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A B S T R A C T   

An estimated 284,000 Americans will be diagnosed with breast cancer in 2021. Of these individuals, 15–20% 
have basal-like triple-negative breast cancer (TNBC), which is known to be highly metastatic. Chemotherapy is 
standard of care for TNBC patients, but chemoresistance is a common clinical problem. There is currently a lack 
of alternative, targeted treatment strategies for TNBC; this study sought to identify novel therapeutic combi-
nations to treat basal-like TNBCs. For these studies, four human basal-like TNBC cell lines were utilized to 
determine the cytotoxicity profile of 1363 clinically-used drugs. Ten promising therapeutic candidates were 
identified, and synergism studies were performed in vitro. Two drug combinations that included KPT-330, an 
XPO1 inhibitor, were synergistic in all four cell lines. In vivo testing of four basal-like patient-derived xenografts 
(PDX) identified one combination, KPT-330 and GSK2126458 (a PI3K/mTOR inhibitor), that decreased tumor 
burden in mice significantly more than monotherapy with either single agent. Bulk and single-cell RNA- 
sequencing, immunohistochemistry, and analysis of published genomic datasets found that XPO1 was abun-
dantly expressed in human basal-like TNBC cell lines, PDXs, and patient tumor samples. Within basal-like PDXs, 
XPO1 overexpression was associated with increased proliferation at the cellular level. Within patient datasets, 
XPO1 overexpression was correlated with greater rates of metastasis in patients with basal-like tumors. These 
studies identify a promising potential new combination therapy for patients with basal-like breast cancer.   

Introduction 

Breast cancer is the most frequently diagnosed cancer in women, 
contributing 23% of total cancer diagnoses and 14% of total cancer 
deaths [1]. It is estimated that over 284,000 Americans will be diag-
nosed with breast cancer in 2021 [2]. Of these individuals, approxi-
mately 10–20% will be diagnosed with triple-negative breast cancer 
(TNBC) [3]. TNBC is characterized by a lack of estrogen receptor (ER), 
progesterone receptor (PR), and human epidermal growth factor re-
ceptor 2 (HER2) amplification [4]. TNBC is an aggressive, highly met-
astatic subtype of breast cancer [5]. Despite greater initial clinical 
response to neoadjuvant chemotherapy, patients with TNBC have a 

higher likelihood of distant reoccurrence and a lower rate of survival 
than patients with other breast cancer subtypes [6,7]. TNBC is difficult 
to treat due to its heterogeneity and lack of established biomarkers. [8] 
Gene expression profiles reveal at least six distinct TNBC subtypes: 
basal-like 1 and 2, immunomodulatory, mesenchymal, mesenchymal 
stem-like, and luminal androgen receptor [8]. The majority of TNBCs are 
basal-like [9]. 

Unlike ER+, PR+, or HER2+ breast cancers, TNBCs cannot be 
treated with endocrine therapies or HER2-targeted agents, and chemo-
therapies are standard of care. Platinum-based compounds carboplatin 
and cisplatin are often first-line therapies for basal-like TNBC [10]. 
Second line therapies include combination treatment with multiple 
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chemotherapeutics from different classes [10]. Unfortunately, drug 
resistance can occur, and 90% of treatment failures in metastatic cancers 
are attributed to chemoresistance [11]. Tumor environmental stresses 
induced by chemotherapies can promote autophagy and senescence, 
both of which contribute to the development of chemoresistance in 
TNBC [12]. Given that many basal-like tumors are intrinsically 
chemotherapy resistant, or develop acquired resistance, it is important 
to identify targeted therapeutics that can be incorporated into the 
standard of care. With thousands of available drugs, high throughput 
drug screening (HTS) is a systematic method of identifying promising 
therapeutic agents. Previously, HTS has been used to identify an anti-
neoplastic agent, A-105972, that showed promising in vivo activity, 
increasing the life span of mice with melanoma and leukemia [13]. 
Powell et al. (2020) performed HTS on treatment-naïve TNBC samples to 
identify promising drugs that are cytotoxic towards different TNBC 
subtypes [14]. HTS has also been used to identify synergistic drug 
combinations [15–17]. 

Due to high rates of metastasis, basal-like disease is associated with 
relatively worse prognosis than other TNBC subtypes [18,19] The pre-
sent study focuses on identifying targeted drug pairs that are cytotoxic to 
basal-like TNBC. Through screening a drug library containing 1363 
drugs-most of which are FDA-approved- on basal-like cell lines and 
performing synergism studies on selected combinations, synergistically 
cytotoxic therapeutic combinations were identified. Then, the antitumor 
efficacy of these combinations was assessed in vivo using human 
basal-like TNBC PDXs. Single-cell RNA sequencing (scRNAseq) and 
immunohistochemistry assessed the expression of drug targets in human 
basal-like TNBC cell lines and PDXs. As presented here, these pre-clinical 
studies suggest that co-targeting XPO1 and PI3K/mTOR is a promising 
approach for the treatment of basal-like breast cancer. 

Material and methods 

Breast cancer cell lines 

Four basal-like TNBC cell lines- MDA-468, HCC-1143, HCC-1187, 
and SUM-149- were used in this study. MDA-468 cells were provided 
by Dr. Youngman Oh (VCU). SUM-149 cells were purchased from 
Asterand. HCC-1143 and HCC-1187 cells were purchased from the 
American Type Culture Collection (ATCC). Cells were cultured in RPMI- 
1640 GlutaMAX media (ThermoFisher Scientific) supplemented with 
10% fetal bovine serum (FBS) and penicillin/streptomycin. Cells were 
negative for mycoplasma infection (ATCC Mycoplasma Detection Kit). 

Cell viability assays 

Firefly luciferase-GFP lentiviral transduction was performed on all 
cell lines to induce luciferase expression. CMV-Luciferase (firefly)− 2A- 
GFP was purchased from GenTarget Inc. Puromycin was used to select 
for labeled cells to establish stable, GFP-luciferase labeled cell lines. Cell 
lines were plated in 96-well plates at 1500 to 5000 cells (cell-line 
dependent) per well. Cells were incubated overnight to allow for 
adherence. Then, cells were treated with drugs for 72 h. At hour 72, cells 
were imaged to measure luciferase activity (total photon flux per sec-
ond) two minutes after the addition of D-luciferin (15 mg/ml; GoldBio) 
(1/20 of total volume per well). The IVIS Spectrum In vivo Imaging 
System (Xenogen IVIS-200) and living image software (PerkinElmer) 
were used to image cells and quantify luciferase activity [17]. Labeled 
cell lines and luciferase readout were used for high-throughput drug 
screening and single-dose combination assay. Unlabeled, parental cell 
lines and CellTiter-Glo Luminescent Viability Assay (Promega) were 
used for synergism screens. CellTiter-Glo Luminescent Viability Assay 
was performed according to the manufacturer’s protocol. 

In vitro high throughput drug screening 

MDA-468, HCC-1143, HCC-1187, and SUM-149 cells were treated 
with 1363 drugs (ApexBio DiscoveryProbe FDA-approved Drug Library) 
at 10 µM for 72 h. Cell viability was quantified by normalizing treated 
wells to vehicle wells to produce a percent of vehicle value. The 1363 
drugs were ranked by cytotoxicity in each cell line. Venny 
(https://bioinfogp.cnb.csic.es/tools/venny/) was used for cytotoxicity 
visualization. 64 of these drugs displayed exceptional relative cytotox-
icity across all four cell lines. From these 64 drugs, six drugs targeting 
different genes were selected for further study: MLN2238, crizotinib, 
afatinib, KPT-330, dovitinib, and GSK2126458. ABT-263 and dasatinib 
were also included, as they showed exceptional cytotoxicity in three of 
the four cell lines. Finally, sorafenib and cobimetinib were selected due 
to their unique gene targets, BRAF and MEK respectively. Sorafenib and 
cobimetinib were the most cytotoxic BRAF and MEK inhibitors studied. 
Heatmap depicting relative cytotoxicity of 68 drugs of interest on human 
basal-like TNBC cell lines and PDXs was created using Morpheus (https 
://software.broadinstitute.org/morpheus). Data were hierarchically 
clustered by both samples (cell lines/PDXs) and drugs using the one 
minus Pearson correlation metric and average linkage method. 

Single-dose two-drug combination studies 

The cell lines HCC-1143 and SUM-149 were used to perform all 
preliminary combination studies. Dose response curves were performed 
to identify the cytotoxicity profiles of the ten drugs of interest. Solid drug 
was purchased from ApexBio. Dose response curves were used to iden-
tify a cytotoxic dose, or approximate IC50 dose, of each drug. Then, cells 
were treated with the identified dose of each drug alone and in combi-
nation with the identified dose of all nine other drugs. The cytotoxicity 
of each combination was rank ordered to identify the most cytotoxic 
combinations in each cell line. The cytotoxicity of the combination was 
compared to the cytotoxicity of both drugs alone. In order to be selected 
for further study, the cytotoxicity of the combination had to be greater 
than the cytotoxicity of either single agent. Six combinations that met 
these criteria in HCC-1143 and/or SUM-149 were selected for further 
study. 

Synergism studies 

Unlabeled human basal-like TNBC cell lines were treated with seven 
doses of each drug in the combination and all two-drug dose combina-
tions for 72 h in vitro. Two independent experiments were performed in 
triplicate. The data were analyzed with CompuSyn software, which 
utilizes the Chou-Talalay method to identify quantifiable synergism 
between two or more drugs [20–22]. CompuSyn software produced CI 
values and DRI values for each independent experiment. CI values and 
DRI values were averaged for each cell line to produce Fa-CI and Fa-DRI 
plots. 

High speed live cell interferometry 

UCD52 mammary gland tumors were excised from mice once they 
reached ~10 mm x 10 mm in size. Tumors were prepped into a single- 
cell suspension using the protocol described previously [17]. Cells 
were plated in a 24-well plate at a density of 103–104 cells per well. Cells 
were treated with the specified concentration of drug for 24 h. High 
speed live cell interferometry (HSLCI) was used to obtain single cell 
biomass measurements every ten minutes as described by Murray et al. 
(2018) [23]. Biomass measurements were aggregated to create plots 
depicting hourly cell growth rate. 

Single-cell RNA sequencing 

Single-cell RNA sequencing (scRNAseq) was performed on four 
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human basal-like TNBC cell lines- HCC-1143, HCC-1187, MDA-468 and 
SUM-149 and four human basal-like TNBC PDXs- HCI-001, WHIM2, 
WHIM30, and UCD52. ScRNAseq was performed using the Chromium 
Single Cell Gene Expression Kit (10X Genomics) per the manufacturer’s 
protocol. Samples were aligned and gene expression calculated using the 
10X Genomics CellRanger v3.1 software suite of tools, and dead/poor 
quality cell removal was done using an in-house R script utilizing the 
Seurat v3.1.5 package. PDX samples went through additional filtering 
and realignment to remove mouse cells prior to creating a final merged 
dataset containing only human cells using CellRanger. 10X Loupe Cell 
Browser v4.0.0 was used to visualize cell clusters and perform differ-
ential gene expression analyses across clusters [24,25]. ScRNAseq data 
is publicly available on the NCBI Gene Expression Omnibus (GEO 
Accession: GSE174391). 

Immunohistochemistry 

Immunohistochemical staining was performed on formalin-fixed, 
paraffin-embedded tumors. Heat-induced antigen retrieval was per-
formed in pH 9 Tris-EDTA using a Dakocytomatin Pascal Pressure 
Chamber. XPO1 (Cell Signaling Technology, 46249) antibody was 
diluted 1:200 in SignalStain Antibody Diluent (Cell Signaling Technol-
ogy) and was applied to sections from the aforementioned tumors. 
Detection was performed using the Rabbit Dako EnVision System (Agi-
lent K406511–2). Slides were imaged using Zeiss Axio Observer. 

Public dataset analyses 

The PDX RNA-sequencing data was obtained from a previously 
published dataset (GEO Accession: GSE118942) [26]. Breast cancer 
TCGA gene expression data were obtained and analyzed using the 
curatedTCGAdata v.1.12.1 and TCGAutils v.1.10.1 R packages. The 
associated statistical analyses and visualizations were performed in R 
v.4.0.3 statistical environment. XPO1 expression was also assessed using 
a combined 855 breast cancer dataset [18] derived from four breast 
cancer microarray datasets (GSE2034, GSE12276, GSE2603, and 
NKI295) combined with reported clinical site(s) of first relapse [27]. In 
the original studies, all patient tissue samples were collected in accor-
dance with IRB-approved protocols. Patients were grouped based on 
breast cancer intrinsic subtype. Patients with basal-like tumors (N =
140) were rank-ordered based on XPO1 expression and divided into 
quartiles. Kaplan-Meier curves were generated with GraphPad Prism 
V9.0.0. 

Basal-like TNBC PDXs 

Four basal-like TNBC PDXs were used in this study: HCI-001, 
WHIM30, WHIM2, and UCD52. HCI-001 was obtained from the 
Huntsman Cancer Institute. WHIM2 and WHIM30 were obtained from 
Washington University, St. Louis. UCD52 was obtained from the Uni-
versity of Colorado. Tumor fragments were implanted in the mammary 
gland of female non-obese diabetic severe combined immunodeficient 
gamma (NSG) mice. Tumors were allowed to grow until they reached 
approximately 10 mm x 10 mm in size. Then, tumors were removed and 
prepped into a single-cell suspension according to the protocol described 
previously [17]. Single-cell suspensions of PDX cells were used for in 
vitro assays, HSLCI, or serial passaging into mice. 

In vivo drug treatment studies 

All studies involving mice were in accordance with the VCU Insti-
tutional Animal Care and Use Committee (IACUC). Single cell suspen-
sions were prepped from harvested PDX mammary gland tumors. Tumor 
cells were resuspended in Matrigel (Corning) and injected into the right 
mammary gland (250,000 cells per injection) of female non-obese dia-
betic severe combined immunodeficient gamma (NSG) mice. Drug 

treatment began when all tumors were ~ 3 mm x 3 mm. Mice were 
randomized into treatment groups. All drugs were dissolved in a solution 
of 1% methylcellulose + 0.1% Tween-80. All drugs were administered 
via oral gavage. KPT-330 was administered thrice weekly at 5 mg/kg for 
21 days. MLN9708 and GSK2126458 were administered twice weekly at 
the appropriate doses, 4 mg/kg and 2 mg/kg respectively, for 21 days. 
Mice receiving combination treatment received KPT-330 thrice weekly 
and the second drug twice weekly. Combination-treated mice never 
received both drugs on the same day. Tumor growth was monitored via 
biweekly caliper measurements. After 21 days, all mice were euthanized 
via CO2 asphyxiation followed by cervical dislocation. Tumors were 
then excised, weighed ex vivo, and photographed. Mice reaching 
maximum tumor burden prior to completion of the study were sacri-
ficed, and their tumor measurements were not considered in endpoint 
analyses. 

Results 

High throughput drug screening of cell lines and PDXs identified cytotoxic 
drugs for basal-like TNBC 

Since the majority (~75%) of TNBCs are transcriptomically classi-
fied as basal-like [9], we utilized four basal-like human cell lines for 
these studies: HCC-1143, HCC-1187, MDA-468, and SUM-149. To best 
model aggressive, advanced disease, cell lines were chosen for their 
demonstrated ability to metastasize in vivo or relative chemoresistance 
in vitro [28,29,30]. The cytotoxic activity of 1363-drugs that have 
largely been FDA-approved for cancer/non-cancer indications was 
determined at a 10 µM dose; 68 therapeutic candidates that were 
strongly cytotoxic across the models were identified. These data were 
contrasted with cytotoxic responses of five human basal-like TNBC PDXs 
(Fig. 1a) [17]. Many of the drugs that were cytotoxic towards cell lines 
were also effective on PDX cell suspensions. Classes of effective drugs 
found to be previously well-tolerated in clinical trials were prioritized 
for further study. Ultimately, ten agents with unique molecular targets 
were selected for further evaluation in combinatorial studies (primary 
drug target in parentheses): ABT-263 (BCL-2), afatinib (EGFR), cobi-
metinib (MEK), crizotinib (ALK, ROS1), dasatinib (SRC), dovitinib 
(FGFR), MLN2238 (PSMB5), GSK2126458 (PI3K/mTOR), KPT-330 
(XPO1), and sorafenib (BRAF). MLN9708, the citrate-bound version of 
MLN2238 which hydrolyzes to the biologically active form MLN2238 
upon exposure to aqueous solutions or plasma, was used for in vitro and 
in vivo studies. Dose response curves were performed with the four 
human basal-like TNBC cell lines to identify the cytotoxicity profile of 
each agent (Supplemental Fig. S1). 

Drugs of interest displayed increased cytotoxicity in combination 

A single dose of each selected drug that killed approximately half of 
the cells compared to vehicle (IC50) was used in a combinatorial assay 
with every other drug at its pre-defined dose (Supplemental Table S1). 
This led to the exploration of 45 unique drug combinations targeting 
distinct molecular pathways (Fig. 1b). From this dataset, three drug 
combinations from each cell line that showed increased cytotoxicity in 
combination compared to as a single agent were identified (Fig. 1c, d). 

Nuclear-export inhibitor-based combinations were synergistically cytotoxic 
in human basal-like TNBC cell lines 

The Chou-Talalay Method of synergism analysis was utilized to 
identify quantifiable synergism with the following combinations: KPT- 
330 + GSK2126458, KPT-330 + MLN9708, ABT-263 + MLN9708, 
dasatinib + dovitinib, dovitinib + GSK2126458, and crizotinib + KPT- 
330) (Fig. 2) [20–22]. CompuSyn software was utilized to perform the 
Chou-Talalay Method of synergism analysis. CompuSyn software 
calculated combination index (CI) values and dose-reduction index 
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(DRI) values for each combination. CI values > 1 indicate antagonism; 
CI value = 1 indicates additivity; CI values (<1 indicate synergism. The 
DRI value is a measure of fold reduction of drug dose when administered 
in combination as opposed to as a single agent; DRI ) >1 is favorable. Of 
the six combinations tested, two combinations demonstrated synergistic 
cytotoxicity at high levels of cell death across all four cell lines: KPT-330 
+ GSK2126458 and KPT-330 + MLN9708 (Fig. 2). 

High speed live cell interferometry assessed cellular growth rate following 
drug treatment at the single-cell level 

Cell biomass measurements with high speed live cell interferometry 
(HSLCI) have been utilized to determine the effect of drugs on individual 
cells within a population, the proof-of-principle of which we have pre-
viously demonstrated with carboplatin and BRAF inhibitors [23,31]. In 
this approach, cell growth corresponds with increased cell mass 
(Fig. 3a), and active cell death corresponds with decreasing mass 
(Fig. 3b). In this study, UCD52 PDX cells were treated with vehicle, 
KPT-330, MLN9708, GSK2126458, KPT-330 + MLN9708, or KPT-330 +
GSK2126458, respectively. Treatment with KPT-330, MLN9708, and 
GSK2126458 as single agents decreased hourly growth rate relative to 
vehicle. However, combination treatment with either KPT-330 and 
MLN9708 or KPT-330 and GSK2126458 decreased hourly growth rate to 
a significantly greater extent than treatment with a single agent alone 
(Fig. 3c, d). 

XPO1 expression within basal-like TNBC samples 

Four basal-like patient-derived xenografts were utilized for a set of 
experiments in vivo, including HCI-001, UCD52, WHIM2, and WHIM30. 
Analysis of bulk RNA-sequencing (RNAseq) from these PDX samples 
revealed consistent, positive expression of XPO1 transcript across basal- 
like TNBC PDX samples (Fig. 4a; Supplemental Table S3), with 
WHIM2 showing significantly lower XPO1 expression than the other 
three PDXs. Immunohistochemistry found that XPO1 protein was 
expressed in all tested PDXs (Fig. 4b). These data correlate with XPO1 
immunohistochemistry performed by The Protein Atlas on 11 patient 
tumor samples where homogeneous moderate to high protein expres-
sion was found in > 75% of epithelial tumor cells for each sample. 
(Supplemental Fig. S2) [32–34]. ScRNAseq was performed on the 4 cell 
lines and the 4 PDXs used in this study (Fig. 4c). ScRNAseq revealed that 
XPO1 was abundantly expressed in the majority of the basal-like cells, 
with more heterogenous expression present within the PDX samples 
than the cell lines (Fig. 4d). In each PDX, a subset of cells demonstrated 
XPO1 overexpression compared to the bulk of the population (Fig. 4e). 
At the cellular level, there were significant positive correlations between 
XPO1 expression and MTOR expression as well as XPO1 expression and 
PIK3CA expression (Fig. 4f, g; Supplemental Tables S4, S5). Inter-
estingly, there was also a significant positive correlation between 
expression of XPO1 and expression of MKI67, a known marker of pro-
liferation (Supplemental Fig. S3; Supplemental Table S6) [35]. 

Fig. 1. High throughput screening (HTS) of 1363 drugs and preliminary assessment of drug combination cytotoxicity on human basal-like TNBC cell lines and PDXs. (a) TNBC 
cell lines were treated for 72 h with 10 µM of each drug. Luciferase-based imaging was used to assess viability relative to vehicle. The heatmap depicts relative 
cytotoxicity of 68 promising drugs of interest on human basal-like TNBC cell lines. Basal-like TNBC cell line HTS data was compared to basal-like PDX HTS data 
published previously [17]. (b) A cytotoxic dose of drug 1 (~IC50) and drug 2 (~IC50) was applied to HCC-1143 and SUM-149 cells in every possible two-drug 
combination. Heatmap depicts the relative cytotoxicity of each two-drug combination with darker colors depicting greater cytotoxicity. Black squares indicate 
combinations producing > 50% cell viability or combinations of the same drug. (c, d) Cytotoxicity of the two-drug combinations was compared to cytotoxicity of 
single agents. Three combinations that demonstrated significantly greater cytotoxicity or trended towards greater cytotoxicity than either single agent in HCC-1143 
and/or SUM-149 were identified. 
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Fig. 2. Nuclear-export inhibitor-based combinations are synergistically cytotoxic in human basal-like TNBC cell lines. After 72 h of drug treatments, cell viability as-
sessments were performed using CellTiter-Glo. Chou-Talalay drug combination analyses were performed to identify quantifiable synergistic cytotoxicity of pre- 
identified drug pairs on human basal-like TNBC cell lines. CI value > 1 indicates antagonism; CI value = 1 indicates additivity; CI value 〈< 1 indicates syner-
gism. DRI 〉> 1 indicates a favorable reduction in drug dose when administered in combination at the ratio of drug 1: drug 2 indicated in brackets next to the cell line. 
Fa represents fraction inhibition, or fraction of cells killed. Fa is plotted on the x-axis against combination index (a) and dose reduction index (b). 

Fig. 3. Nuclear-export inhibitor-based combination treatments decrease hourly cell growth rate. A single-cell suspension of UCD52 tumor cells was plated and treated with 
the corresponding concentration of drug for 24 h. High speed live cell interferometry (HSLCI) was used to obtain single cell biomass measurements every eight 
minutes. Changes in cell biomass over time were analyzed to calculate an hourly growth rate. (a) Representative graph of a MLN9708 resistant cell growing at 2.7% 
+/- 0.09% over 24–36 h after drug treatment. Images depict one cell at four different time points. Scale bar: 10 μm. (b) Representative graph of a cell sensitive to the 
MLN9708/KPT-330 combination losing mass at − 1.1% +/- 0.11% over 24–36 h after drug treatment. Images depict one cell at four different time points. Scale bar: 
10 μm. (c) Combination treatment with KPT-330 and MLN9708 decreased median hourly growth rate to a greater extent than treatment with either single agent and 
reduced the population of growing single cells. Each dot on the box plot represents the measurement of a single cell as depicted in a and b. (d) Combination treatment 
with KPT-330 and GSK2126458 decreased median hourly growth rate to a greater extent than treatment with either single agent and reduced the population of 
growing single cells. p-values are listed in Supplemental Table S2. 
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Fig. 4. XPO1 is heterogeneously expressed in human basal-like TNBC samples, and XPO1 expression is positively correlated with PIK3CA and MTOR 
expression at the single-cell level. (a) Bulk RNA-sequencing of human basal-like TNBC PDX samples (HCI-001, UCD-52, WHIM2, and WHIM30) (b) Immuno-
histochemical staining on formalin-fixed, paraffin-embedded HCI-001, WHIM2, WHIM30, and UCD52 mammary gland tumors revealed positive XPO1 protein 
expression in all four PDX samples. Images were taken at 40X magnification. (c, d) Single cell RNA sequencing of human basal-like TNBC cell lines and PDXs (e) Box 
plot depicting single cell XPO1 expression values by PDX (f, g) Non-zero XPO1 expression values for single cells were plotted against non-zero single cell expression 
values for MTOR and PIK3CA (h) Cell cycle analysis (* p < 0.05, ** p < 0.01, *** p < 0.001). p-values are listed in Supplemental Tables S3, S4, S5. 
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Pearson correlation values were determined for XPO1 and each gene 
within the PAM50 gene signature. Interestingly, XPO1 was positively 
correlated with all 11-proliferation associated genes (Supplemental 
Fig. S4) [35]. Correspondingly, cell cycle analysis revealed that a large 
proportion of cells that highly expressed XPO1 also expressed G2M 
genes (Fig. 4h). High G2M pathway scores have been associated with 
high expression of other proliferation-related gene sets and worse 
clinico-pathologic features [36]. 

KPT-330 and GSK2126458 combination treatment demonstrates 
antitumor activity in basal-like TNBC PDXs 

The efficacy of KPT-330, MLN9708, GSK2126458, or combination 
treatment with KPT-330 and MLN9708 or GSK2126458 for inhibiting 
tumor growth in vivo was evaluated on four basal-like TNBC PDXs: HCI- 
001, UCD52, WHIM2, and WHIM30 (Fig. 5; Supplemental Figs. S5, 
S6). The patients from whom the HCI-001 and WHIM2 PDXs were 
derived presented with distant metastases and subsequently died from 
metastatic disease; the patient from whom the WHIM30 PDX was 
derived presented with no metastases [37,38]. HCI-001, WHIM2, and 
WHIM30 cells were isolated from the patient prior to the initiation of 
treatment [37,39]. There is no clinical data available for UCD52. Alzubi 
et al. (2019) and Turner et al. (2018) demonstrated that each of these 
PDXs had metastatic potential [26,40]. Initial in vivo treatments found 
that the combination of KPT-330 and GSK2126458, but not KPT-330 
and MLN9708, resulted in significantly smaller tumors than treatment 
with either monotherapy in the WHIM2 PDX (Supplemental Fig. S5). 
Further studies found that combination treatment with KPT-330 and 

GSK2126458 produced antitumor activity in all four PDXs (Supple-
mental Fig. S6). In WHIM2 and HCI-001, the combination of KPT-330 
and GSK2126458 demonstrated significantly greater antitumor activ-
ity than either single agent, as determined by final tumor surface area 
and tumor mass (Fig. 5). Mice did not demonstrate any signs of acute 
toxicity, and on average, there were negligible changes in mouse mass 
(± 5%). Hematological analysis of drug treated mice did not find any 
appreciable differences in erythrocytes or thrombocytes between 
vehicle and drug combination treated mice. 

XPO1 expression across intrinsic subtypes and association with metastasis- 
free survival 

The Cancer Genome Atlas (TCGA) data for ductal breast carcinoma 
was used to evaluate XPO1 expression across different normal and 
cancerous breast sample groups. In patient-matched normal breast and 
breast tumor samples, XPO1 was significantly overexpressed (p < 0.001) 
in tumors as compared to normal tissue (Fig. 6a). Across all TCGA 
samples, XPO1 was, on average, significantly overexpressed in TCGA 
breast cancer patient samples compared to adjacent normal tissue 
(Fig. 6b). When XPO1 expression was compared across TCGA breast 
cancer samples, basal-like tumors showed significantly greater XPO1 
expression than other breast cancer subtypes (Fig. 6c; Supplemental 
Table S9). Similar trends in XPO1 expression were observed utilizing a 
separate public dataset (Fig. 6d; Supplemental Table S10) [18]. 
Interestingly, basal-like tumors with the highest XPO1 expression were 
correlated with worse metastasis-free survival (Fig. 6e, f). 

Fig. 5. KPT-330 and GSK2126458 demonstrate antitumor activity in vivo. Mice bearing (a) WHIM2 or (b) HCI-001 mammary gland tumors were randomized and 
treated with drugs once tumors were ~ 3 mm x 3 mm. Mice received vehicle orally (PO) thrice weekly, 5 mg/kg KPT-330 PO thrice weekly, 4 mg/kg MLN9708 PO 
twice weekly, 2 mg/kg GSK2126458 PO twice weekly, KPT-330 and MLN9708 regimens, or KPT-330 and GSK2126458 regimens. Tumor growth was graphed by 
obtaining biweekly tumor caliper measurements. Tumor surface area was defined as length x width. (c, d) At experimental endpoint, tumors were removed from 
mice and weighed ex vivo to determine final tumor mass. (e) Representative images of extracted treated tumors are shown. Error bars represent SEM (* p < 0.05, ** p 
< 0.01, *** p < 0.001, **** p < 0.00001). p-values are listed in Supplemental Tables S7, S8. 
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Discussion 

In these studies, we sought to identify novel therapeutic combina-
tions that are synergistically cytotoxic towards basal-like breast cancers. 
Initial screening studies supported targeting XPO1 with KPT-330 (trade 
name selinexor), which is an FDA-approved therapeutic for multiple 
myeloma and lymphoma. Arango et al. (2017) demonstrated the 
promising preclinical antitumor activity of KPT-330 against TNBC [41]. 
Soon after, KPT-330 was explored in a metastatic TNBC Phase II clinical 
trial [42]. While KPT-330 was well-tolerated, it did not produce objec-
tive responses. The clinical benefit rate, however, was 30%. This is 
similar to the 25% response rate we observed herein as a single-agent. 
The investigators suggested that future studies of KPT-330 in TNBC 
focus on a combinatorial or biomarker-driven approach [42]. 

KPT-330 has previously been shown to synergize with a variety of 
chemotherapies and targeted drugs in both TNBC and other models of 
cancer. Arango et al. (2017) demonstrated that KPT-330 synergized with 
select chemotherapies in TNBC PDXs in vivo [41]. There is also abundant 
preclinical and clinical evidence for synergism between KPT-330 and 
proteasome inhibitors in other cancers, including myeloma and 
high-grade glioma [43–45]. Studies have found that both selinexor and 
proteasome inhibitors inhibit the NF-kB pathway, and in this way, 
combinatorial therapy may induce synergistic cytotoxicity via dual in-
hibition of the NF-kB pathway [44,45]. One previous study demon-
strated synergism of KPT-330, an mTOR inhibitor (everolimus), and 
dexamethasone in non-Hodgkin’s lymphoma [46]. To our knowledge, 
however, KPT-330 has not been shown to synergize with a dual 
PI3K/mTOR inhibitor in any model of cancer. Thus, dual inhibition of 
XPO1 and PI3K/mTOR represents a novel molecular interaction and 
means of producing antitumor activity. GSK2126458 (trade name omi-
palisib) was evaluated in combination with trametinib in a phase Ib 
dose-escalation study for solid tumors [47] but yielded minimal evalu-
able responses, perhaps due to overlapping toxicities that prevented 
exposure to a sufficient drug dose. In another phase I advanced solid 
tumor clinical trial, treatment with single agent GSK2126458 was 

well-tolerated and produced durable objective responses in patients 
with several tumor types, including breast cancer [48]. Future studies 
that aim to investigate this combination, or other combinations target-
ing PI3K/mTOR, should likely focus on scheduling of the drug combi-
nations to minimize potential toxicity. 

We found that within basal-like patients, XPO1 overexpression was 
positively correlated with brain relapse and lung relapse. High cellular 
proliferation rates have long been known to be drivers of metastatic 
ability [49]. Given our findings that the cells with the highest XPO1 
expression also have high expression of markers of proliferation, we 
propose that targeting XPO1 in combination with other compensatory 
pathways will provide benefit for surgically inaccessible metastases. 
Co-targeting of XPO1 and PI3K/mTOR could also serve as an alternative 
therapy for chemotherapy-resistant tumors, such as the 
carboplatin-insensitive WHIM2 PDX [40]. Analysis of scRNAseq data 
revealed that XPO1 and PIK3CA/MTOR expression were positively 
related at the single cell level. Furthermore, combination treatment with 
KPT-330 and GSK2126458 produced antitumor activity in all four PDXs. 
Given the promising preliminary data, further preclinical study of 
KPT-330 and GSK2126458 in the TNBC setting is warranted, especially 
for patients who are no longer responding to standard of care chemo-
therapeutics. This novel combination may have the potential to impact 
patient treatment decisions and improve patient outcomes. 
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