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Drug Repurposing for the Treatment of COVID-19: A
Knowledge Graph Approach
Vincent K. C. Yan, Xiaodong Li, Xuxiao Ye, Min Ou, Ruibang Luo, Qingpeng Zhang,
Bo Tang, Benjamin J. Cowling, Ivan Hung, Chung Wah Siu, Ian C. K. Wong,
Reynold C. K. Cheng, and Esther W. Chan*

Identifying effective drug treatments for COVID-19 is essential to reduce
morbidity and mortality. Although a number of existing drugs have been
proposed as potential COVID-19 treatments, effective data platforms and
algorithms to prioritize drug candidates for evaluation and application of
knowledge graph for drug repurposing have not been adequately explored. A
COVID-19 knowledge graph by integrating 14 public bioinformatic databases
containing information on drugs, genes, proteins, viruses, diseases,
symptoms and their linkages is developed. An algorithm is developed to
extract hidden linkages connecting drugs and COVID-19 from the knowledge
graph, to generate and rank proposed drug candidates for repurposing as
treatments for COVID-19 by integrating three scores for each drug: motif
scores, knowledge graph PageRank scores, and knowledge graph embedding
scores. The knowledge graph contains over 48 000 nodes and 13 37 000
edges, including 13 563 molecules in the DrugBank database. From the 5624
molecules identified by the motif-discovery algorithms, ranking results show
that 112 drug molecules had the top 2% scores, of which 50 existing drugs
with other indications approved by health administrations reported. The
proposed drug candidates serve to generate hypotheses for future evaluation
in clinical trials and observational studies.
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1. Introduction

COVID-19 has emerged as a severe pan-
demic with a high transmission rate and
significant mortality. By the middle of April
2021, there were over 140 million con-
firmed cases globally.[1] The lack of spe-
cific drug treatment for COVID-19 has con-
tributed to more than 3 million deaths
worldwide.[1] To date, two mRNA and
one adenoviral vector COVID-19 vaccines
were granted emergency use authorization
(EUA) in the United States and develop-
ment of COVID-19 vaccines in other coun-
tries is ongoing.[2–4] However, the safety of
COVID-19 vaccines in general remains a
concern as multiple serious adverse events
such as Bell’s palsy and thrombosis had
been reported with their use.[5] Questions
also remain about the efficacy of COVID-
19 vaccines since the duration of protection,
efficacy in populations excluded from the
trials, and robustness against mutations of
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SARS-CoV-2 have not been evaluated. As such, discovering effec-
tive drug treatment for COVID-19 remains essential.
Over the past year, a number of drug candidates, mainly antivi-

ral agents and monoclonal antibodies, were evaluated for their
efficacy as COVID-19 treatments. Yet, preliminary results sug-
gest that some of these agents may not be as promising as
speculated. For instance, although the United States Food and
Drug Administration approved remdesivir for hospitalized pa-
tients with COVID-19 aged 12 years old or above regardless of
disease severity, the optimal role and benefit of remdesivir re-
main controversial since there is no clear evidence of mortality
reduction in clinical trials, leading to recommendations of not
using it by the World Health Organization.[6] Other drug can-
didates are associated with serious adverse effects, such as elec-
trocardiographic changes with hydroxychloroquine, which limits
their usage.[7,8] Hence, effective data platforms and tools are es-
sential to enable efficient identification of new drug candidates in
search of safer and more efficacious alternatives. While conven-
tional structure-based screening methods such as protein dock-
ing analyses are traditionally used for de novo drug discovery, re-
purposing existing drugs provides a more cost and time efficient
means of discovering treatment for new diseases.[9–11] Various
approaches, including network-based, structure-based, and AI-
based approaches for drug repositioning had been investigated,
yet the application of knowledge graph in this domain warrants
further exploration.[12]

Previous studies applied knowledge graphs to different re-
search domains inmedicine, including disease subtyping,[13] and
herb recommendation.[14] Current studies on COVID-19 knowl-
edge graphs are largely based on literature mining,[15] and link-
ing COVID-19 publications, case statistics and genes.[16] How-
ever, these knowledge graphs are often limited in scale and while
some may include drug-target information, no single knowledge
graph is fully unifiedwith integrated information for drug discov-
ery, including drug-protein, drug-gene relationships, and protein
domain information which provides an essential bridge between
genes, proteins, drugs, viruses, and diseases.[17] Also, efficient
algorithms providing a ranking of drug candidates utilizing in-
formation from large-scale knowledge graphs have not been ex-
plored.
In this study, we applied a knowledge graph-based method to

identify potential drug candidates for repurposing as COVID-19
treatment. The knowledge graph integrates known relations be-
tween viruses (including SARS-CoV-2), drugs, genes, proteins,
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diseases, symptoms and from multiple large-scale open data
sources. The results will generate hypotheses of potential drug
candidates which can be further tested via clinical trials and
observational studies. Healthcare professionals and other re-
searchers will also be able to tune the algorithms (for example,
give more weight on specific edges such as symptoms) to gener-
ate personalized drug ranking results.

2. Methods

2.1. Building a COVID-19 Knowledge Graph for Drug
Repurposing

Knowledge graphs enable identification of valuable informa-
tion regarding the large-scale, complex relationships among
different entities. Knowledge graph is a multi-relational graph
composed of entities (nodes) and relations (edges).[18] In the case
of a COVID-19 knowledge graph for drug repurposing, each
node represents a specific protein, gene, drug, virus, disease
or symptom, whereas each edge represents a known existing
linkage between any two nodes (Figure 1). Data on linkages from
different data sources were processed into the corresponding
nodes (see “Data sources”) and edges (Table 1), thus integrating
known relations from disparate data sources into a large-scale
knowledge graph. Drug repurposing algorithms were then used
to extract hidden linkages about drugs and COVID-19 from the
knowledge graph, and further ranked using computational scor-
ingmethods, to shortlist potential drug candidates for COVID-19
drug repurposing. It should be noted that no explicit linkages
between any drug and SARS-CoV-2 is present in the knowledge
graph, since high-quality evidence on effective treatments for
COVID-19 remains scant,[6] and main aim of this study is to
develop a method to propose drug candidates in the absence of
data on definite drug-virus relationships.

2.2. Data Sources

We collected data from large-scale open data sources in three
broad bioinformatic categories: drug-target interactions, gene-
gene interactome, and gene-disease network. Data on drug-target
interactions comprised drug metadata and drug-target linkages.
Drug metadata were retrieved from DrugBank with relevant
clinical trials information from ClinicalTrials.gov. Drug-target
linkageswere collected from the Pharmacogenomics Knowledge-
base (PharmGKB), BindingDB, Therapeutic Target Database,
and DrugBank, and were further filtered by binding affinities
and review status from UniProt. Data on gene–gene interactome
were collected from BioGRID, Database of Interacting Proteins,
and Human Protein Reference Database. Data on gene-disease
network were collected from Comparative Toxicogenomic
Database, and Human Phenotype Ontology (HPO) database.
Further details of the data sources and data integration process
are described in the Supporting Information.

2.3. Data Pre-Processing and Integration

The DrugBank ID was used to represent each drug in the graph.
The NCBI Entrez ID and official gene symbol were used to
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Figure 1. Structure of the COVID-19 knowledge graph. Visual schematic of the COVID-19 knowledge graph in this study. A knowledge graph is a multi-
relational graph composed of entities (nodes) and relations (edges). Each node represents a specific protein, gene, drug, virus, disease or symptom,
whereas each edge represents a known existing linkage between any two nodes. Data on linkages from different data sources were processed into the
corresponding nodes and edges.

Table 1.Data sources used for inferring edges in the COVID-19 knowledge
graph.

Edges Data sources Sizea)

Drug – Virus Protein OpenKG 20

Drug – Disease HPO, DrugBank 2335

Drug – Symptom HPO, DrugBank 11 730

Drug – Host Protein DrugBank, NCBI 13 749

Disease – Symptom HPO 187 342

Host Gene – Host Protein NCBI, Literature[27] 12 931

Host Gene – Disease Disgenet 93 044

Host Gene – Symptom HPO 830 344

Host Protein – Host Protein Uniprot, Biogrid 169 222

Virus Protein – Virus Protein Biogrid 47

Virus Protein – Host Protein OpenKG 8292

Virus – Virus NCBI 6791

Virus – Disease OpenKG, HPO 23

Virus – Symptom OpenKG, HPO 70

Virus – Host Protein Literature[27] 130

Virus – Virus Protein OpenKG 525

Virus – Virus Gene OpenKG 525

Virus Gene – Virus Protein OpenKG 525

a)Size refers to the number of edges (representing a specific type of linkage) in the
knowledge graph that were inferred from the corresponding data sources. Details of
the data sources were described in the Supporting Information.

represent the gene while the mapping information of the gene
and protein was retrieved from UniProt.[19] Disease mapping
was based on the Disease Ontology database,[20] while Medical
Subject Headings (MeSH) ID was used to represent each disease
in the graph.[21] To align the data from different sources, records
from terminology databases such asHPOwhich provides unique
identifiers for entities with different alias were used. Databases

that consist of genes, proteins, diseases, drugs, and pathways,
were integrated into the knowledge graph by the publicly
used IDs in order to support information retrieval and further
cross-validation. For databases with genes (the drug-target in-
teractions, gene-gene interactome, and Gene-disease network),
the NCBI Gene ID was used as the unified ID for record import.
Since biological databases might also use the name of the
protein product to represent the gene, the UniProt ID and the
official gene symbol from NCBI were used to match the protein
records to the gene records. For databases that involve drugs and
drug-target interactions, each of them has a set of in-house drug
IDs, but the drug name or its synonyms are standardized. These
databases were merged based on drug names and the mapping
was verified by pharmacists. For databases that provide link-
ages of gene and diseases (Gene-disease network), the Disease
Ontology was used, which provided commonly used disease ID
mappings that was used to convert other disease IDs into MeSH
IDs.

2.4. Extraction and Ranking of Drug Candidates from the
Knowledge Graph

To extract and rank drug candidates for COVID-19 drug repur-
posing from the generated knowledge graph, we employed three
scores focusing on different characteristics and patterns in the
knowledge graph: Motif scores (focuses on high-order patterns
of interest); PageRank scores (focuses on connectivity between
the drug node and the SARS-CoV-2 node); and Embedding
scores (focuses on link existence probabilities learned from the
knowledge graph). The three scores covered the mainstream
techniques for measuring potential association between drug
and virus nodes (i.e., local distance, global distance, and learning-
based distance respectively). Higher scores represent a stronger
potential association between the drug and COVID-19 virus.
Additionally, we explored both linear and non-linear methods
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Figure 2. Example of motif-clique “virus-protein-symptom”. The motif-
clique shown consists of 2 human proteins (green circles: NR3C1 and
POU1F1) both targeted by a virus (orange circle: SARS-CoV-2) and share
linkages with 34 symptoms (purple circles: annotated by symptom ID
from HPO). This is one of the motif-cliques extracted from the knowledge
graph using motif-discovery algorithms and corresponds to a motif of in-
terest prespecified by the user (in this case, the “virus-protein-symptom”
motif).

to integrate the three scores and evaluated their performance
(Section 2.7).

2.4.1. Motif Scores

Motif-based graph analysis is a classic bioinformatics technique
which allows efficient extraction of target relations of interest
(such as drug-virus-target linkages) from large-scale information
networks (such as a COVID-19 knowledge graph). A motif, es-
sentially a connected graph of a few nodes and edges, is often
considered to be a fundamental building block of large and com-
plex networks. Motif discovery algorithms are usually employed
to identify frequent high-order patterns of interest (i.e., motifs) in
knowledge graphs.[22] Motifs relevant to drug repurposing such
as “drug-protein-virus” and “drug-disease/symptom-virus” were
included (Figure 3). Subgraphs that match the motifs of inter-
est were extracted using motif-clique discovery algorithms previ-
ously described by Hu et al.[23] Motif-clique is a dense subgraph
(i.e., the connected subgraph composed by all possible motif-
instances) that contains valuable information regarding an input
“motif”. For example, the motif-clique in Figure 2 shows two hu-
man protein-coding genes (NR3C1 [nuclear receptor subfamily
3, group C, member 1] corresponds to the glucocorticoid recep-
tor which is responsible for a wide variety of effects mediating
growth, metabolism, and immune response; POU1F1 [POU do-
main, class 1, transcription factor 1] regulates transcription of
the growth hormone) are both targeted by the SARS-CoV-2, and

share linkages with 34 symptoms (denoted by the symptom ID
fromHPO) corresponding to the motif of interest “virus-protein-
symptom”. It should be noted that the motifs can also be de-
signed by the user to customize the focus of the Motif score.
Next, we adapted Jaccard coefficient to incorporate the motifs
given by the user in order to compute it on the knowledge graph.
The motif-based Jaccard coefficient is described as Algorithm 1,
where fst denotes the frequency of the motif instances that con-
tain both s and t, and fi denotes the frequency of the motif in-
stances that only contain node i. By enumerating all the motifs
in the given set M, the algorithm can calculate a score for the
node pair (s, t). By assigning s as a drug and t as SARS-CoV-2, we
can compute the motif score with respect to the set of motifs of
interest.

2.4.2. PageRank Scores

A drug candidate might have multiple relations interlinked with
COVID-19 related genes, proteins, diseases and symptoms. This
set of drug candidates were further ranked using computational
scores which quantified the strength of association between each
drug candidate and COVID-19 in the knowledge graph, in terms
of the number and length of shared interlinkages. Due to the gen-
erality of the PageRank score (fromwhich a variety of other scores
were derived),[24] it is considered an important indicator for node
ranking of the knowledge graphs and can be calculated by the
function below, where d is the damping factor, which is usually
set as 0.85.[25] For each drug p,M(p) is the set of predecessors of
p in the knowledge graph and L(p) is the set of successors in the
knowledge graph. N is the number of candidate drugs. Finally,
the PageRank score of drug p is calculated as PR(p). To apply
it into large scale data, we sped up the calculation by updating
PR(p) with interactions.

PR
(
pi
)
= 1 − d

N
+ d

∑ PR
(
pi
)

L
(
pj
) (1)

2.4.3. Embedding Scores

The COVID-19 knowledge graph is large, high dimensional, and
sparse (meaning that most of the items have no linkage with one
another). Knowledge graph embedding is the task of completing
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the knowledge graphs by probabilistically inferring the missing
arcs from the existing graph structure. It projects the sparse and
high dimensional graph representation vector space into a lower
dimensional dense space; then the algorithm is trained to dis-
tinguish positive pairs (i.e., the node pairs with an edge in the
knowledge graph) and negative pairs (i.e., the node pairs without
an edge in the knowledge graph) based on the inner products of
their embeddings.
Therefore, the drug repurposing problem can be reduced as

the link prediction problem, which is a classic classification task
in the area of machine learning. Specifically, given a drug candi-
date, link predictionwill calculate the existential probability of the
potential edge between this drug and SARS-CoV-2. Since knowl-
edge graph embedding is the current state-of-the-art tool to fulfil
this task, we defined the corresponding edge existential probabil-
ity as the embedding score.
We use TransE_L2 to train the model[26] for each node in the

COVID-19 knowledge graph. Specifically, given a candidate drug
x, we predicted the existential probability (i.e., the embedding
score) for x based on the embeddings of x and SARS-CoV-2, de-
noted as h(x) and h(y) respectively. Then the embedding score of
drug x could be calculated by the equation as below, where x is
the drug candidate and y the SARS-CoV-2 virus.

E (x) = log
(
1 + e−TransE_L2((h (x), h(y))

)
(2)

Note that motif scores and PageRank scores are deterministic
algorithms, i.e., the strategy is fixed regardless of the distribu-
tion of the data. The embedding score was generated from the
learning algorithm which requires labelled data; in our case, the
labelled data were sampled from the existing COVID-19 knowl-
edge graph rather than the drug-virus domain knowledge. To
train the embeddings, the algorithm collected part of the node
pairs that are connected by an edge in the COVID-19 knowledge
graph (positive samples) and node pairs without an edge (nega-
tive samples). These positive samples and negative samples did
not necessarily contain drug or SARS-CoV-2 nodes and were ran-
domly collected from the existing COVID-19 knowledge graph.
Note that such labelled data (i.e., positive samples and negative
samples) did not involve any drug-virus relation.

2.5. Integrated Algorithm Analysis

In the simplest case, the three scores can be integrated using
a linear function f(x) = 𝛼 Motif(x) + 𝛽 PageRank(x) + 𝛾 Em-
bedding(x), where 𝛼+𝛽+𝛾 = 1, x denotes a drug candidate for
COVID-19 drug repurposing, and the three parameters (i.e., 𝛼,
𝛽 and 𝛾) represents the relative weighting of each score. The
choices of theseweights (i.e., 𝛼, 𝛽, and 𝛾) could bemanually tuned
depending on exact use case. A larger 𝛼 would be preferred in
cases where significant motifs for effective drug repurposing are
well-known, or when only part of the knowledge graph are of in-
terest (e.g., in use cases where drugs should be recommended
only by their proximities with symptoms and diseases). A larger
𝛽 could be used in cases where pathway analysis is preferred. A
larger 𝛾 would be preferred in cases where more labelled data
(i.e., the drugs that are known to be effective for COVID-19 treat-
ment) are available, because of the powerful predicting ability of

knowledge graph embedding. For the purpose of this study, we
focused on reporting PageRank score (i.e., setting 𝛽 = 1, 𝛼 = 𝛾 =
0) as PageRank score does not rely on known significant motifs
nor labelled data.

2.6. Evaluation

To evaluate the performance of this method on proposing drug
candidates for repurposing as COVID-19 treatment, we reported
the percentage of drugs proposed by our algorithm that are un-
der or completed clinical trial for COVID-19 treatment. It should
be noted that the mere fact of being under or completed clini-
cal trial does not imply a drug’s efficacy as COVID-19 treatment.
Also, no true/false negative data could be inferred from clini-
cal trials. We further calculated quantitative indicators, including
Precision, Recall and F1 score, as defined below:

Precision =

Number of drugs proposed that are
under or completed clinical trial

Total number of drugs proposed
(3)

Recall =

Number of drugs proposed that are
under or completed clinical trial

Total number of drugs under
or completed clinical trial

(4)

F1 score = 2 × Precision × Recall
Precision + Recall

(5)

2.7. Exploratory Analyses

We also explored automatic learning of the optimal function f(x)
to integrate these three scores depicted in Section 2.5, using both
linear and non-linear models. For linear models, we trained a lo-
gistic regression and a linear support vector machine (LSVM) to
learn the optimal parameters (i.e., 𝛼, 𝛽, and 𝛾) depicted above.
For non-linear models, we trained quadratic SVM (QSVM), cu-
bic SVM (CSVM), Gaussian SVM (GSVM); and five neural net-
works (NN) with different topologies, namely narrow NN (NNN,
one layer with 10 neurons), middle NN (MNN, one layer with 25
neurons), wide NN (WNN, one layer with 100 neurons), duplex
NN (DNN, two layers with 10 × 10 neurons) and triple NN (TNN,
three layers with 10 × 10 × 10 neurons). We reduced the ranking
problem into a binary classification problem. Specifically, we de-
fined F(x, y) = f(x) – f(y), where x and y are two drugs and f is the
function to integrate the three scores. Then given two drugs x and
y in the list of drugs under/completed clinical trial as described
in Section 2.6 with x’s rank higher than y’s rank, we define indi-
cator function I (F (x, y)>0)= 1 and I (F (x, y)≤0)=−1. We then
train the model by minimizing the loss function Loss = argmin
Σx,y I (F (x, y)).We split the list of drugs under/completed clinical
trial into 80% for training and 20% for validation, and conducted
5-fold cross validation to reduce potential of overfitting.

2.8. Software Used

Java, MATLAB, and R were used for all analysis.
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3. Results

The complete knowledge graph contains over 48 000 nodes and
1 337 000 edges. The nodes are composed of 13 162 diseases, 220
virus proteins/genes, 6924 viruses (strains), 10 077 symptoms,
12 931 host proteins/genes, and 11 866 drugs. We described the
breakdown of the edges in Table 1. A total of 13 563 molecules in
the DrugBank database were evaluated, of which 5624 molecules
were identified from the knowledge graph by the drug repurpos-
ing algorithms (i.e., all three scores described above are greater
than zero).
112 drugmolecules had the top 2% PageRank scores, of which

50 existing oral and intravenous drugs with other FDA/EMA-
approved indications were reported in the final results. The list of
proposed drug candidates for COVID-19 repurposing are listed
in Table 2. The full list of all drug candidates evaluated in the
knowledge graph and scripts for drug repurposing applications
are released for open access at https://github.com/Sheldon2016/
covid19kg.
The proposed drug candidates include agents from a variety

of drug classes, including 12 drugs for cardiovascular conditions
(8 statins, moexipril, isosorbide mononitrate/dinitrate, spirono-
lactone, bezafibrate), 11 drugs for treating infections (4 antivi-
ral agents, 2 antiparasitic agents, 3 antibacterial agents, 2 anti-
fungal agents), 10 hypnotics or anticonvulsants, 7 antineoplastic
agents, 1 immunosuppressant, 4 hormonal agents and 4 other
agents (pirfenidone, ibuprofen, amitriptyline, dexamethasone,
fostamatinib). Notably, newer drugs (including remdesivir) were
not ranked among the results due to lack of data for those agents
in the bioinformatic data sources included in this study.
For the evaluation of the performance of our algorithm,

Figure 4 and Table S1 (Supporting Information) shows that
precision decreases and in contrary, recall and F1-score increase
as we used a lower threshold for the top n% drugs to be included
in our final results.
Regarding the integrated algorithm analysis, during our ini-

tial evaluation, we found that the three scores in our study are
consistent in most cases (Table 2). For example, ritonavir ob-
tained 95.8 Motif score, 100.0 PageRank score and 96.5 Embed-
ding score. We re-scaled the three scores into the corresponding
percentage of drugs that it outweighs for fair comparison which
means Ritonavir outweighs 95.8% drugs in DrugBank accord-
ing to P(est|M) where s = ritonavir, t = SARS-CoV-2 and M is
the set of motifs in Figure 3). There are also cases where the
three scores are inconsistent such as eszopiclone where 99.97
PageRank score and 96.73 Embedding score, but only 26.98 Mo-
tif score were obtained. This is due to the fact that linkages of es-
zopiclone to SARS-CoV-2 were mainly through pathways in the
protein-protein interaction network, which were not captured by
the motifs in Figure 3. In our exploratory analyses, neural net-
work models generally outperform the linear models and most
SVMmodel, except for the more complex TNNmodel which had
an obvious performance descent (Figure 5). It should be noted
that the choices of the three parameters (i.e., 𝛼, 𝛽, and 𝛾) and
linear or non-linear integration algorithms depend on exact use
cases and parameter tuning is required. We therefore focused on
reporting PageRank scores for the purpose of this study (i.e., set-
ting 𝛽 = 1, 𝛼 = 𝛾 = 0) and in our discussion as PageRank scores
do not rely on known significant motifs nor labelled data).

4. Discussion

To our knowledge, this is the most comprehensive COVID-19
knowledge graph for the purposes of drug identification for drug
repurposing, with integration of major openly available bioinfor-
matics data sources, linkedwith information on drug-target inter-
actions, gene-gene interactome and gene-disease network, which
has not been considered in existing computational and network-
based drug repurposing studies.[27] In general, drugs shown to
be useful in preliminary reports of ongoing clinical trials or hy-
pothesized for COVID-19 treatment in previous literature were
also ranked as superior in our results compared to other drugs.
In addition, our results also revealed that drug candidates that
were not postulated to have any effect on COVID-19 may be con-
sidered for further evaluation in clinical trials or observational
studies for their effectiveness to treat COVID-19.

4.1. Anti-Infective Drugs

Ritonavir and lopinavir were ranked highest in our results. In a
randomized trial of 199 patients with severe COVID-19, the addi-
tion of lopinavir-ritonavir (400/100 mg) twice daily for 14 days to
standard care did not decrease the time to clinical improvement
compared with standard care alone.[28] Yet, an open-label ran-
domized trial showed positive results with the use of interferon
beta-1b, lopinavir-ritonavir and ribavirin combination compared
to lopinavir-ritonavir alone, in alleviating symptoms and shorten-
ing the duration of viral shedding and hospital stay for non-severe
COVID-19.[29] Results from our knowledge graph and the current
literature suggest that the role of ritonavir and lopinavir warrants
further investigation, especially when used in combination with
other agents.
Our results include a number of anti-infective agents besides

lopinavir and ritonavir. Nelfinavir has been reported to inhibit
cell fusion caused by the SARS-CoV-2 spike (S) glycoprotein
and thus may possess antiviral activity against COVID-19.[30]

Bictegravir had been proposed in computational analysis studies
to be a 3CLpro inhibitor which may be a potential agent against
SARS-CoV-2.[31] These findings were consistent with our results.
In contrast, other antiviral agents currently under evaluation
or in clinical trials,[32] including antivirals against influenza
viruses such as oseltamivir, favipiravir and umifenovir, antivirals
treating hepatitis C such as danoprevir were not proposed in
our knowledge graph. Specific antibacterial agents such as
azithromycin and antiparasitic agents such as ivermectin had
been evaluated as treatment for COVID-19.[33] Previous studies
suggest no clinical benefit for azithromycin as mono or adjunct
therapy in COVID-19,[34] whereas drug levels required for iver-
mectin for activity against SARS-CoV-2 exceed safe drug doses
in vivo.[35] In contrast, our results suggest that other antibacterial
agents, specifically colistin and prufloxacin, may warrant further
investigation.

4.2. Cardiovascular Drugs

Statins were ranked in the top 1% of our results. Statins are
known inhibitors of the MYD88 pathway, which results in
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Table 2. List of drug candidates for COVID-19 repurposing proposed by knowledge graph.

Drugsa) Drug class Motif score PageRank score Embedding score

Ritonavir Antiretroviral agent, protease inhibitor 95.80 100.00 96.51

Lopinavir Antiretroviral agent, protease inhibitor 95.79 99.99 96.71

Pitavastatin Lipid-modifying agent, statin 95.64 99.98 92.64

Eszopiclone Hypnotic 26.98 99.97 96.73

Zopiclone Hypnotic 89.98 99.97 91.84

Perampanel Anticonvulsant, AMPA glutamate receptor antagonist 30.59 99.96 90.66

Praziquantel Anthelmintic agent 91.16 99.95 96.64

Colistin Antibiotic 93.29 99.94 99.44

Bictegravir Antiviral agent, integrase inhibitor 15.43 99.93 95.56

Nelfinavir Antiretroviral agent, protease inhibitor 89.46 99.92 93.36

Prulifloxacin Antibiotic, fluoroquinolone 14.65 99.92 96.76

Cyclosporine Immunosuppressant, calcineurin inhibitor 8.15 99.91 99.85

Fostamatinib Spleen tyrosine kinase inhibitor 97.24 99.90 81.93

Moexipril Antihypertensive agent, angiotensin-converting enzyme inhibitor 94.24 99.89 90.33

Pirfenidone Antifibrotic agent 59.72 99.85 89.50

Isosorbide Antianginal agent, vasodilator 26.44 99.81 52.64

Bosutinib Antineoplastic agent, tyrosine kinase inhibitor 49.20 99.80 48.74

Dasatinib Antineoplastic agent, tyrosine kinase inhibitor 96.60 99.73 97.25

Docetaxel Antineoplastic agent, taxane 89.56 99.68 97.55

Lovastatin Lipid-modifying agent, statin 95.73 99.65 96.45

Simvastatin Lipid-modifying agent, statin 95.71 99.65 98.72

Atorvastatin Lipid-modifying agent, statin 95.74 99.64 91.08

Flucytosine Antifungal agent 95.69 99.60 63.87

Cerivastatin Lipid-modifying agent, statin 95.70 99.58 93.28

Fluvastatin Lipid-modifying agent, statin 95.69 99.57 93.80

Oxamniquine Anthelmintic agent 95.65 99.55 81.91

Pravastatin Lipid-modifying agent, statin 95.68 99.54 96.54

Rosuvastatin Lipid-modifying agent, statin 95.72 99.54 94.77

Miconazole Antifungal agent, imidazole 90.72 99.49 96.37

Ibuprofen Nonsteroidal anti-inflammatory drug 98.40 99.48 80.73

Ponatinib Antineoplastic agent, tyrosine kinase inhibitor 30.44 99.47 90.64

Estradiol Hormonal agent, estrogen 93.46 99.41 99.68

Cannabidiol Anticonvulsant, cannabinoid 29.12 99.39 85.54

Pentobarbital Anticonvulsant, barbiturate 51.68 99.37 43.95

Amitriptyline Antidepressant, tricyclic antidepressant 99.44 99.36 97.29

Progesterone Hormonal agent, progestin 97.29 99.34 99.34

Temazepam Hypnotic, benzodiazepine 88.50 99.27 92.92

Triazolam Hypnotic, benzodiazepine 92.50 99.26 96.92

Zonisamide Anticonvulsant 92.40 99.24 28.34

Regorafenib Antineoplastic agent, tyrosine kinase inhibitor 30.48 99.22 93.37

Spironolactone Antihypertensive, aldosterone receptor antagonist 97.19 99.20 98.92

Rifampicin Antibiotic 91.26 99.18 98.60

Dexamethasone Anti-inflammatory agent, corticosteroid 97.14 99.17 99.97

Tamoxifen Hormonal agent, selective estrogen receptor modulator 94.37 99.13 98.96

Mifepristone Hormonal agent, antiprogestin 97.23 99.12 95.30

Clonazepam Anticonvulsant, benzodiazepine 91.08 99.11 99.39

Eribulin Antineoplastic agent, microtubule inhibitor 30.69 99.07 88.32

Paclitaxel Antineoplastic agent, taxane 52.66 99.02 85.58

Diazepam Anticonvulsant, benzodiazepine 40.36 98.29 25.30

Bezafibrate Lipid-modifying agent, fibrate 34.65 98.06 81.88

a)The proposed list of drug candidates comprises 50 existing oral and intravenous drugs with other FDA/EMA-approved indications that had top 2% PageRank scores among
all ranked molecules.
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Figure 3. Performance of the knowledge graph drug repurposing algorithm used in this study.

marked inflammation, and have been reported to stabilize
MYD88 levels in the setting of external stress in vitro and in
animal studies.[36] Dysregulation of MYD88 has been noted
and associated with poor outcomes in SARS-CoV and MERS-
CoV infections. Statins are also known for their pleiotropic
anti-inflammatory, antithrombotic and immunomodulatory
effects, and have been proposed to have a potential role as
adjunctive therapy to mitigate endothelial dysfunction and dys-
regulated inflammation in patients with COVID-19 infection.[37]

However, there were reports that statins could induce ACE2

expression and thereby increase the risk of COVID-19 entry. In
a retrospective observational study, involving 13 981 patients
with COVID-19 in the Hubei Province China, 1219 received
statins. The 28-day all-cause mortality was 5.2% and 9.4% in
the matched statin and non-statin groups, respectively, with an
adjusted hazard ratio of 0.58.[38] A meta-analysis which included
two retrospective studies in China, one in the United States and
one in Italy showed a significantly reduced hazard for fatal or
severe disease with the use of statins (pooled HR = 0.70; 95%
CI 0.53–0.94).[39]
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Figure 4. Motifs-of-interest for drug repurposing used in this study.
A motif, essentially a connected graph of a few nodes and edges, is a fun-
damental building block of large and complex knowledge graphs. Motifs-
of-interest are defined depending on the use case (e.g., drug repurposing
in our study). After defining the relevant motifs-of-interest, motif-clique
discovery algorithms are used to extract subgraphs that match the motifs
of interest. Note each type of node only appears once in each motif for
better efficiency.

Besides statins, four other cardiovascular agents, namely
moexipril, isosorbide mononitrate/dinitrate, spironolactone,
bezafibrate, were also drug candidates in our results. Although
Angiotensin-converting enzyme 2 (ACE2) was identified as one
of the cellular receptors facilitating SARS-CoV-2 entry into host
cells, ACE2 expression has also been associated with decreased
severity of acute respiratory distress syndrome, which is a major
complication of COVID-19 especially in severe cases; and also
has a protective effect in heart failure.[40] Certain cardiovascular
agents, including ACE inhibitors (ACEIs), angiotensin-II recep-
tor blockers (ARBs), spironolactone had been shown to increase
ACE2 expression in animal models.[40] Previous retrospective
studies in hospitalized patients with COVID-19 in China also
suggest that inpatient use of ACEI/ARB was associated with
lower risk of all-cause mortality compared with ACEI/ARB
nonusers.[41] Ibuprofen, a non-steroidal anti-inflammatory agent
ranked at the top 2% of our results, had also shown to increase
ACE2 expression and attenuate cardiac fibrosis in animal
models,[42] but have not been further evaluated in other studies.
Isosorbide mononitrate or dinitrate ranked at the top 0.5% of

our results. Nitric oxide had been suggested as a potential therapy

Figure 5. Accuracy of linear models (LR and LSVM) and non-linear models (SVMs except LSVM, and all NNs) used for integrating motif, PageRank and
embedding scores. Models are order by increasing complexity from left to right.

in COVID-19 by countering endothelial dysfunction and nitric
oxide deficiency due to COVID-19 infection and interfering with
the interaction between SARS-CoV-2 and ACE-2.[43] Inhaled
nitric oxide has also been under evaluation for COVID-19
in clinical trials.[44] Isosorbide mononitrate or dinitrate, an
oral vasodilating agent, is converted to free radical nitric ox-
ide endogenously and could also be potentially beneficial in
patients with COVID-19. Bezafibrate ranked second last in
our proposed drug candidates. Fibrates have demonstrated
anticoagulant and cardiovascular protective effects in patients
with metabolic syndrome,[45] with potential protective effects on
kidney function,[46] whichmay offer benefit in patients with com-
plications due to COVID-19 infection. While fenofibrate is being
evaluated in clinical trial,[47] bezafibrate may also warrant further
investigation.

4.3. Other Drugs

Pirfenidone was ranked in the top 0.5% of our results. Pir-
fenidone is indicated for treatment of idiopathic pulmonary
fibrosis and proposed to be beneficial for acute lung injury and
acute respiratory distress syndrome in severe cases of COVID-
19.[48] Clinical trials are underway to evaluate its efficacy in these
cases.[49]

Hormones and hormonal agents, including estradiol, proges-
terone, tamoxifen (a selective estrogen receptor modulator) and
mifepristone (an anti-progestogen) were ranked in the top 2%
of our results. Endogenous hormones, estradiol and proges-
terone, exert a wide array of effects in both men and women.
In the context of COVID-19, their immunomodulatory and anti-
inflammatory effects have been of interest.[50] High physiological
concentrations of 17𝛽-estradiol and progesterone favor a state of
decreased innate immune inflammatory response while enhanc-
ing immune tolerance and antibody production, which in turn
is suggested to potentially improve immune dysregulation and
prevent cytokine storm caused by COVID-19 infections.[50] In-
deed, exogenous estrogen and progesterone therapy and tamox-
ifen have been under evaluation in clinical trials.[51]

Dexamethasone was also ranked in the top 2% of all drugs, and
hydrocortisone and prednisone were also ranked in the top 5%.
Data from randomized trials overall support the role of glucocor-
ticoids for severe COVID-19. From ameta-analysis of seven trials
which included 1803 critically ill patients with COVID-19, gluco-
corticoids reduced 28-day mortality compared with standard care
or placebo (32% vs 40%, odds ratios [OR] 0.66, 95% CI 0.53–0.82)
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and were not associated with an increased risk of severe adverse
events.[6] As a result, dexamethasone was recommended by the
WHO for severely ill patients with COVID-19 who are on supple-
mental oxygen or ventilatory support, replaceable by other gluco-
corticoids at equivalent doses,[6] but they were not recommended
for prevention in non-severe cases because of potential adverse
effects.
Our results also included a number of anticonvulsants, hyp-

notics, antineoplastic agents including tyrosine kinase inhibitors
and cytotoxic agents such as taxanes. These agents may have
been proposed by the knowledge graph algorithms due to their
broad effect on a larger number of linkages with various endoge-
nous signaling pathways, genes and proteins which shared com-
mon linkages with COVID-19 and other viruses. However, these
agents are unlikely to be proposed for the treatment of COVID-
19 due to their severe adverse effect profile, including cytotoxi-
city, immunosuppression and respiratory depression that could
potentially worsen patient outcomes over any potential beneficial
effect against COVID-19.
Our study has limitations. Notably, study results serve to gen-

erate hypotheses on which existing drugs may have greater po-
tential to be repurposed for COVID-19 treatment. Yet it does not
provide any clinical or biological evidence on the effectiveness or
mechanisms of action for the proposed drug candidates in treat-
ing COVID-19, which needs further validation and evaluation in
future clinical trials or observational studies. Further, while our
results proposed potential drug candidates for drug repurpos-
ing, this information must be interpreted alongside the drugs’
adverse effect profile and practicality for use in patients with
COVID-19 to ensure that any potential benefit outweighs known
adverse effects. The toxicity of drugs were not evaluated using the
knowledge graph in this study. We refer interested readers to the
current biomedical literature for a detailed review of the toxicity
alongside adverse effect profiles of the proposed drug candidates.
Some new drugs were not included due to the lack of data in
the data sources at the time of this study. Combinations of drugs
that may be candidates for COVID-19 repurposing remains to be
explored. Currently, tuning parameters in the integrated scoring
algorithm described above require code modification which may
not yet be user-friendly to healthcare professionals or other re-
searchers. In future work, we could design a publicly accessible
user interface as well as an automatic parameter tuning method
to assist the user with selecting optimal parameters.

5. Conclusions

We developed a COVID-19 knowledge graph from large-scale
bioinformatic databases for drug repurposing. Using an inte-
grated algorithm to integrate three computation scores, a set
of 50 drug candidates were shortlisted as potential treatments
for COVID-19. These candidates included drugs for cardio-
vascular diseases, anti-infective agents, hormonal agents and
steroids, among other drug classes. Some of these candidates
have also been undergoing evaluation in clinical trials, while
others have received relatively little attention to date. Our find-
ings serve to generate hypotheses and prioritize drug candi-
dates for further evaluation in clinical trials and observational
studies.
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