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A B S T R A C T

Using reliable and timely precipitation forecasts on a monthly or seasonal scale could be useful in many water
resources management planning, especially in countries facing drought challenges. Amongst many, the North
American Multi-Model Ensemble (NMME) is one of the most well-known models. In this study, a Bayesian method
based on Copula functions has been applied to improve NMME precipitation forecasts. This method is based on
the existence of a correlation between the raw forecast and observational data. Two main factors affect the results
of rainfall improvement based on the selected method. This research has presented innovative methods in these
regards namely; 1) the approach of selecting the appropriate statistical distribution for variables and 2) the se-
lection method of improved data according to the conditional probability distribution functions (CPDF). To
evaluate the effectiveness of the statistical distribution, firstly the precipitation forecast improvement model has
been developed based on the application of parametric (Exponential, Normal, Gamma, LogNormal and General
Exreteme Value (GEV)) and non-parametric distributions (Standard Normal Kernel). Then the novel mixed dis-
tribution function based on GEV parametric distribution and Standard Normal Kernel (non-parametric distribu-
tion) has been suggested. As the second aim, a new method for selecting improved data based on the center of
mass of estimated CPDF is presented. The evaluation of the proposed method for estimating the statistical dis-
tribution of data and improving the forecast precipitation by the NMME model has been performed in Sistan and
Baluchestan province in Iran. In this regard, the data of 1982–2010 for the calibration period and the data of
2012–2016 for the validation of the results have been used. According to the results, the non-parametric distri-
bution best fitted with the data in the time series and selecting the appropriate bandwidth increased the efficiency
of this distribution. Besides, due to the weakness of non-parametric distributions in the boundaries, the use of GEV
distribution with a high ability to estimate boundary conditions as semi-parametric distribution, led to improved
performance of the proposed distribution. Finally, the selection of the improved data based on the center of the
mass method has efficiently provided much improvement compared to the maximum likelihood method
commonly used.
1. Introduction

From the past to the present and towards the foreseeable future,
droughts and floods, as the high frequency and destructive natural
disaster events may be regarded as the two sides of the same coin (Roser
and Ortiz-Ospina, 2016). Prediction of precipitation, as the major
component of the climate system (water cycle), can be very effective in
reducing the potential damages due to these natural disasters, while it
can be essential in building resilience to climate (extreme water re-
sources planning and management). During the past decade, responding
to this necessity, numerous precipitation prediction dynamic models (Al
andoost).
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et al., 2017; Peng et al., 2018) have been developed and explored. These
models are usually classified in the category of Global Circulation Models
(GCMs).

Among different existing GCMs, the North American Multi-Model
Ensemble (NMME) model is an effective seasonal precipitation model
for precipitation prediction coupling models from the US and Canadian
climate modeling centers. It is capable of providing timely and reliable
seasonal precipitation prediction since 2007 with ease of access to data
(Becker et al., 2020; Roy et al., 2020; Slater et al., 2019). Since then,
finding the relation between the observed data and predicted data has
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inspired many researchers around the world to evaluate the forecast
skills of the NMME models.

Despite NMME's accuracy, climate variables that are strongly affected
by changes in spatial scale (such as precipitation) still meet significant
errors. Thus, it is propounded to not utilize the climate model's forecast
products directly, due to three main reasons: 1) ensemble climate fore-
casts are not so accurate, 2) various assumptions are taken for the sake of
overcoming the shortage of initial and boundary condition for every
region, 3) due to some limitations the models usually forecast variables
for large scale applications, hence at least they need spatial bias correc-
tion (as the most convenient approach of post-processing) even if the
variables can be accurate enough (Rayner et al., 2005; Tao et al., 2014;
Wu et al., 2011). Therefore, many works have tried to improve the ac-
curacy of predictions by statistical methods such as bivariate joint dis-
tributions, Meta-Gaussian distribution function (Kelly and
Krzysztofowicz, 1997) and Bayesian Joint Probability (BJP) (Robertson
et al., 2013). These methods require to transform both observation and
forecast variables into normal distribution. This forced process will
reduce the accuracy of the estimated distribution between the variables
(Brown and Seo, 2013; Madadgar and Moradkhani, 2014; Madadgar
et al., 2014). Hence there is a demand for bivariate (or multivariate)
distribution functions that can address variables according to the suitable
estimated distributions. The construction of multivariate distributions in
the notion of Copulas, which has been developed by Sklar, are applicable
for this purpose (Sklar, 1959).

The copula functions are unit cube functions that relate the multi-
dimensional distributions to their one-dimensional marginal (Sklar,
1959). At first, it was commonly used in financial approaches (Cherubini,
2004; de Melo Mendes and de Souza, 2004; Frees et al., 1996; Frees and
Valdez, 1998; Hürlimann, 2004). The application of Copula functions in
the hydrological domain started in 2003 (De Michele and Salvadori,
2003; Favre et al., 2004; Salvadori & De Michele, 2004a, 2004b). They
have been widely utilized in different aspects such as drought, ground-
water monitoring, etc (B�ardossy, 2006; Madadgar & Moradkhani, 2013,
2014; Salvadori and De Michele, 2010). Copula functions, as the
post-processing method, was also used in several studies to reduce
involved uncertainties. For example, a) illustrating the relation between
two uncorrelated variables such as observation and simulation data of
streamflow (Madadgar et al., 2014), b) applying Copula functions in the
Bayesian model (Madadgar and Moradkhani, 2014; Schefzik et al.,
2013), c) applying Ensemble Copula Coupling (ECC) to predictions of
temperature, pressure, precipitation and wind (Schefzik, 2013).

One of the questions addressed in this study is the investigation of the
different marginal distributions for Copula functions. However, while the
effectiveness of using Copula-based methods for improving the accuracy
of NMME precipitation forecasts has been investigated by many re-
searchers, the use of non-parametric marginal distribution has been
rarely investigated. In contrast, previously obtained results showed that
nonparametric marginal distributions are precise, uniform and satisfac-
tory rather than the parametric marginal distribution especially for
multi-modal data used in hydrological investigations (Adamowski, 1985;
Kim et al., 2003; Kim et al., 2006a, b; Kocsis et al., 2017). According to
the literature, the accurate estimation of nonparametric distributions is
imperative for research (Efromovich, 1999; Han et al., 2018; Xin et al.,
2020). Among several used nonparametric density estimation methods,
the kernel density is a widely accepted distribution for different hydro-
logical variables (Ghosh and Mujumdar, 2007; Kim et al., 2006a, b; Kim
et al., 2003; Lall et al., 1996).

Despite the ease and accuracy of kernel density estimation (KDE)
usage, it suffers from a main challenge/limitation. KDE couldn't estimate
the density in boundaries as well. Hence the extreme value estimation
would be prone to bias. In other words, precise estimation of extreme
precipitation values for this method is rarely expected. A combination of
parametric and non-parametric distributions, called semiparametric
distribution, can be introduced as a practical solution for this short-
coming. Hjort and Glad (1995) show that the semiparametric kernel
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estimator, which starts with normal distribution, would render better
estimates than the traditional kernel density estimator. Several studies
show that General Extreme Value (GEV) distribution is a suitable esti-
mator for extreme event behavior (Ben Alaya et al., 2020; Fowler and
Kilsby, 2003; Gao et al., 2016; Gilleland and Katz, 2006; Nadarajah,
2005). This distribution was also applied to GCM summer monsoon
precipitation in India (Shashikanth & Sukumar, 2017). As one of the
objectives of the research the authors seek to investigate the new pro-
posed semi-parametric method based on GEV and KDE. Applying Copula
function in Bayesian model as the Copula-Bayesian approach, results in a
Conditional Probability Density Function (CPDF). The CPDF yields the
likelihood of the specific amount of observation data given the particular
value of the estimated precipitation data, therefore it is often called
likelihood function (Reich and Cotter, 2015). In this regard, the selection
of the most suitable method of applying this function has always been
under debate. Consequently, how the application of various methods
would yield different results of improved data must be investigated.
Therefore, addressing this necessity is selected as the other aim of this
research and a new selection method is introducing as the main contri-
bution of the study.

Based on the presented review of literature, data improvement has
always been discussed in different aspects. The main objectives of this
study are focused mainly on the following three questions 1) how the
proper marginal distribution for Copula functions can be selected. 2) how
the combination of parametric & nonparametric distribution functions
(named here as semi-parametric distribution) can present better fitting
performance of marginal distributions and 3) how the best alternative
can be selected amongst the possible choices based on CPDF. To illustrate
the high ability of the novel method, it is compared with the Maximum
Likelihood (ML) method as the most prevalent one. In the present study,
both selection methods by different marginal distributions (parametric,
non-parametric and proposed semi-parametric distribution) are imple-
mented in R (Team, 2013), which allows fast implementation with access
to various packages.

The rest of the paper is organized as the following, first, the used data
and the study area is presented in section 2. Then, in section 3, the
proposed methodology of research is introduced through three sub-
sections including; 1) time-series preparation and marginal distribution,
2) the theory of Copula Function and 3) the evaluation of forecast ac-
curacy. Section 4 presents the obtained results and finally, the concluding
remarks are condensed in section 5.

2. Data and case study

2.1. Study area

Sistan and Baluchestan Province in south-east Iran is one of the driest
regions in the world and is facing prolonged droughts (Yazdandoost
et al., 2020). The prevailing climate of the region is barren and arid, with
an average annual rainfall of about 183 mm and an average annual
temperature of about 22.4 �C. These climatology variables besides the
limited existing water resources would tremendously increase the
importance of forecasting precipitation as the main water resource in this
region. As a result, precipitation forecasts can be used in mid-term
planning to manage exigent conditions. The observed long-term
average monthly precipitation for this region is shown in Table 1.

2.2. Data sources

2.2.1. Observation data
The rain-gauge records are the primary source of observation pre-

cipitation. However, in Sistan and Baluchestan province as seen in
Figure 1 the 20 existing rain-gauge stations do not provide proper
distribution and coverage. Table 2 presents the detailed characteristic
of these stations with discontinuous and sparse recordings over suffi-
cient periods. Therefore, generating a reference gridded precipitation



Table 1. Observed long-term average monthly precipitation.

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Prec. (mm) 25.94 29.48 33.79 16.44 8.04 6.9 15.93 14.28 4.6 3.35 4.53 19.47

Figure 1. The location and topography of study area within A) Iran and B) The province of Sistan & Baluchestan.

Table 2. Coordinates of observational stations.

Station ID Station Name latitude longitude elevation (m)

99649 Bazman 27.85 60.18 957

40898 Chahbahar 25.28 60.65 8

40885 Delgan 27.48 59.45 391

19980 Founj 26.57 59.65 734

19992 Ghasreghand-looriani 26.22 60.73 500

19574 Hamon 30.85 61.45 473

19546 Hirmand 31.13 61.78 0

40879 Iranshahr 27.23 60.72 591.1

40870 Khash 28.23 61.19 1427

99608 Mirjaveh 29.02 61.43 836

40895 Nikshahr 26.23 60.20 510

99586 Nosratabad 29.85 59.98 1127

99650 Rask 26.23 61.40 406

40878 Saravan 27.39 62.32 1182

19942 Soran 27.28 62.00 0

40829 Zabol 31.09 61.54 489.2

40874 Zaboli 27.13 61.67 1271

99623 Zahak 30.90 61.68 495

40856 Zahedan 29.47 60.90 1370

19998 Zar Abad 25.58 59.40 35

Table 3. Summary of the four NMME models and their characteristics, used in
the study (modified from source: Yazdandoost et al., 2020).

Model Hindcast
period

Forecast
period

Ensemble
size

Reference

NCEP-
CFSv2

1982–2010 2012-
present

24 (28)* (Saha et al., 2014)

CMC1-
CanCM3

1981–2010 2011-
present

10 (Merryfield et al., 2013)

CMC2-
CanCM4

1981–2010 2011-
present

10 (Merryfield et al., 2013)

NCAR-
CCSM4

1982–2010 2011-
present

10 (Gent et al., 2010;
Kirtman and Min, 2009)

* Note: The value in the parenthesis presents the ensemble size for the forecast
period.
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dataset based on these non-evenly distributed stations across the entire
area has hinted to consider the Global Precipitation Climatology Centre
(GPCC) as the surrogate reliable reference gridded data for precipita-
tion observations (Azizi et al., 2015; Darand and Zand, 2016; Rezayi
et al., 2011).

The GPCC firstly has been established in 1989 by Germany's National
Meteorological Service, the Deutscher Wetterdienst (DWD) on request of
the World Meteorological Organization (WMO) (Yazdandoost et al.,
2020). The GPCC provides different spatial resolution gridded precipi-
tation data (2.5 � � 2.5 �, 1.0 � � 1.0 �, 0.5 � � 0.5 �, and 0.25 � � 0.25 �

resolution) based on around 80000 observational stations from several
3

different sources. In this study, the monthly records of GPCC from 1982
to 2016 with the spatial resolution of 0.5 � � 0.5� was used.

2.2.2. Forecast data
Four NMMEmodels are chosen as the forecast precipitation data. The

NMME models have been presented at 1o spatial resolution, hence, they
are gridded to 0:5� � 0:5�, using a bilinear method. These four NMME
models included 54 ensemble members to calibrate the post-processing
method in the hindcast period (1982–2010). For post-processing
approach validation, these NMME models include 58 ensemble mem-
bers for the forecast period (2012–2016). The more detailed information
about the NMMEmodels used in this research is condensed in Table 3. To
improve the estimated data of the NMMEmodels, the ensemble means of
each model were calculated initially and then the Grand of the four
mentioned models as the arithmetic mean of the predictions was used
through the proposed post-processing process.

3. Methodology

To improve the NMME precipitation forecast data as the main
objective of this research, a three-step post-processing method based on



Figure 2. The dominant perspective of the Post-Processing.

Table 4. Summary of eight methods for bandwidth determination.

Bandwidth calculation method Abbreviation reference R
function

Mean Integrated Squared Error MISE (Nagler, 2016) -

Asymptotic Mean Integrated
Squared Error

AMISE (Scott David, 1992) h.amise

Maximum-Likelihood Cross-
Validation

MLCV (Habbema et al., 1974) h.mlcv

Unbiased Cross-Validation UCV (Rudemo, 1982) h.ucv

Biased Cross-Validation BCV (Scott and Terrell,
1987)

h.bcv

Complete Cross-Validation CCV (Jones and Kappenman,
1992)

h.ccv

Modified Cross-Validation MCV (Stute, 1992) h.mcv

Trimmed Cross-Validation TCV (Feluch and Koronacki,
1992)

h.tcv

Table 5. Presented models.

Marginal
distributions

Improved forecasts picked out
method

Abbreviation name of
model

Parametric Maximum Likelihood Par-ML

Parametric Centre of Mass Par-CM

Non-parametric Maximum Likelihood Ker-ML

Non-parametric Center of Mass Ker -CM

Semi-parametric Maximum Likelihood GEVKer-ML

Semi-parametric Center of Mass GEVKer- CM
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the Copula-Bayesian approach is proposed (Figure 2). A detailed
description of each step is described in the following. In this approach,
the existence of the correlation between the historical observations and
estimated forecasts (hindcast period) is supposed and it is expected that
this assumed correlation would remain consistent in the future (forecast
period) (Khajehei and Moradkhani, 2017). It is worth noting that, how-
ever there is no restriction for using the proposed post-processing
framework for different lead times or period lengths, here, the
improvement of monthly average forecast with 0-month lead time is
considered as the main subject of research.
4

3.1. Time series preparation and marginal distribution

This step consists of two phases. In the first phase, at each 0.5-degree
cell, the observed precipitation and forecast data during the study period
were classified into 12 monthly time-series. In fact, for each month of the
year, two monthly precipitation time series showing the 1) observed and
2) estimated precipitation data for that specific month during the past
successive years (1982–2010) were generated.

In the second phase, the proper marginal distribution for each time-
series is determined. In this regard, the Exponential, Normal, Gamma,
LogNormal and GEV (as the parametric), Normal Kernel Density (as the
non-parametric) and a newly introduced semi-parametric (combination
of Kernel and GEV) distributions were investigated. For the last two
types of mentioned distributions, finding the proper value of the Kernel
distribution bandwidth is a prerequisite. To respond to this need,
different choices are determined and evaluated for the bandwidth
through assessment of eight methods (Guidoum, 2015). The detailed
characteristics of the used methods are given in Table 4. Bandwidth
calculation is done mostly by R Package for the Kernel Estimation of
Bivariate Copula Densities (kdecopula). Afterward, the most suitable
bandwidth is selected based on the best obtained result in the hindcast
period.

After the determination of bandwidth for non-parametric and sem-
iparametric distributions, the best distribution is chosen by Kolmo-
gorov Smirnov (K–S) test. The K–S test (Xiao, 2017; Zhao et al., 2017) is
usually used to measure the difference among the CDF of forecast (or
observations) data in the hindcast period and an empirical cumulative
distribution (defined as a benchmark to investigate whether distribu-
tion looks exactly like the sample). If the maximum distance is less than
a permitted tolerance, the referred type of distribution will be accept-
able (Akramin et al., 2020). Tolerance is a function of the null hy-
pothesis that is described as a table in different sources (Akramin et al.,
2020). The Null hypothesis in this work was assumed to be 0.05 as
previously suggested by Madadgar and Moradkhani (2012). Since the
results of the K–S test can not necessarily introduce an option as the
only final course of selection; the use of another criterion for the
judging between the presented distributions by the K–S test seems
necessary. In these circumstances the use of the Bayesian Information
Criterion (BIC) test introduced by (Schwarz, 1978), as the secondary
criterion is rational. This criterion is calculated as Eq. (1), where k is the



Figure 3. CC and KGE values for GPCC and rain-gauge data with a) KGE index and b) Correlation coefficient.

Figure 4. KGE values of raw forecast a) October b) March.

Table 6. K–S and BIC criterions value, parametric distributions.

Distribution K–S BIC

Observation Hypothesis test HINDCAST Hypothesis test Observation HINDCAST

Exponential 0.35 Accept 0.065 Accept -69.64 -77.89

Gaussian 0.93 Accept 0.68 Accept -13.33 2.26

Gamma 1.55*10̂-5 Reject 1.11*10̂-16 Reject -1.41 12.66

Lognormal 0.033 Reject 0.39 Accept -2.32 14.23

GEV 0.99 Accept 0.9287 Accept -127.61 -104.22
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Figure 5. The example data histogram in front of parametric distribution a) Exponential, b) Normal, c) Gamma, d) Lognormal and e) GEV.

Figure 6. The dispersal of parametric distributions.
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number of estimated parameters of investigated distribution, n is
equivalent to the sample size, L is the maximized value of the likelihood
function for estimated distribution.

BIC¼ klnðnÞ � 2lnðLÞ (1)

According to Rossi et al. (2020), BIC test canmeasure the efficiency of
how any distribution function may fit empirical distribution function.
Ideally, the lowest BIC would be the most desirable option.

For the sake of brevity, the current paper has only presented the
proposed semi-parametric method and has avoided elaborating on the
known parametric and non-parametric distributions. At the end of this
section, the first aim of this research can be addressed completely.
Table 7. The calculated bandwidth of different methods in the selected cell.

Bandwidth selection method MISE AMISE MLCV

Bandwidth value 17.61 17.77 37.93

Mean Improved data 61.093 61.093 61.32

6

3.1.1. Semi-parametric distribution
To overcome the deficiency of kernel distributions in the upper and

lower boundaries, here a new applied semi-parametric distribution is
proposed. This distribution benefits from the advantages of Kernel and
GEV distributions simultaneously. In the proposed attitude, the kernel
and GEV functions have been dedicated to the center and the (lower and
upper) boundaries of any PDF respectively.

This distribution is built up in the following steps:

- Bandwidth determining: according to the description of the normal
kernel distribution

- Substituting Kernel with GEV distribution in the bandwidth length of
upper and lower boundaries

- Extending the GEV distribution to a point where it intersects with the
kernel distribution. In this case, a continuous distribution can be
provided.

- Finally, the best possible calculation for all the retrospective observed
and forecast rainfall will be achieved from CDF and PDF

3.2. Post-processing based on copula functions

3.2.1. The theory of copula functions
The copulas (Sklar, 1959) are unit cube functions that relate the

multi-dimensional distributions to their corresponding one-dimensional
marginal distributions. Therefore, if Fxi ðFxi ¼ uiÞ is the marginal distri-
bution of each ith variable (xi), the cumulative distribution function, F,
expresses as Eq. (2):

Fðx1;x2;…;xnÞ¼C½Fx1 ðx1Þ; Fx2 ðx2Þ;…;Fxn ðxnÞ� ¼Cðu1;u2;…;unÞ (2)

Cðu1;u2;…;unÞ¼PrfU1 �u1;U2 �u2;…;Un �un (3)

where C in Eq. (3) is the copula function of the joint distribution function
F. Therefore, the probability distribution function cðu1;…; unÞ can be
calculated as Eq. (4).
UCV BCV CCV MCV TCV

24.41 23.44 17.74 23.67 24.42

61.19 61.18 61.09 61.18 61.19



Figure 7. The example data histogram in front of Normal Kernel Density Distribution for different bandwidths calculated by a) MISE, b) AMISE, c) MLCV, d) UCV, e)
BCV, f) CCV, g) MCV and, h) TCV methods.
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cðu1;…;unÞ¼ ∂nCðu1;…;unÞ
∂u1…∂un

(4)
Hence, the joint distribution function based on copula (f), which will
be used as an input of the next session, can be obtained as Eq. (5):

f ðx1;…;xnÞ¼ cðu1;…;unÞ
Yn
i¼1

f xi ðxiÞ (5)

Various Copula families have been introduced so far. Application of
Archimedean (Tahroudi et al., 2020; Xu et al., 2019) and other Copula
families are common in hydrological problems (Dehghani et al., 2019; Li
et al., 2019; Zhang and Singh, 2007). Hence, this study used some of
these families (i.e. Gaussian, student's T, Clayton, Gumbel, Frank, Joe,
BB1, BB6, BB7, BB8, rotated Clayton, rotated Gumbel, rotated Joe,
rotated BB1, rotated BB6, rotated BB7, rotated BB8 Copula functions).
Among these functions, Clayton, Gumbel, Joe and BB suffer from this
Figure 8. The dispersal of parametric and Normal Kernel Density Distributions.
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challenge that they couldn't consider the negative correlation. According
to Eqs. (6), (7), and (8), using the 90,180 and 270-degrees rotation as an
alternative solution may be considered to overcome this deficiency.

C90ðu1;u2Þ¼u2 � Cð1�u1;u2Þ (6)

C180ðu1;u2Þ¼u1 þu2 � 1þ Cð1�u1;1�u2Þ (7)

C270ðu1;u2Þ¼u1 � Cðu11� ;u2Þ (8)

To identify each of the aforementioned functions' satisfaction rates in
distribution over multi variables, the Akaike Information Criterion (AIC)
method was implemented. AIC is a commonly used alternative criteria to
discriminate among copula functions. After fitting available copulas
using maximum likelihood, the criteria were computed for all copula
families and the family with the minimum value was chosen. In bivariate
copula families, the AIC is defined as Eq. (9). Where k is the number of
parameters, θ is the parameter and other variables have been introduced
before.

AIC¼ � 2
XN
i¼1

ln½cðui;1;ui;2
��θÞ�þ 2k (9)

At the end of this stage, the selected copula function will be applied in
the Bayesian equation to estimate CPDF.

3.2.2. Copula based Conditional Probability Density Function (CPDF)
At this phase, by using the best copula function identified in the

previous stage and the Bayesian equation (Equation 10a), the creation of
CPDF among the observational data and the raw forecast data will be
attempted. In this regard, CPDF of observational data given each forecast
data at its time step will be calculated. The joint distribution of forecast
and observational data in Bayesian structure is expressed as follows:

f ðf ; oÞ¼ f ðf Þ:f ðojf Þ (10a)

f ðojf Þ¼ f ðf ;oÞ
f ðf Þ (10b)



Figure 9. Steps of making GEVKer distribution a) GEV, b) Kernel, c) GEV (red) and Kernel (white) overlapping, and d) GEV-Kernel distributions.

Table 8. K–S and BIC criteria value, total distributions.

Distribution K–S BIC

Observation Hypothesis test Hindcast Hypothesis test Observation Hindcast

GEV* 0.99 Accept 0.9287 Accept -127.61 -104.22

Kernel 0.9984 Accept 0.9514 Accept -125.73 -109.37

GEVKer 0.997 Accept 1 Accept -147.2089 -139.95

* As seen in Table 6, the GEV distribution is the best parametric distribution in the selected cell.

Figure 10. The best marginal distributions in the study area.
Figure 11. Appropriate copula functions for March observed data.
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Therefore, with replacing/substituting Eq. (5) (modified for bivariate
joint distribution function) in Eq. (10b) the CPDF can be calculated as Eq.
(11):

f ðst jf tÞ
¼ c

�
Us ¼ us;Uf ¼ uf

�
f ðf tÞf ðstÞ

f ðf tÞ
¼ c

�
Us ¼us;Uf ¼uf

�
f ðstÞ

(11)
8

In the last equation f ðst jftÞ is the CPDF in time t, f ðstÞ , f ðftÞ is
the marginal distributions of the sample from the observation and
the forecast at time t. The sample data has 500 random data with
the same distribution of observation data in the hindcast period
(Khajehei and Moradkhani, 2017). For each specific raw forecast
data, the above-mentioned process of creating CPDF will be carried
out.



Figure 12. CPDF for different marginal distributions proposed by ML and CM methods, a) density function of parametric distribution, b) CPDF for parametric dis-
tribution, c) density function of Kernel distribution, d) CPDF for Kernel distribution, e) density function of gEV-Kernel distribution, f) CPDF for GEV-Kernel
distribution.
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3.2.3. Determination of improved forecast data
The CPDF shows the probability of the sample observational data

after taking a single raw prediction data into account. There are diverse
schemes for picking out the improved forecast found on CPDF (Khajehei
and Moradkhani, 2017; Madadgar and Moradkhani, 2012). The CPDF
based on parametric marginal distributions has a single maximum value.
Previous researches have selected the maximum point of CPDF function
(Maximum Likelihood) as the desired improved data. The
non-parametric or semi-parametric marginal distributions cause the
CPDF function to return more inadvertently than a single relative
maximum point. To respond to this challenging issue, in this study a
novel technique is introduced. Given the CDPF, each sample observation
data has a probability of occurrence. Therefore, it can be inferred that
each of the observational data has an effect on the selection of the
improved data as a proportion of the probability of occurrence. Based on
this logic, the Center of Mass (CM) of the CDPF curve can be introduced
Table 9. The results of the ML and CM methods for each marginal distribution. (cell

Sample Cell year Observation Hindcast PAR (CM) PAR

Prec. (mm) 1991 56.76 42.93 29.08 25.71
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as the optimal value of improved data. Eq. (12) show how the Maximum
Likelihood (ML) and the proposed method are quantified.

xim ¼

8>><
>>:

xML if f cðxMLÞ ¼ maxðf cÞZ xmax

xmin

xf cðxÞdx
Z xmax

xmin

f cðxÞdx

(12)

In the last equation fc is CPDF, x is the sample observational data and
xim is the improved forecast data. In this research, the two previously
mentioned improved forecasts picked out methods are used in different
marginal distributions, listed in Table 5.

To evaluate/validate how much the NMME predictions (the raw ones
and the improved ones) are consistent with the observation data, the
Kling-Gupta Efficiency (KGE) test, is used here. The KGE (Equation 13) is
No:20,10. March).

(ML) Kernel (CM) Kernel (ML) GEVKer (CM) GEVKer (ML)

49.40 32.659 60.71 33.07



Table 10. The postprocessing results by using the ML and CM methods for each marginal distribution.

Month Period forecast observation Par-CM Par-ML Ker-CM Ker-ML GEVKer- CM GEVKer-ML

Jan Forecast 29.80 25.95 19.91 18.13 27.29 20.58 27.25 20.69

Hindcast 18.26 17.79 16.09 12.06 19.67 12.64 18.81 18.81

Feb Forecast 33.27 29.49 19.78 19.62 31.23 25.14 31.28 25.33

Hindcast 33.77 44.38 20.81 20.23 31.73 23.79 32.75 32.75

Mar Forecast 39.51 33.79 24.41 22.67 35.60 27.25 35.77 27.26

Hindcast 29.64 45.11 21.70 18.00 29.40 20.43 29.61 29.61

Apr Forecast 29.88 16.45 9.39 7.95 18.62 11.72 18.48 11.56

Hindcast 28.33 33.19 9.50 7.89 18.68 11.30 18.62 18.62

May Forecast 10.20 8.04 5.22 4.86 9.48 4.63 9.41 4.54

Hindcast 10.98 13.76 5.54 5.33 10.16 4.97 10.15 10.15

Jun Forecast 15.48 6.89 2.11 1.36 8.67 2.58 8.51 2.53

hindcast* - - - - - - - -

Jul Forecast 33.19 15.93 10.49 7.22 17.86 8.74 16.87 8.41

Hindcast 28.83 12.35 9.87 6.23 15.98 6.57 15.03 15.03

Aug Forecast 37.07 14.28 8.42 6.44 16.09 8.40 15.55 8.36

hindcast* - - - - - - - -

Sep Forecast 18.89 4.6 1.5 1.19 6.11 1.9 6.04 1.9

Hindcast 21.19 15.89 1.64 1.66 7.54 6.44 7.35 7.35

Oct Forecast 7.63 3.36 0.74 0.53 4.64 1.15 4.61 1.08

Hindcast 8.75 12.67 0.83 0.70 5.65 2.44 5.58 5.58

Nov Forecast 10.23 4.54 2.34 1.96 5.41 2.09 5.42 2.04

Hindcast 13.53 11.98 2.79 2.71 6.92 3.40 6.91 6.91

Dec Forecast 27.23 19.48 11.44 10.28 22.31 15.24 22.33 15.36

Hindcast 21.03 11.80 10.58 8.27 19.07 10.55 19.37 19.37

* There are not enough data for the hindcast period.
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the revised and enriched form of Nash-Sutcliffe Efficiency (NSE) (Gupta
et al., 2009). It is a useful tool for the similarity assessment of the forecast
and observational data.

KGE¼1� ED (13)

ED¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � 1Þ2 � ðα� 1Þ2 � ðβ� 1Þ2

q
(14)

Eq. (14), ED, is expressed as the Euclidean distance between esti-
mated and observed data which is a function of correlation (r), the ratio
of the variance of the forecast to the variance of observation (α) and the
ratio bias (β) (Khajehei and Moradkhani, 2017).

4. Results

4.1. Validation of GPCC precipitation data

As mentioned in section 2.2.1 the GPCC precipitation data were used
as the observation data during the study period. To evaluate the accuracy
of using GPCC data, the KGE and CC values of rain-gauge stations with
recorded precipitation values during 1981–2010 were compared with
the corresponding GPCC precipitation values in the corresponding 0.5 by
0.5� cells.

Box plots of criteria values (KGE and CC) for each rain-gauge station
over 12 months from 1981 to 2010 are shown in Figure 3. As seen in this
figure, based on KGE values (all of them are above 0.6) there is a good
agreement between the two datasets. Also, the CC with values greater
than 0.95 for most time series at these stations, confirms that the GPCC
data is consistent with the rain-gauge station data.

4.2. Raw forecast validation

To evaluate the accuracy of raw forecast data, first, the KGE criterion
was used to find the reliability of raw NMME precipitation data due to the
10
observation data (GPCC here). As suggested by (Khajehei andMoradkhani,
2017), the acceptable amount of this parameter was considered more than
0.6 here. Otherwise, the use of raw data without doing any post-processing
is not logical. As a non-limiting example, the results of KGE for the rainiest
(March) and driest (October) months of the study area are illustrated in
Figure 4. As seen, in all extent of the study area the amount of KGE is lower
than 0.6, hence, it is essential to do the post-processing cell by cell. In the
following, to find out the best fitting distribution with the historical data,
three types of distributions were examined.

4.3. Parametric distributions

The best (most suitable) parametric distribution in each cell is
selected based on the following sequential stages. First, different para-
metric distributions are applied for each time-series. Then, the KS and
BIC indexes are evaluated for each distribution. Finally, the best (most
fitted) parametric distribution can be selected. As a non-limiting
example, the observation data of a 0.5-degree cell in 62.25o of longi-
tude and 33.25o of latitude coordinates are used here. Table 6 shows the
results of fitting different parametric distributions to the specified time-
series of the mentioned cell. According to this table, based on the K–S
test, the Exponential, Normal, LogNormal, and GEV distributions are the
acceptable ones (K–S>0.05) while the GEV distributionwith the least BIC
value can be introduced as the best among them.

Figure 5 shows the histogram of precipitation within the mentioned
cell during the hindcast period (column bars) versus different fitted
parametric distributions (red curves). This figure can present a better
perception of judgment about the suitability of each distribution. In this
way, the most fitted distribution for each cell can be selected as the most
suitable distribution. For example, in the corresponding cell, the GEV
distribution is the best one.

With repeating the same calculation in other cells, the EXP and GEV
distributions were found dominant compared to the other parametric
distributions across the study area (Figure 6).
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4.4. Non-parametric distributions

As previously stated (section 3.1), determining the bandwidth is the
first prerequisite to find the best fitting kernel distribution function. For
the chosen cell, Table 7, presents the result of bandwidth values proposed
by different methods. In this cell, the mean observation and forecast
values are 49.27 and 70.25 mm respectively. As seen in Table 7, the
suggested bandwidth values have led to almost similar results (around 61
mm). Figure 7 illustrates how the selection of different values of band-
width affects the accuracy of the fitted kernel distribution. As a general
rule, the best bandwidth is the one which is accompanied by the most
Figure 13. Spatial dispersion of the March precipitation (hindcast period) a) Observa
Kernel – ML, g) GEV-Kernel – Central Mass, h) GEV-Kernel – ML.
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improvement in the hindcast period. However, the obtained results show
that the improved forecasts are not sensitive relative to the different
bandwidth values, the bandwidth value of CCV method has the highest
priority for the selection.

Figure 8 shows the dispersal of parametric distributions and Normal
Kernel Density Distribution in the researched region. As seen in this
figure, the kernel distribution function in only some limited cells could be
more adapted to the hindcast data than the parametric distributions.
Therefore, the use of a semi-parametric distribution function that can
take advantage of parametric and non-parametric distributions simulta-
neously has been evaluated in the following.
tion, b) Forecast, c) PAR – Central Mass, d) PAR –ML, e) Kernel – Central Mass, f)
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4.5. Semi-parametric distribution

As seen in Figure 8, the GEV and EXP distributions have the most
agreement with observation data in the region. As the GEV can efficiently
cover the drawbacks of non-parametric in boundary limits (extreme
values), it was used as a complementary function for integration with
kernel distribution. In other words, at this stage, a combination of kernel
and GEV functions was used to create a semi-parametric distribution
function. The formation of this distribution is shown in Figure 9.

For the selected cell, Table 8 shows the K–S test and BIC criterion
values for all the used parametric, non-parametric and semi-parametric
Figure 14. Spatial dispersion of the March precipitation (forecast period) a) Observa
Kernel – ML, g) GEV-Kernel – Central Mass, h) GEV-Kernel – ML.
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distributions. As seen, based on the K–S test, all of the obtained results
are acceptable but based on the BIC criterion, the GEVKer distribution is
the best one. The same procedure was applied for all the cells. Across the
study area, only one cell followed the parametric (exp) distribution and
the others fitted with GEVKer distribution (Figure 10).

4.5.1. Determining the best copula functions and creating CPDF
As described in section 3.2.1, to find the best joint distribution

function between the observation and raw forecast data in the hindcast
period, the Archimedean and Elliptical Copula families were assessed.
Then, the selected copula function for each cell in the hindcast period
tion, b) Forecast, c) PAR – Central Mass, d) PAR –ML, e) Kernel – Central Mass, f)



Figure 15. Comparison of estimated precipitation between real observation, GPCC, raw NMME models and improved NMME Models in observational stations: a)
Chabahar, b)Iranshahr, c)Khash, d)Saravan, e)Zabol, f)Zahak, g)Zahedan.

Table 11. The correlation and mean values of time-dependent time series.

Data Correlation Mean Value

observation - 10.0126

forecast 0.4312 16.8774

Par-ML 0.54462 3.27181

Par-CM 0.53696 3.51763

Ker-ML 0.55334 6.57218

Ker-CM 0.65302 11.6302

GEVKer-ML 0.56003 6.35002

GEVKer-CM 0.64978 11.6011
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(based on the AIC test) is used to improve the estimated data in the
hindcast and forecast periods. As a non-limiting example, for the rainiest
month (March), the best copula functions introduced in each cell are
illustrated in Figure 11. According to this figure, it can be seen that
among different copula functions investigated in this study, only 7 were
introduced as the best selected joint distribution across the area.

After the selection of the best joint distribution of the observed and
forecast data, CPDF is created for each predicted precipitation. For this
purpose, the selected copula function is applied in the Bayesian equation
as discussed in section 3.2.2.
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4.6. Improved forecast extraction

The essential part of post-processing is the selection of the best-
improved precipitation among the sample observational data. To show
the effect of using different marginal distributions and the method of
selecting the best-improved forecast of precipitation, the sample cell has
been examined. In Figure 12, the first column represents the sample
observational data based on the parametric, non-parametric and semi-
parametric marginal distributions during the rainy month (March). The
second column of Figure 12 is equivalent to the CPDF of mentioned cell
for predicted precipitationin 1991. Also, the results of the ML and CM
methods are denoted here.

The results show that there is no significant difference in the results of
the two mentioned methods for the parametric marginal distributions.
On the other hand, these results are impressively different for non-
parametric or semi-parametric marginal distributions because of their
irregular CPDF shapes. Also, GEVKer marginal distribution may be able
to overcome the over-estimating of kernel distribution deficiency in the
lower boundary. The details of post-processing results for this cell is
shown in Table 9.

The results of mean improved precipitation data calculated by the CM
and ML methods in different months are presented in Table 10.

In Table 10, the closest values to the observed data are shown in bold.
As seen in this table, the Kernel and GEVKer marginal distributions have



Table 12. Anomaly table for the October.

Forecast Hindcast

Min negative anomaly Mean anomaly Max positive anomaly Min negative anomaly Mean anomaly Max positive anomaly

forecast -13.29 -3.07 6.26 -5.60 9.72 13.55

Par-ML -29.72 9.74 3.06 -22.17 9.70 14.82

Par-CM -13.59 9.48 7.71 -20.52 10.39 11.89

Ker-ML - 7.00 7.00 - 16.89 16.89

Ker-CM -1.26 0.67 -0.94 -1.95 8.14 8.456

GEVKer-ML -1.67 10.20 9.11 -1.94 7.501 7.96

GEVKer-CM -1.88 1.73 -1.10 -1.94 7.50 7.96

Figure 16. The result of forecasts for the spatial dependent time series a) the correlation coefficient b) KGE criterion.

F. Yazdandoost et al. Heliyon 7 (2021) e07877
caused the best improvement. Meanwhile, the CM method has presented
better values than the ML method. Figure 13 and Figure 14 display the
improved predicted data of March for the total study area in the hindcast
and forecast periods.

These results can confirm that the combined distribution has led to
higher improvement. In summary, the introduced semi-parametric dis-
tribution is more flexible (like nonparametric distributions) and more
accurate than the other ones especially in the boundaries (like parametric
GEV distributions).

In terms of temporal variation of forecast accuracy, Figure 15 shows
the comparison of precipitation time-series of the recorded observation,
GPCC, raw NNME forecast models and the improved NMME data (GEV-
Ker-CM) in location of 7 rain-gague station cells during the July (as a non-
limiting example) in hindcast and forecast periods. As seen in this figure,
the improved NMMEmodel are much closer to the actual recorded values
than the raw NMME data.
14
4.7. A deeper investigation of results

According to the methodology, the first step of post-processing was
data classification into 12 monthly separated time series. Although
most of the post-processing researches which are based on Copula
functions use spatial and temporal dependent Copulas, however,
operational comfort often leads researchers to classify database in
spatial and temporal independent time series. These time series can
provide the possibility of using spatial and temporal independent
copula functions. Therefore, the necessity of examining the sensitivity
of the results to the initial assumption has been studied. To achieve
this target, new time series are built-in reliance on temporal de-
pendency. These time series are consisting of whole data in
1981–2010 for each cell at the monthly timestep (384 members).
Table 11 indicates the correlation coefficient and mean values of these
time series.
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As seen in Table 11 not only the time dependency of data is preserved
but also it is improved after post-processing. The GEVKer-CM, Ker-CM,
GEVKer-ML and Ker-ML methods have the maximum correlations
respectively. Moreover, concerning the mean values, the GEVKer-CM and
Ker-CM methods have the best performance in forecast rectification
respectively.

For assessment of the spatial dependency, the raw and the improved
data of eachmonth in the entire study area are compared. The correlation
coefficient and KGE criteria are demonstrated in Figure 16 for the months
with the most (March) and the least (October) rainfall.

The results indicate that the correlation coefficient values of
improved data set based on Ker-CM and GEVKer-CMmethods in hindcast
period are near 1. Also, in the forecast period these two methods were
able to improve the correlation coefficient from negative values to
above0.75 for rainy months and above 0.25 for the low rainfall months.

As mentioned earlier the KGE criterion is the best to scrutinize the post-
processing influence and to measure its satisfaction. As seen in Figure 16b,
the KGE values for the March in hindcast and forecast periods by two
methods of Ker-CM and GEVKer-CM are satisfactory (KGE>0.6). The val-
idity of this criterion is again confirmed for the October in hindcast period
for the mentioned methods. However, the values of this criterion for
October in the forecast period are negative. The reason for these un-
pleasant results is the low rainfall values in this month. Based on the
formulation of KGE, the three terms of KGE equation are rational. There-
fore, its values are highly sensitive to the denominator of those ratio terms.
In this case, a small absolute variation in the precipitations’ values can
negatively impact the related ratio terms and thus produce negative KGE
values (Santos et al., 2018). So, the anomaly and mean values of October
precipitation are selected to evaluate the post-processing influence in low
rainfall months (Madadgar et al., 2016). The monthly precipitation
anomalies illustrate that the Ker-CM, GEVKer-ML and GEVKer-CM
methods have smaller anomaly values (Table 12).

Despite initial assumption in time series classification, the results of
monitoring the temporal and spatial dependency of improved data show
the preservation and amelioration of these dependencies. Additionally,
the Ker-CM and GEVKer-CM methods lead to the best results.

The Ker-ML and GEVKer-ML methods haven't led to acceptable mean
values. However, according to the temporal and spatial dependent time
series and relative CC and KGE amounts, they are more robust in an
indication of the rate of the change.

5. Conclusion

This paper investigated the accuracy of the NMME forecast data and
the usage of the statistical Copula method for improvement of the model
output in Sistan and Baluchestan province, Iran. In this regard a three-
step framework is proposed based on 1) Evaluating the conformity of
GPCC data with rain-gauge recorded observational precipitation 2)
Examining different statistical distributions and presenting a combined
(semi-parametric) distribution 3) Examining the common method of
determining the improved data based on the CPDF and proposing a new
method. This research uses four NMME models containing 54 ensemble
members for the hindcast period (1982–2010) and 58 ensemblemembers
for the forecast period (2012–2016). To evaluate the accuracy of the
ensemble's mean, the GPCC observational database is used as the
observation data. The KGE values reveal the requirement of model output
improvement. In this paper, the copula-based Bayesian approach is used
as post-processing. This method results in a CPDF whose accuracy is a
function of marginal distributions of Copula functions. Here, three kinds
of marginal distributions as parametric (Exponential, Normal, Gamma,
LogNormal and GEV), non-parametric distributions and a novel semi-
parametric distribution are employed. After CPDF production, the
choice of best-improved data is an essential step. This paper uses the
common method based on Maximum Likelihood and suggests a novel
method that chooses the center of mass of CPDF. Finally, the achieve-
ments of this paper may be summarized below.
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1 The investigation of different marginal distributions shows that the
GEVKer distribution has the most agreement with most of the time
series. Furthermore, it can solve the kernel distributions' problem in
boundaries.

2 Application of the Maximum Likelihood and Central Mass methods in
parametric marginal distributions have nearly the same results. But
they lead to significantly different results in the case of the kernel and
GEVKer marginal distributions.

3 The non-parametric and semi-parametric distributions give better
improvement.

4 The usage of non-parametric and semiparametric marginal distribu-
tions by the ML method, in comparison with parametric one, can
present the proper rate of change (CC).

5 When the data values are low or the variation of data is small, the CC
and KGE criteria wouldn't be the appropriate parameters to investi-
gate the performance of post-processing. In these cases, the anomalies
will be used.

6 Despite initial simplifying assumptions on time series classification
based on temporal and spatial independence, the results represent
amelioration of temporal and spatial independence.
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