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Abstract: In this study, we compared the differences in brain activation associated with the different
types of objects using functional magnetic resonance imaging (fMRI). Twenty-six participants in
their 20s underwent fMRI while grasping four different types of objects. After the experiment, all of
the participants completed a questionnaire based on the Likert Scale, which asked them about the
sensations they experienced while grasping each object (comfort, hardness, pain, ease in grasping).
We investigated the relationship between brain activity and the results of the survey; characteristic
brain activity for each object was correlated with the results of the questionnaire, indicating that
each object produced a different sensation response in the participants. Additionally, we observed
brain activity in the primary somatosensory cortex (postcentral gyrus), the primary motor cortex
(precentral gyrus), and the cerebellum exterior during the gripping task. Our study shows that
gripping different objects produces activity in specific and distinct brain regions and suggests an
“action appraisal” mechanism, which is considered to be the act of integrating multiple different
sensory information and connecting it to actual action. To the best of our knowledge, this is the first
study to observe brain activity in response to tactile stimuli and motor activity simultaneously.

Keywords: functional magnetic resonance imaging; brain activity; tactile sensation; motor activity

1. Introduction

Functional magnetic resonance imaging (fMRI) is used to estimate neuronal activity
in the primary somatosensory cortex [1]. It is used to observe activity in different brain
regions and, in some cases, in response to either passive or active stimuli to the finger [2] or
other body parts, such as the palm, arm, or other areas of the skin [3,4]. It is also used to
investigate cross modal-plasticity in the human cortex by collecting fMRI data to observe
functional connectivity between visual and somatosensory motor cortices [5]. Additionally,
fMRI has been used to investigate functional brain changes in hand movement perception
in the elderly [6].

As there is a strong connection between tactile stimulation and activity of the so-
matosensory cortex, acquiring fMRI data during tactile stimulation could help distinguish
between different stimulated locations on the body surface [7,8]. From another point of
view, by characterizing de-differentiated topographic maps in the primary somatosensory
cortex of younger and older adults, along with finger individuation and hand motor per-
formance, fMRI can also be used to observe impairments in daily behavior [9]. A previous
study used fMRI to analyze tactile working memory by observing the superior parietal lobe
and the right inferior gyrus [10] and examined whether working memory representations
influenced the somatosensory domain [11]. Through fMRI analysis during stimuli to the
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human body, there is a potential to observe and analyze various brain activities and their
related effects on human body function.

Together with the stimuli, it is also important to observe brain activity when the
participant is performing certain body movements. Cerebellar internal models predict
the somatosensory consequences of human movements when touching oneself, which
attenuates the perception of the actual touch [12]. In a previous study, fMRI also revealed
the complexity of the neural representations underlying the understanding of others’ socio-
affective interactions by asking the participants to judge affective aspects of different touch
events while watching videos and analyzing the results using correlational multivariate
pattern analysis methods [13].

Moreover, a previous study used fMRI to observe brain activity using multiple tactile
stimuli. The participants touched different protrusions or shapes with their fingertips while
their primary sensory-motor and higher-level brain region activation were observed [14].
To establish significant coding of tactile stimulus, rule, and response for multiple demand
regions, other studies performed a stimulus-response task, in which they discriminated be-
tween two possible vibrotactile frequencies and applied a stimulus-response transformation
rule to generate a button-press response [15].

The purpose of this study was to observe brain activity whilst the participants grasped
four different shaped objects that were expected to cause different activations. We mainly
focused on observing two different aspects at the same time: (1) brain activity during
motor activity (grasping) and (2) brain activity produced by different sensations (comfort,
hardness, pain, and ease in grasping), which we expected to occur in the participants
when they grasped different objects. We observed and analyzed the brain regions that
showed activation. Moreover, through observing different types of brain activation, we
aimed to verify the “action appraisal” mechanism, which is considered to be the act of
integrating multiple different sensory information and connecting it to actual action [16].
The information generated from executing the task for the four objects (such as the motion
of moving the hand, the sensation of touching the object, and the emotion produced by
gripping the object) should be collected and evaluated to verify such a mechanism.

2. Materials and Methods
2.1. Participants

This study included 26 right-handed healthy, non-psychiatrically impaired individuals
in their 20s (11 male and 15 female; mean age, 21.0 years; standard deviation, 0.8 years)
who had no experience with undergoing fMRI examination while grasping different types
of objects.

This study was approved by the Research Ethics Committee of Niigata University of
Health and Welfare (approval no. 18683-210720). Written informed consent was obtained
from all participants. A participant interview was performed to ensure the safety of
MRI imaging.

2.2. Stimuli Task

First, we selected different types of objects that were expected to give the participants
different feelings when they grasped them. We chose four different types of objects (Figure 1):
Object 1, a ball with warts (Φ6 cm, weight 40 g, PVC material); Object 2, a squeezable ball
(Φ6 cm, weight 132 g, silicone); Object 3, a regular hard ball (Φ6 cm, weight 73 g, Rubber); and
Object 4, Slime (Φ6 cm, weight 118 g). We also estimated the different kinds of feelings each
object would produce: Object 1 (a ball with warts), comfort or pain; Object 2 (a squeezable ball),
comfort; Object 3 (a regular hard ball), hardness; and Object 4 (slime), discomfort. These were
expected to show different activity in different brain regions.
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Figure 1. Pictures of the objects. (a) Object 1: A ball with wards; (b) Object 2: A squeezable ball; (c) 

Object 3: A regular hard ball; (d) Object 4: Slime. 

The block design of the task consisted of a 30-s repetition of the resting task and a 30-

s repetition of the stimulus task for a total of 3 min (Figure 2). We chose this block design 

based on previous fMRI experiments of tactile stimulation, in which the task and rest 

blocks are in 30-s increments to investigate prominent activation of the intraparietal and 

somatosensory areas during angle discrimination by intra-active touch [2]. 

 

Figure 2. Block design of the stimulus task: 30 s, 30 s per task, three intervals per object. 

We limited the consciousness bias of each task by not actually showing the type of 

object to grasp to the participant before they underwent the imaging procedure. We also 

aimed to stabilize the power and pace of grasping activity in each participant to unify the 

conditions as much as possible. Therefore, we used a dynamometer to measure the grasp-

ing power and a metronome to set the pace of each task. Before entering the MRI room, 

we instructed the participants to grasp the dynamometer at a grasping power of 10 kg and 

a pace of 100 beats per min (bpm), as set by the metronome, to rehearse the activity before 

the imaging experiment. After entering the MRI room, the participants were placed in the 

supine position on the MRI bed with their arms extended along the body side. The right 

palm was rotated outward to grip each of the four objects in turn, while the left hand 

remained in line with the body and was not used for the gripping tasks. Before each task, 

Figure 1. Pictures of the objects. (a) Object 1: A ball with wards; (b) Object 2: A squeezable ball;
(c) Object 3: A regular hard ball; (d) Object 4: Slime.

The block design of the task consisted of a 30-s repetition of the resting task and a
30-s repetition of the stimulus task for a total of 3 min (Figure 2). We chose this block
design based on previous fMRI experiments of tactile stimulation, in which the task and
rest blocks are in 30-s increments to investigate prominent activation of the intraparietal
and somatosensory areas during angle discrimination by intra-active touch [2].
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We limited the consciousness bias of each task by not actually showing the type of
object to grasp to the participant before they underwent the imaging procedure. We also
aimed to stabilize the power and pace of grasping activity in each participant to unify
the conditions as much as possible. Therefore, we used a dynamometer to measure the
grasping power and a metronome to set the pace of each task. Before entering the MRI
room, we instructed the participants to grasp the dynamometer at a grasping power of
10 kg and a pace of 100 beats per min (bpm), as set by the metronome, to rehearse the
activity before the imaging experiment. After entering the MRI room, the participants were
placed in the supine position on the MRI bed with their arms extended along the body
side. The right palm was rotated outward to grip each of the four objects in turn, while the
left hand remained in line with the body and was not used for the gripping tasks. Before
each task, the experiment assistant entered the MRI room and placed the object on the
participant’s right palm.

2.3. Apparatus

Imaging was performed on a 3 Tesla MRI system (Canon Vantage Galan; Canon,
Tokyo, Japan) with a 32- channel head coil. The participants laid in the MRI machine and
underwent the block-designed task of grasping four different types of objects in the order
of Object 1, Object 2, Object 3, and Object 4. The object was placed on each participant’s
right palm by the experiment assistant after each task block ended. The participant’s right
hand was placed on a white nylon waterproof sheet.

2.4. MRI Acquisition

A separate high-resolution MRI image is required to obtain detailed anatomical infor-
mation prior to fMRI imaging. For this purpose, a high-resolution magnetization-prepared
rapid gradient echo sequence of T1-weighted imaging was used, with the following pa-
rameters: repetition time, 5.8 ms; echo time, 2.7 ms; inversion time, 900 ms; flip angle, 9;
the number of matrices (matrix), 256 × 256; effective field of view, 23 × 23 cm; and slice
thickness, 1.2 mm. The echo-planar imaging sequence was used to capture the fMRI images.
The images were repeatedly obtained and used to compare the two stimuli. The fMRI
imaging conditions were as follows: repetition time, 2,000 ms; echo time, 25 ms; flip angle,
85; matrix, 64 × 64; effective field of view, 24 × 24 cm; and slice thickness, 3 cm to cover
the whole brain.

2.5. fMRI Data Analyses

The fMRI data were preprocessed and analyzed using Statistical Parametric Mapping
12 (Wellcome Trust Center for Neuroimaging) in Matlab (Mathworks Inc., Natick, MA, USA).
Slice timing correction was used to correct the time difference, and realignment was then
used to correct the displacement caused by motion. In addition, a co-register was used to
compare the structural images with the fMRI images. The co-register was corrected for
misalignment between structural and functional images, and the data were preprocessed
by normalizing each participant’s brain to a template of the Montreal Neurological Institute
coordinate system of a standard brain. The normalized images were smoothed using a
Gaussian kernel of 8 mm. After preprocessing, we employed a general linear model GLM
to confirm brain activity changes associated with the four different grasping tasks using a
block design. Contrast images were created at first level (single subject) for the following
contrast: (1) Object 1 = 1, rest = 0; (2) Object 2 = 1, rest = 0; (3) Object 3 = 1, rest = 0 (4);
Object 4 = 1, rest = 0. The head motion parameters obtained from the preprocessing step
were included as regressors in each condition to minimize the effect of the participant’s
head motion artifacts. For group analysis (second level), a one-sample t-test was performed
using the aforementioned four contrasts. The initial threshold for the voxel size was set to
uncorrected p < 0.001. Clusters were considered significant at p < 0.05, cluster-corrected for
family-wise error. Each object was analyzed separately.
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2.6. Questionnaire

After the experiment, the participants were administered a questionnaire based on
the Likert Scale. They were requested to answer a question regarding the sensations they
experienced when grasping each different object, categorized as four different feelings:
comfort, hardness, pain, and ease in grasping. Additionally, to quantify differences within
the same sensory category, scores between 1–5 points were used as follows: 1, completely
disagree; 2, disagree; 3, undecided; 4, agree; and 5, strongly agree.

2.7. Data Analysis

To make the brain activity for each object easier to understand, we calculated the
percent signal change (PSC) in the region of interest (ROI). The PSC was calculated as
the blood-oxygen-level-dependent signal ratio in response to stimuli over that without
stimulus. The ROI was calculated as the precentral gyrus, postcentral gyrus, anterior insula,
lateral hemisphere of the cerebellum, and ventral diencephalon. Marsbar (MarsBaR region-
of-interest toolbox for SPM) was used to calculate the PSC of each ROI for each object.

Statistical analysis was performed using SPSS version 26 (IBM Corp., Armonk, NY, USA)
with one-way ANOVA for each ROI, and Bonferroni’s method was used as a post hoc test
when significant differences were found. The significance level was set at 5%.

3. Results

The results of the survey showed that each object produced a different sensation in
participants. Table 1 shows the results of the questionnaire for each object. One of 26 ques-
tionnaire responses was excluded because the participant did not complete the questions.

Table 1. Results of the questionnaire for each object.

Completely
Disagree Disagree Undecided Agree Strongly

Agree

Object 1

Comfort 17 3 2 3 0
Hard 0 0 0 3 22
Pain 0 0 0 5 20

Easy to grasp 5 7 3 10 0

Object 2

Comfort 2 4 1 5 13
Hard 17 5 0 2 1
Pain 23 1 0 0 1

Easy to grasp 0 1 1 8 15

Object 3

Comfort 6 9 6 3 1
Hard 0 2 0 11 12
Pain 19 6 0 0 0

Easy to grasp 5 4 4 8 4

Object 4

Comfort 7 7 1 7 3
Hard 25 0 0 0 0
Pain 25 0 0 0 0

Easy to grasp 18 6 1 0 0

Overall, we met the aims of this study, which were the observation of brain activity
during motor activity and tactile stimulation using fMRI imaging. We observed activity in
the primary somatosensory cortex (postcentral gyrus), the primary motor cortex (precentral
gyrus), and the lateral hemisphere of the cerebellum during the motor activity of the
grasping task.

We also observed the locations of the brain activities for each object that the participants
grasped in detail. The coordinates of the areas that showed activity for each of the four
objects are presented in Table 2.

The results of the calculation of the PSC in the ROI, to observe the different brain
activity for each object, are presented in Table 3 and Figure 3. A significant difference
was noted in the anterior insula (p < 0.001). The other regions did not show a significant
difference in the brain activity for each object.
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Table 2. Significantly activated areas and their T-values and coordinates when grasping each object.

Cluster
Size

(voxels)

Cluster
p-Value
(FWE)

T-Value Z-Score x {mm} y {mm} z {mm} Hemisphere Locations

Object 1

3797 <0.001 12.43 6.96 22 −52 −26 Right Lateral hemisphere of the
cerebellum

1989 <0.001 9.18 6.02 −46 −26 52 Left Postcentral gyrus
502 0.004 6.97 5.15 −20 −30 16 Left Thalamus proper
827 <0.001 6.62 4.98 −46 4 10 Left Precentral gyrus
539 0.003 6.39 4.88 52 −32 52 Right Supramarginal gyrus
394 0.012 5.59 4.46 26 40 16 Right Middle frontal gyrus
635 0.001 5.49 4.41 48 6 2 Right Anterior insula

Object 2

5231 <0.001 11.77 6.79 20 −56 −22 Right Lateral hemisphere of the
cerebellum

2557 <0.001 9.53 6.14 −36 −28 46 Left Precentral gyrus
2520 <0.001 7.18 5.24 56 −18 40 Right Supramarginal gyrus
715 <0.001 5.7 4.52 58 10 24 Right Precentral gyrus
337 0.019 5.14 4.2 32 54 12 Right Middle frontal gyrus

Object 3

2642 <0.001 13.91 7.3 −42 −24 58 Left Postcentral gyrus

4589 <0.001 9.34 6.08 18 −54 −22 Right Lateral hemisphere of the
cerebellum

2219 <0.001 7.91 5.55 60 −18 36 Right Supramarginal gyrus
397 0.014 5.13 4.2 −44 0 8 Left Anterior insula
378 0.017 5.11 4.19 −4 −10 54 Left Supplementary motor cortex

Object 4

3729 <0.001 8.78 5.88 16 −54 −20 Right Lateral hemisphere of the
cerebellum

2140 <0.001 7.5 5.38 −52 −20 48 Left Postcentral gyrus
395 0.004 7.4 5.34 −18 −20 18 Left Thalamus proper
281 0.019 6.44 4.9 56 −56 −10 Right Inferior temporal gyrus

1417 <0.001 6.16 4.76 54 −24 48 Right Supramarginal gyrus
222 0.044 5.69 4.52 −8 −16 −12 Left Ventral diencephalon

Table 3. Percent signal change in the brain areas according to each object.

Object 1 Object 2 Object 3 Object 4 F-Value p-Value

Precentral gyrus 0.358 ± 0.483 0.446 ± 0.424 0.234 ± 0.369 0.221 ± 0.380 1.716 0.169

Postcentral gyrus 1.124 ± 0.363 1.251 ± 0.782 1.128 ± 0.415 0.790 ± 0.593 2.640 0.054

Anterior insula 0.286 ± 0.266 0.310 ± 0.395 0.295 ± 0.296 0.054 ± 0.215 4.278 <0.001

Lateral hemisphere
of the cerebellum 0.801 ± 0.401 0.968 ± 0.392 0.874 ± 0.527 0.645 ± 0.438 2.490 0.065

Ventral
diencephalon 0.028 ± 0.252 0.106 ± 0.335 0.100 ± 0.289 0.206 ± 0.215 1.834 0.146
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4. Discussion

To the best of our knowledge, this is the first study to observe the brain activity
produced by tactile stimuli from two aspects at the same time: motor activity and feelings
of tactile stimuli. Regarding motor activity, activation was observed in the precentral
gyrus, postcentral gyrus, and lateral hemisphere of the cerebellum, indicating that we could
measure brain activation related to motor activity, as in past studies [17].

In addition, we observed that the differing brain activation correlated with the sensa-
tions the participants experienced when grasping each object. Figure 4 shows the images of
the brain activation whilst the participants grasped each object. For Object 1, we observed
strong activity in the left postcentral gyrus and matched the subjects’ feelings of pain [18]
when grasping Object 1. For Object 2, we observed strong activity in the right middle frontal
gyrus, which showed unique activation in the brain region associated with relaxation [19].
The squeezable ball is generally supplied to consumers to grasp for relaxation. For Object 3,
we observed strong activity in the left postcentral gyrus, reflecting the participants experi-
encing the hardness of the ball [20], which required more strength to grasp compared to the
other objects. Unique and strong activities were observed in the left ventral diencephalon
for Object 4, which was correlated with the participants’ anxiety [21] regarding grasping
something that led to discomfort and their inability to understand the object immediately.
Moreover, by comparing the results of the questionnaire and those of the fMRI examination,
we confirmed the correlation between these two.
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Sensory information obtained when touching an object reaches the primary somatosen-
sory cortex (S1) via the spinal cord, brainstem, and thalamus. Dynamic tactile stimuli, such
as hand movements, are thought to activate the lateral prefrontal cortex, inferior parietal
lobule (IPL), and insular cortex, among others, in addition to the primary and secondary
somatosensory cortices [22]. Ishibashi et al. reported that the brain processing areas that
recognize and use tools are the IPL and ventral premotor cortex [23]. Pupíková et al. re-
ported on action reappraisal mechanisms during object and tool recognition by measuring
resting-state fMRI before and after transcranial direct current stimulation targeting the right
frontoparietal network (FPN) [24]. Federico et al. also reported on how various sources of
information are used for the motor behaviors performed by humans [16,25]. This action
reappraisal is considered to be the act of integrating multiple different sensory information
and connecting it to actual action [24]. In this research, various pieces of information for the
four objects, the motion of moving the hand, the sensation of touching the object, and the
emotion produced by gripping the object, are considered to be integrated to recognize the
objects. In particular, the supramarginal gyri (SMGs) (BA40) are activated in all four objects,
even if they are different objects. SMGs comprise the IPL, which integrates somatosensory,
visual, and auditory perception and is considered to be involved in object identification
and spatial perception. It is presumed that the SMG was activated by the multiple sensory
information in this study.

This study has some limitations. As it focused on tactile sensations for four different
objects, visual and auditory sensations were not examined. Future studies combining multi-
ple sensory information (tactile, visual, and auditory) are needed. We should also examine
functional connectivity using resting-state fMRI. In particular, the right FPN should be
examined because it is a large brain network consisting of the dorsolateral prefrontal cortex
and is considered to be involved in executive functions and cognitive control.

Future research using alternative or improved methods would be needed to further
investigate the correlation between brain activity, motor activities, and sensation. First,
investigating dynamic functional connectivity (dFC) within the results shall be effective
and important, as such a method can capture information that cannot be evaluated by
conventional static FC analysis methods. Moreover, analyzing and investigating dFC patterns
within the sensorimotor areas can also be associated with multiple types of cerebral neurosis.

In this study, the full width half maximum (FWHM), which is a parameter for smooth-
ing, was set at 8 mm. However, analyze the activation of the primary motor cortex and
primary somatosensory cortex in detail, it is necessary to reduce the FWHM to a smaller
value (e.g., 4 mm).

Changing the order of the objects to grasp or changing the block design to extend the
rest period may produce different results. For example, the object the individual grasps
immediately before may influence how he/she feels when grasping a new object. In
addition, if participants with a wider age range are enrolled, the brain activation may be
different. Another interesting change could be the introduction of another different type of
object, especially the use of an object that is estimated to make the participants feel more
discomfort so as to observe the effects produced by discomfort.

5. Conclusions

We observed the brain activity produced by motor activity combined with tactile
stimulation, as we initially intended in this study. Brain activation generated by motor
activity was observed in the primary somatosensory cortex, primary motor cortex, and
cerebellum exterior. Different and specific brain activation was observed for each object in
distinct brain regions.
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