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The relationship between neuron morphology and function is a perennial issue in neuroscience. Information
about synaptic integration, network connectivity, and the specific roles of neuronal subpopulations can be
obtained through morphological analysis of key neurons within a microcircuit. Here we present
morphologies of two classes of brainstem respiratory neurons. First, interneurons derived from Dbx1-
expressing precursors (Dbx1 neurons) in the preBotzinger complex (preBotC) of the ventral medulla that
generate the rhythm for inspiratory breathing movements. Second, Dbx1 neurons of the intermediate
reticular formation that influence the motor pattern of pharyngeal and lingual movements during the
inspiratory phase of the breathing cycle. We describe the image acquisition and subsequent digitization of
morphologies of respiratory Dbx1 neurons from the preBo6tC and the intermediate reticular formation that
were first recorded in vitro. These data can be analyzed comparatively to examine how morphology
influences the roles of Dbx1 preBotC and Dbx1 reticular interneurons in respiration and can also be utilized
to create morphologically accurate compartmental models for simulation and modeling of respiratory

circuits.
Design Type(s) organism part comparison design
Measurement Type(s) neuronal morphology phenotype
Technology Type(s) confocal microscopy
Factor Type(s) genotype o cell o tissue
Sample Characteristic(s) Mus musculus ¢ pre-Botzinger complex e reticular formation
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Background & Summary

Neuronal morphology, particularly the structure of the dendritic tree, influences how a neuron integrates
synaptic inputs and generates physiological output patterns. Axon projections provide information about
connectivity patterns in microcircuits. This study documents the morphology of brainstem interneurons
that generate and control breathing.

Breathing is a rhythmic motor behavior that ventilates the lungs to support respiration and
homeostasis in air-breathing vertebrates. For humans and all mammals, rodents serve as an advantageous
model systesm to study the neural origins of breathing. Key interneuron populations that generate
inspiratory, expiratory, and (very recently) post-inspiratory related rhythms have been characterized in
terms of physiology, genetic background, and transmitter phenotype' ™. Premotor neurons that influence
airway resistance have been similarly characterized®''. However, only a limited number of morphologies
of constituent neurons in these populations have been documented and analyzed®'*'’. This data
descriptor aims to ameliorate that problem by providing annotated, high-quality digital reconstructions
of the morphologies of rhythm-generating interneurons and motor pattern-related premotor neurons
from neonatal mice.

The respiratory cycle is dominated by the rhythm underlying inspiration, which is generated within
the preBotzinger complex (preBotC) of the ventral medulla'™*'*'>. Rhythmogenic preB&tC neurons are
derived from precursor cells that express the homeobox transcription factor DbxI (refs 13,16-18),
hereafter referred to as Dbxl neurons. The intermediate reticular formation, immediately adjacent
(dorsal) to the preBotC, is a diverse region containing respiratorzy Dbx1 premotor interneurons that
control inspiratory related muscles of the tongue and pharynx™'*~*".

In this study we used intersectional mouse genetics to induce fluorescent protein expression in Dbx1
neurons of neonatal mice. Neuronal morphologies were acquired following patch-clamp recordings in
transverse brainstem slices that retain the preBotC, the intermediate reticular formation, as well as the
hypoglossal (XII) motor nucleus. These slices expose the preB6tC and reticular formation at the rostral
surface and spontaneously generate inspiratory rhythm and XII motor output, thus providing an
experimentally advantageous breathing model in vitro®>*>.

We obtained three-dimensional morphologies of respiratory Dbx1 preB6tC and Dbx1 intermediate
reticular formation neurons by filling neurons with biocytin during whole-cell patch-clamp
recordings**"*’. Compared to other reconstruction methods such as fluorescence microscopy of dye-
filled neurons, biocytin reconstructions can be more time consuming but provide better visualization of
thinner neuronal processes and axons®. Once labeled, we visualized the recorded neurons via confocal
imaging and manually reconstructed their morphologies in a convenient digital format suitable for
storage, display, and analysis.

Over the past four years, our laboratory contributed 47 digital neuronal morphologies to the public
open access database NeuroMorpho.org. Of those 47 digital reconstructions, 23 correspond to Dbx1
preBotC neurons'>'? (six have not been previously published; this report describes them for the first
time). Twelve of the 47 correspond to preBotC neurons not derived from DbxI-expressing precursors'
(i.e., non-Dbx1 preBotC neurons), and 12 correspond to Dbx1 reticular formation neurons”.

Digital morphologies can be analyzed by software packages such as L-measure®”, which computes
more than 40 different morphometric properties of dendritic trees and axons. Sholl analysis, which
provides branching and dendritic density information in regular distance intervals from the soma*',
can be performed with software such as NeuronStudio®*. Digital morphologies can also be readily ported
to simulation packages such as NEURON?® and GENESIS®* to form compartmental mathematical
models that are high-fidelity representations of real neurons. We intend that these morphological data be
meta-analyzed and incorporated into models of inspiratory rhythm- and pattern-generating circuits of
the lower brainstem to better understand the neural mechanisms of breathing.

Methods

Mice

All of the animal protocols were approved by the Institutional Animal Care and Use Committee at The
College of William and Mary, which follows the guidelines provided by the US National Institutes of
Health Office of Laboratory Animal Welfare®.

Figure 1 recaps the workflow, which is detailed below. We crossed female mice that express Cre
recombinase fused to a tamoxifen-sensitive estrogen receptor (CreER™) under the control of the DbxI
promoter, i.e., DbxI CreERT2 (stock no. 028131, Jackson labs, Bar Harbor, ME)*® with floxed male reporter
mice that express red fluorescent protein variant tdTomato in a Cre-dependent manner (Rosa26°™°
stock no. 007905, Jackson labs)*’. Offspring with both alleles (Dbx1"™ RT2. Rosa26'Toma% mice), whose
pregnant dams received tamoxifen during emblgonic development, express the fluorescent reporter in
Dbx1-derived cells'>*** (Fig. 1, step 1). Dbx1“"*f"? mice were maintained on a CD-1 background
strain. Rosa26'""°™ reporter mice were maintained using a C57BL/6] background strain.

Dbx1“"FRT2 mice were also mated with floxed reporter mice that express a channelrhodogsin-Z/
tdTomato fusion protein (Rosa26CRetdTomato ok no. 12567, Jackson labs)*®. The Dbx1*"ERTZ
Rosa26“"RZ1dTomato mice were employed in separate electrophysiological experiments; here we recovered
the morphology of the recorded neurons in the same way as Dbx1“"**®"2%; Rosa26'/7"", which was
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Figure 1. Workflow diagram for digital neuronal reconstructions. Expression of the red fluorescent protein
tdTomato is induced in Dbx1-derived neurons (and glia) in mice using intersectional mouse genetic technologies
(1). A transverse slice of the brainstem (indicated by the gray box) containing the preBotzinger complex is taken
from a neonatal transgenic mouse (2). The slice is used for physiology recordings, during which respiratory
modulated neurons are filled with biocytin (3). The slice is then preserved in 4% paraformaldehyde (4) and made
transparent via incubation in Scale solution (5). The slice is treated with ExtrAvidin FITC (6) which binds to the
biocytin allowing for visualization of the neuron through confocal microscopy (7). Confocal images in the

X-, V-, and z- dimensions are taken of the entire neuron morphology and stitched together using FIJI (8). Using
the 3D confocal images, neurons are digitally reconstructed using Neuromantic (9). XII, hypoglossal nucleus; NA,
nucleus ambiguus, preBotC, preBotzinger complex; IO, inferior olive.

possible because both expressed native tdTomato in Dbx1-derived neurons. Channelrhodopsin, while
important for phys1olog1cal tests, has no impact on morphological studies. Figure 1 only indicates
Dbx1"FRT2; Rosa26'7°™M!° mice for simplicity.

Animal genotypes were verified using real-time PCR using primers for Cre and tandem dimer red
fluorescent protein (Transnetyx, Cordova, TN). Timed matings were monitored such that embryonic day
0.5 (E0.5) was defined as 12 hours after the start of cohabitation. Cre recombination was then induced by
administering tamoxifen (T5648; Sigma Aldrich, St Louis, MO) at E10.5 when DbxI is at or near peak
expression in the hindbrain'®'”***/ Tamoxifen was administered by oral gavage to pregnant dams at a
concentration of 0.9 mg/40 g body mass.

Transverse slice Ereparatlons

Neonatal Dbx1“®%"% Rosa26'"""*° and Dbx1“"***"%; Rosa26"***4Tomate mice were anesthetized then
euthanized via decap1tat10n at postnatal days 0-5 (PO 5), consistent with protocols outlined by the
American Veterinary Medical Association Guidelines for euthanasia of animals*’. Transections were
made at the bregma and the thorax. The neuraxis, from the pons to the lower thoracic spinal cord, was
then removed within two minutes and further dissected in artificial cerebrospinal fluid (ACSF)
containing (mM): 124 NaCl, 3 KCl, 1.5 CaCl,, 1 MgSO,4, 25 NaHCOs3, 0.5 NaH,PO, and 30 dextrose,
equilibrated with 95% O, and 5% CO, (pH 7.4) (Fig. 1, step 2). The neuraxis was then glued to an agar
block with the ventral surface facing out and placed in the vise of a vibratome. We cut 550-pm-thick
transverse brainstem slices that exposed the preBotC at the rostral face and retained the rostral XII nerve
rootlets®® (Fig. 1, step 3). Slices were perfused with ACSF at 28 °C in a recording chamber on a fixed-stage
upright microscope equipped with differential interference contrast optics and epifluorescence, which
enables visual identification and selective recording of target neurons. The K* concentration in the ACSF
was elevated to 9mM to maintain long-term stability of the preBstC rhythm®>*>*!. Rhythmic
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inspiratory-related motor output was recorded from the XII nerve rootlets using suction electrodes and a
differential amplifier. Whole-cell patch-clamp recordings were acquired using capillary glass micro-
pipettes and a current-clamp amplifier. Patch pipettes were positioned under visual control after
fluorescent identification of Dbxl neurons. The patch solution contained (mM): 140 potassium
gluconate, 10 Hepes, 5 NaCl, 1 MgCl,, 0.1 EGTA, 2 Mg-ATP, 0.3 Na3-GTP and 2mgml™" biocytin
(B4261; Sigma Aldrich). All of the neurons in this data set were rhythmically active in sync with
inspiratory XII motor output.

After the recordings, transverse slices containing biocytin-filled neurons were fixed in 4%
paraformaldehyde in 0.1 M sodium phosphate buffer for at least 16 h at 4 °C (Fig. 1, step 4). Then, the
slices were treated with Scale solution containing 4 M urea, 10% (mass/volume) glycerol and 0.1% (m/v)
Triton X-100, for 10 days to clear the tissue and remove opaque background staining** (Fig. 1, step 5).
Slices were washed three times for 15 min each in phosphate buffer solution (PBS)+1% Triton X-100
(PBST) and then blocked in PBST with 10% heat-inactivated fetal bovine sera (F4135; Sigma Aldrich) for
45 min. The biocytin was revealed by incubating the slices with fluorescein isothiocyanate-conjugated
ExtrAvidin (E2761; Sigma Aldrich) overnight at 4 °C with three-dimensional rotation on a nutator (Fig.
1, step 6). Next, the slices were rinsed with PBS five times for 15min each and cover-slipped in
Vectashield (H-1500; Vector Laboratories, Burlingame, CA).

Confocal microscopy and digital neuronal reconstruction

We visualized recorded neurons using a spinning-disk confocal microscope (Olympus BX51, Center
Valley, PA) and a laser scanning confocal microscope (Zeiss LSM 510, Thornwood, NY) Three-
dimensional (3D) confocal images of the individual neurons were obtained using a 20x objective
(Olympus numerical aperture 0.5, Zeiss LSM numerical aperture 1.0) at increments of 1 pm in the z-axis
(Fig. 1, step 7). The series of confocal images (i.e., z-stacks) were aligned in three-dimensions, merged or
‘stitched together’ at contiguous borders using Image]J software*’ and the Stitching plugin** (Fig. 1, step
8). This stitching process was iterated until the entire morphology of the neuron was contained within a
single three-dimensional image file. Finally we digitized neuronal morphologies using the Neuromantic
reconstruction tool, which is also free and in the public domain®*. The digital reconstructions were scaled
to the appropriate size based on the micron-to-pixel ratio for each microscope (Fig. 1, step 9). Images
acquired from the LSM microscope were scaled with a 0.41 micron-to-pixel ratio and images from the
Olympus microscope were scaled using a 0.322 micron-to-pixel ratio. This data descriptor pertains to 47
digital morphologies of inspiratory modulated Dbx1 preB6tC neurons, six of which are previously
unpublished (Data Citations 1-6) and 41 which are associated with previous publications
(Data Citations 7-47). The morphologies are all publicly available via NeuroMorpho.org.

Data Records

Digital reconstructions of Dbx1 neurons are located in the Del Negro archive of the NeuroMorpho
database (Data Citations 1-47). Digital reconstruction files are in SWC format, which is a commonly
used format for neuron morphologies**. The reconstruction files contain an x-coordinate, y-coordinate,
and z-coordinate of each neuronal segment. The type of neuronal process, such as cell body, axon, or
dendrite is also specified by type 1, 2, and 4, respectively. (Type 3 represents basal dendrites, but there is
no such distinction in brainstem interneurons, so type 3 is omitted as a classifier in our dataset. Our
dendrites were all designated type 4.) The radius in microns is given for each neuronal segment as well as
the ‘parent’ segment or the index number of the previous segment. Table 1 provides an example of an
SWC file output for a neuron reconstruction. Physiological properties of Dbx1 preBotC and Dbx1
reticular neurons have been described™'*'>. Table 2 lists the reconstructions available in the Del Negro
archive of NeuroMorpho.org.

Technical Validation

In newborn Dbx1<"*®"2%; Rosa26'"°"4"* and Dbx1“*8"%; Rosa26“"** 47! mice, Dbx1 neurons form
an inverted U-shape in the transverse (coronal) plane, which is visible in brainstem slices at the level of
the preBotC. The inverted U-shape originates at the lateral border of the hypoglossal motor nucleus,
located within the dorso-medial portion of the slice, and continues ventrolaterally until the ventral border
of the tissue slice’®. The dorsal border of the preBstC is identifiable because it is immediately ventral to
the semi-compact division of the nucleus ambiguus, which does not express Dbx1?. Visual identification
of the principal loop of the inferior olive and the flattening of the V-shape of the fourth ventricle are other
indicators that the rostral surface of the transverse slice is at the level of the preBotC*.

Slices remained in the recording chamber for at least 15 min after biocytin dialysis to maximize
biocytin diffusion throughout the cytoplasm'®?%, A clearing agent was used to facilitate visualization of
the morphology; however clearing reagents can cause tissue shrinkage or expansion which could distort
morphological features*’. The Scale solution used to clear the tissue in these experiments minimizes or
completely precludes tissue expansion (compared to other methods)**.

The quality of digital reconstructions depends on histology methods, image acquisition, as well as the
digital reconstruction algorithms. To minimize disparities, we consistently used the same method of
histological labeling. The software Neuromantic*’, used for digitizing our image stacks, offers up to
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Index Type x y z Radius Parent
1 1 967.7 1539.0 9 13.81 -1
2 4 970.0 1533.0 10 7.35 1
3 4 971.3 1530.5 10 4.59 2
4 4 972.0 15285 11 3.58 3
5 4 972.1 1525.2 11 327 4
6 4 971.9 1522.6 11 2.57 5
7 4 971.6 1520.1 11 217 6
8 4 971.1 1517.3 10 1.77 7
9 4 971.0 1514.7 9 1.68 8
10 4 970.4 15133 9 161 9
11 4 969.2 1510.2 9 1.50 10
12 4 968.5 1509.6 9 1.50 11
13 4 967.5 1509.4 9 1.50 12
14 4 966.9 1507.9 8.5 1.50 13
15 4 966.5 1506.2 8 1.50 14
16 4 966.3 1504.9 8 1.50 15
17 4 965.9 1503.5 8 1.49 16
18 4 965.3 1502.5 8 1.50 17
19 4 965.1 1501.2 8 1.50 18
20 4 965.9 1500.5 8 1.46 19
21 4 966.0 1499.2 8 1.43 20
22 4 966.1 1496.0 8 1.38 21
23 4 965.2 1494.5 7 1.31 22
24 4 964.7 1493.3 7 1.32 23
25 4 964.0 1492.1 7 1.35 24
26 4 963.6 1490.7 7 1.33 25
27 4 963.0 1489.2 7 1.40 26
28 4 962.6 1488.1 7 1.39 27
29 4 962.5 1486.6 7 1.34 28
30 4 962.5 1485.3 7 1.32 29
31 4 962.1 1483.9 7 141 30
32 4 961.6 1481.6 7 1.32 31
33 4 961.8 1480.3 7 1.34 32
34 4 961.9 1479.6 7 1.33 33
35 4 962.0 1479.0 7 1.33 34
36 4 962.4 1478.0 7 1.30 35
37 4 962.4 1476.7 7 127 36

Table 1. Sample SWC file data for digital neuron reconstruction. http://www.reading.ac.uk/
neuromantic/body_index.php.

16,000% magnification. This zoom feature enables the user to adhere to the most minute details captured
in the image, which results in the most accurate reconstruction possible.

Two of the six new neurons and nine of the previously published neurons had no discernible axon,
which might have indicated insufficient biocytin filling or that the axon was severed during tissue
preparation. We recommend that the end user of the data draw no firm conclusions regarding
connectivity from the lack of an axon in reconstructed digital morphology.

For those neurons whose axons were discernible, we distinguished the axons from the dendrites
according to these criteria: 1) axons generally have a constant diameter whereas dendrites taper distal to
the soma; 2) axons exhibit fewer branches and never show spine-like protrusions; 3) truncated axons near
the slice surface exhibit a bleb or fluorescent circle from the cut end*>*".

Digital reconstructions were uploaded to NeuroMorpho.org, where they undergo a standardization
process. The soma (type 1) should be the initial parent segment for all subsequent segments, whether
dendritic or axonal. Neuronal processes should only connect to either the soma or to segments of the
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Neuron Name Cell type Location NeuroMorpho ID
120621_Dbx1PreBotC Dbx1 preBotC NMO_45917
120623_Dbx1PreBotC Dbx1 preBotC NMO_45918
130819_Dbx1PreBotC Dbx1 preBotC NMO_45921
130910_Dbx1PreBotC Dbx1 preBotC NMO_45922
140110_Dbx1PreBotC Dbx1 preBotC NMO_45923
140117_Dbx1PreBotC Dbx1 preBotC NMO_45924
130212_Dbx1PreBstC1 Dbx1 preBotC NMO_45919
130212_Dbx1PreBstC2 Dbx1 preBotC NMO_45920
140127_Dbx1PreBstC Dbx1 preBotC NMO_45925
111220-Dbx1-2 Dbx1 preBotC NMO_09581
111220-Dbx1-1 Dbx1 preBostC NMO_09582
111219-Dbx1-S2 Dbx1 preBostC NMO_09583
111219-Dbx1-S1 Dbx1 preBotC NMO_09584
111214-Dbx1 Dbx1 preBotC NMO_09585
111212-Dbx1 Dbx1 preBotC NMO_09586
111209-Dbx1 Dbx1 preBotC NMO_09587
111208-Dbx1 Dbx1 preBostC NMO_09588
111109-Dbx1-2 Dbx1 preBstC NMO_09589
111109-Dbx1-1 Dbx1 preBotC NMO_09590
111108-Dbx1 Dbx1 preBotC NMO_09591
111102-Dbx1-2 Dbx1 preBotC NMO_09592
111102-Dbx1-1 Dbx1 preBotC NMO_09593
111101-Dbx1 Dbx1 preBostC NMO_09594
111222-ctrl-2 Dbx1 preBotC NMO_09595
111222-ctrl-1 Dbx1 preBotC NMO_09596
111220-ctrl non-Dbx1 preBotC NMO_09597
111219-ctrl-2 non-Dbx1 preBotC NMO_09598
111219-ctrl-1 non-Dbx1 preBotC NMO_09599
111214-ctrl-2 non-Dbx1 preBotC NMO_09600
111214-ctrl-1 non-Dbx1 preBotC NMO_09601
111209-ctrl non-Dbx1 preBotC NMO_09602
111208-ctrl non-Dbx1 preBotC NMO_09603
111103-ctrl non-Dbx1 preBotC NMO_09604
111101-ctrl non-Dbx1 preBotC NMO_09605
111031-ctrl non-Dbx1 preBotC NMO_09606
130624_Dbx1RF Dbx1 Reticular formation NMO_45926
130625_Dbx1RF Dbx1 Reticular formation NMO_45927
140109_Dbx1RF Dbx1 Reticular formation NMO_45928
140114_Dbx1RF Dbx1 Reticular formation NMO_45929
140120_Dbx1RF Dbx1 Reticular formation NMO_45930
140124_Dbx1RF Dbx1 Reticular formation NMO_45931
140207_Dbx1RF Dbx1 Reticular formation NMO_45932
140208_Dbx1RF Dbx1 Reticular formation NMO_45933
140220_Dbx1RF Dbx1 Reticular formation NMO_45934
140221_Dbx1RF Dbx1 Reticular formation NMO_45935
140301_Dbx1RF Dbx1 Reticular formation NMO_45936
140306_Dbx1RF Dbx1 Reticular formation NMO_45937

Table 2. Digital reconstructions in NeuroMorpho.Org Del Negro Lab Archive.

same type; for example, dendrite segments connect to dendrite segments and axon segments connect to
axon segments. All processes should have a designated type and should not be undefined. A process can
branch into no more than two processes at any given point.
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Some irregularities can be fixed automatically during the standardization process**. If a neuronal
segment is designated as a different type than its parent and daughter segments (e.g., a type 3 surrounded
by type 2s) the erroneous segment type is automatically changed to match the type of its parent and
daughter segments. If the soma is not the initial segment in the file, the soma segment is automatically
changed to the first segment in the file. If a segment has a radius of zero microns, then the radius is
automatically changed to match the radius of its parent. Other digitization issues must be corrected by
the submitting investigator*®. For example, if a segment has not been designated with a process type, the
correct type must be manually entered, rather than automatically assigned, which ensures that the proper
type has been documented. Segments with a radius of zero (i.e., less than 0.05 pm), or larger than four
standard deviations above the average radius of the cell are flagged as physiologically unrealistic during
standardization and must be resolved by the submitting investigator. After the standardization process,
digital reconstruction files and images are then reviewed and approved by the submitting investigator
before being added to the public database*®.
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