80 ◦C. Protein concentration was
determined using the BCA protein assay method (Thermo Scientific). Protein extracts (30 µg) were
then electrophoresed in 4–15% gradient SDS Criterion TGX precast gels (Bio-Rad, Hercules, CA, USA).
Gels were transferred to nitrocellulose membranes (Bio-Rad, Hercules, CA, USA). Membranes were
blocked with SEA BLOCK blocking reagent (Thermo Scientific) at room temperature for 1 h, followed
by an overnight incubation with diluted antibody in SEA BLOCK buffer (Thermo Scientific) containing
0.2% Tween-20 at 4 ◦C with gentle shaking. After washing with PBS containing 0.2% Tween-20 (PBST),
the membrane was incubated at room temperature for 1 h with either anti-rabbit IgG (H+L) DyLight 800
or anti-mouse IgG (H+L) DyLight 680 secondary antibodies (Cell Signaling Technologies, Danvers, MA,
USA). Blots were then visualized with Odyssey Infrared Imaging System (LI-COR Biosciences, Lincoln,
NE, USA). Optical density measurements were taken using the Gel-Pro Analyzer software. Antibodies
used were phospho-MEK1/2 (Ser 217/221) (#9154), MEK1/2 (#9126), phospho-ERK1/2 (Thr202/Tyr204)
(#4370), ERK1/2 (#4695), phospho-p38 (Thr180/Tyr182) (#4511), p38 (#9212), phospho-AKT (Ser473)
(#4060), AKT (#9272), phospho-mTOR (Ser2448) (#5536), mTOR (#2983), phospho-p70S6K (Thr389)
(#9234), p70S6K (9209), phospho-4EBP1 (Thr37/46) (#2855), 4EBP1 (#9644), phospho-GSK-3β (Ser9)
(#5558), GSK-3β (#12456), OPA-1 (#80471), Cytochrome C (#11940), phospho-STAT3 (Tyr705) (#9145),
STAT3 (#12640), Ubiquitin (#3933) from Cell Signaling Technologies, Beclin1 (#B6186), LC3 (#L7543),
PGC-1α (#AB3242) from MilliporeSigma (Burlington, MA, USA), anti-Bcl-2 (#ab182858) from Abcam
(Cambridge, MA, USA) and α-Tubulin (#12G10) from Developmental Studies Hybridoma Bank (Iowa
City, IA, USA). In general, phosphorylated protein levels were normalized to the expression of the
respective total proteins. LC3 was presented as ratio between LC3-II and LC3-I. Tubulin was used as
loading control.

4.7. Real-Time Quantitative Polymerase Chain Reaction (qRT-PCR)

RNA from quadriceps and heart was isolated using the miRNeasy Mini kit (Qiagen, Valencia,
CA, USA) and following the protocol provided by the manufacturer. RNA was quantified using
a Synergy H1 spectrophotometer (BioTek, Winooski, VT, USA). RNA integrity was checked by
electrophoresis on a 1.2% agarose gel containing 0.02 mol/L morpholinopropanesulfonic acid and 18%
formaldehyde. Total RNA was reverse transcribed to cDNA using the Verso cDNA kit (Thermo Fisher
Scientific, Waltham, MA, USA). Transcript levels were measured by Real-Time PCR (Light Cycler
96, Roche, Indianapolis, IN, USA) taking advantage of the TaqMan gene expression assay system
(Life Technologies, Carlsbad, CA, USA). Expression levels for Atrogin-1 (Mm00499523_m1), MuRF-1
(Mm01185221_m1) and Natriuretic Peptide B (BNP; Mm01255770_g1) were detected. Gene expression
was normalized to TBP (Mm01277042_m1) levels using the standard 2−∆∆CT methods.
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4.8. Statistics

Results are presented as means ± SEM. Significance of the differences was determined by analysis of
variance (ANOVA) followed by Tukey’s post-test. Differences were considered significant when p < 0.05.

5. Conclusions

In conclusion, here we presented evidence that MKI administration promotes growth retardation
and negatively impact skeletal and cardiac muscles, leading to atrophy and loss of function, which are
accompanied by negative molecular alterations, including increased levels of autophagy-dependent
protein markers and abnormal mitochondrial homeostasis. Given the well-described role of skeletal
and cardiac muscles in promoting better outcomes and longer survival rates in patients with cancer,
further investigation into the negative systemic effects of sorafenib and regorafenib, particularly in
combination with other routinely used chemotherapeutics, is warranted.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/4/571/s1,
Figure S1: Food consumption is not affected by regorafenib or sorafenib, Figure S2: BNP mRNA expression is
increased in animals treated with MKIs.
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MKI multi-kinase inhibitor
ERK1/2 extracellular signal-regulated kinase 1/2
STAT3 signal transducer and activator of transcription 3
GSK3b glycogen synthase kinase-3 beta
AKT protein kinase b
mTOR mechanistic target of rapamycin
p70S6K 70 kDa ribosomal protein S6 kinase
4EBP1 eukaryotic initiation factor 4E binding protein
MEK1/2 mitogen-activated protein kinase kinase
OPA1 optic atrophy protein 1
PGC1a peroxisome proliferator-activated receptor gamma co-activator 1 alpha
LC3 microtubule-associated protein 1A/1B-light chain 3
Bcl-2 b-cell lymphoma 2
BNP brain natriuretic peptide
TBP TATA-binding protein
CSA cross-sectional area
SV stroke volume
LV left ventricle
LVIDd left ventricular internal diameter during diastole
LVIDs left ventricular internal diameter during systole
LVPWd left ventricular posterior wall thickness during diastole
LVPWs left ventricular posterior wall thickness during systole
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