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ABSTRACT

Models of transcription factor (TF) binding sites pro-
vide a basis for a wide spectrum of studies in reg-
ulatory genomics, from reconstruction of regulatory
networks to functional annotation of transcripts and
sequence variants. While TFs may recognize differ-
ent sequence patterns in different conditions, it is
pragmatic to have a single generic model for each
particular TF as a baseline for practical applications.
Here we present the expanded and enhanced ver-
sion of HOCOMOCO (http://hocomoco.autosome.ru
and http://www.cbrc.kaust.edu.sa/hocomoco10), the
collection of models of DNA patterns, recognized by
transcription factors. HOCOMOCO now provides po-
sition weight matrix (PWM) models for binding sites
of 601 human TFs and, in addition, PWMs for 396
mouse TFs. Furthermore, we introduce the largest
up to date collection of dinucleotide PWM models
for 86 (52) human (mouse) TFs. The update is based
on the analysis of massive ChIP-Seq and HT-SELEX
datasets, with the validation of the resulting mod-
els on in vivo data. To facilitate a practical applica-
tion, all HOCOMOCO models are linked to gene and
protein databases (Entrez Gene, HGNC, UniProt) and
accompanied by precomputed score thresholds. Fi-
nally, we provide command-line tools for PWM and
diPWM threshold estimation and motif finding in nu-
cleotide sequences.

INTRODUCTION

Information on the precise locations of DNA sites binding
transcription factors (TFs) is necessary to reconstruct regu-
latory networks (1), as well as to evaluate functional conse-
quences of mutations in DNA regulatory regions (2,3) or
interactions between DNA-bound TFs (4). Conventional
methods that experimentally reveal nucleotides contacting
regulatory proteins are low throughput, laborious and ex-
pensive (5). In turn, high throughput methods yield only
an approximate location of protein binding sites (6,7). The
precise location of binding sites could be predicted by com-
putational methods based on binding motif models such as
positional weight matrices (PWMs). Direct information on
binding specificities is known for about 30–50% of ∼1400
human TFs (8), and is stored in many proprietary and open
access collections such as JASPAR (9), TRANSFAC (10),
SwissRegulon (11), HOCOMOCO (12) and others (13).
From the beginning, the idea of HOCOMOCO was to pro-
vide a single binding model for each transcription factor,
except for TFs exhibiting two distinctly different and well-
confirmed binding specificities. To this end, we performed
the integration of data obtained from experiments of differ-
ent types, with the best models built from ChIP-Seq data.

Although the first published version (12) proved to be
successful in practical applications (14–17), since then there
have been many important developments in the area.

� DNA binding specificities of many TFs have been as-
sessed in vivo in a large number of new ChIP-Seq experi-
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ments (18), particularly within the framework of the EN-
CODE project (19).

� For an even greater number of TFs, DNA binding speci-
ficities have been assessed in vitro with high throughput
methods, e.g. HT-SELEX (20).

� Newly generated data revealed the cases in which tradi-
tional mononucleotide PWM models were unable to re-
produce characteristic features of binding motifs (21).

The new version of HOCOMOCO provides TF binding
sites (TFBS) models for a wider spectrum of TFs and in-
cludes a new set of models that account for dependencies of
neighboring nucleotides. The HOCOMOCO pipeline also
includes quality assessment for all included models. Finally,
in the previous HOCOMOCO versions we provided map-
ping to the mouse UniProt IDs of TFs. Profiting from the
mouse ChIP-Seq data that is available, the new HOCO-
MOCO version provides mouse-specific models in a system-
atic way.

MATERIALS AND METHODS

The main objective of this study was to perform motif dis-
covery on ChIP-Seq and HT-SELEX data and to evaluate
performance of new and existing TFBS models in a com-
prehensive benchmark based on ChIP-Seq peaks not uti-
lized in motif discovery. For newly derived models, our cu-
ration procedure ensured that only the binding motifs of the
target TFs entered downstream analysis, thus eliminating
those representing binding sites of other proteins (e.g. ma-
jor cooperatively bound TFs), which could also be found in
the ChIP-Seq peaks. Furthermore, given the variable qual-
ity of the ChIP-Seq data, we performed benchmarking not
only for the models, but for the datasets too. More precisely,
for each ChIP-Seq dataset, we evaluated a wide range of the
existing PWM models for the respective TF and kept only
the motif-enriched ChIP-Seq datasets. The overview of the
workflow is shown in Figure 1. The details of each step are
described below.

ChIP-Seq data processing

As a primary source of the ChIP-Seq data we used
GTRD (Gene Transcription Regulation Database, http://
gtrd.biouml.org, September 2013 release), the database of
genomic TF binding segments within the BioUML plat-
form (http://biouml.org). GTRD provides ChIP-Seq data
from different sources processed with a unified pipeline.
The ChIP-Seq datasets were systematically collected from
literature, Gene Expression Omnibus (GEO), Sequence
Read Archive (SRA) and ENCODE. The analysis was
done as follows: reads were aligned to reference genomes
(hg19/mm9) using Bowtie (22) (with parameters: –best –
strata -a -m 10) and the ChIP-Seq peaks were identified
using SISSRS (23) (default parameters). All datasets were
linked to UniProt IDs. Detailed annotation of the datasets
is given in Supplementary Table S1.

Overall, GTRD provided 1381 (309) human (mouse)
ChIP-Seq datasets covering 392 (96) TFs with at least 200
peak calls per experiment. The top 1000 highest peaks were
taken from each dataset; for 652 datasets the total number

of peaks was less than 1000, in such cases all peaks were
used.

The even ranked peaks were taken for motif discovery,
which was performed within the motif length range from
22 down to 11 bp using ChIPMunk (24) and diChIPMunk
(25,26) for mono and dinucleotide PWMs, respectively, as-
suming zero or one occurrence per sequence (ChIPMunk
‘zoops’ mode). The peak base coverage profiles were taken
into account (ChIPMunk ‘peak’ mode). ChIPMunk iter-
atively performed motif discovery from subsamples of a
given sequence set with the optimization for the best mo-
tif (24,27). We used the ChIPHorde extension to sequen-
tially search for two over-represented patterns to allow for
possible artifact motifs arising from DNA repeats or poly-
merase chain reaction duplicates. For each dataset, only one
model aligning a larger fraction of peaks was kept for fur-
ther consideration. The odd ranked peaks were used as an
independent control data for benchmarking (see the respec-
tive section below).

ChIP-Seq motif curation

All models obtained from ChIP-Seq data were curated by
hand. For the downstream analysis we selected models sat-
isfying at least one of the following criteria: (i) similar to
what is already known (with at least 0.05 Jaccard similarity
to HOCOMOCO or HT-SELEX models with a consequent
manual curation; the similarity was computed by MACRO-
APE (28)), (ii) consistent within a TF family, or at least, (iii)
with a clearly exhibited consensus (based on LOGO repre-
sentation, manually assessed). The results of the curation
are presented in Supplementary Table S2. Nearly 50% of the
models (692 human and 177 mouse from 1690 total) passed
the curation and participated in benchmark (see the respec-
tive section).

HT-SELEX data processing

Raw reads from 542 HT-SELEX experiments (20) were pro-
cessed in the following way. Low-quality read segments were
masked with poly-Ns ensuring at least a Q30 average Phred
quality score in 10 bp sliding windows. Then, read counts
were calculated for all reads for each pair of consequent (n,
n + 1) SELEX cycles. Only reads with counts increased in
(n + 1) cycle as compared to (n) cycle were kept and aggre-
gated. The largest read count from any of the SELEX cycles
was used as a sequence weight for each read. Motif discov-
ery with ChIPMunk and diChIPMunk was performed in a
weighted mode on reads from each HT-SELEX experiment,
separately (HTSELEX-R models) and additionally for TFs
with multiple experiments, by integrating data from all re-
spective sets (HTSELEX-I models).

Existing binding sites models

We used the following existing collections of known mod-
els: JASPAR CORE (9), HOMER (29), SWISSREGU-
LON (11), existing models from HT-SELEX (20), previous
release (v9) of HOCOMOCO (12) and recently published
models for pluripotency regulators (30), the latter with the

http://gtrd.biouml.org
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Figure 1. Overview of the HOCOMOCO update workflow.
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Table 1. Overview of binding sites model collections included in
benchmarking

Benchmarking was done only for TFs with at least one dataset successfully
passed the filtering stage. Almost all new ChIP-Seq derived models were
benchmarked. For known collections, the benchmark coverage was lower,
from 25% (HOCOMOCO v9) to 50% (JASPAR). The sets of TFs that
underwent benchmarking partially overlapped between collections with
the total number of 127 (69) TFs tested for human (mouse). Sets of new
mononucleotide models from ChIP-Seq and HT-SELEX data are high-
lighted in green. Sets of new dinucleotide models are highlighted in yellow.

corresponding ChIP-Seq data included in the benchmark-
ing step, see below. All the collections were linked to the ap-
propriate UniProt IDs and multiple models for a single TF
were retained if available. For HOMER and SWISSREGU-
LON we used only human UniProt mappings based on the
set of TFBS models utilized in FANTOM5 analysis (31).
An overview of the total number of TFs covered by each
collection is given in Table 1.

Model and dataset benchmarking

To assess performance of the known and new TFBS models
we utilized the AUC ROC (area under curve for receiver op-
erating characteristic) based benchmarking, similar to that
of the previous HOCOMOCO release (12). For a particular
TF, for each model and each dataset we computed the true
positive rate (the fraction of peaks with at least one hit per
sequence) versus the expected rate of false positive predic-
tions (the percentage of random sequences of comparable
lengths containing model hits) at different score thresholds.
An important enhancement over the previous setup (12)
was accounting for dinucleotide composition of ChIP-Seq
peaks when computing motif P-values used to estimate the
false positive rate. To this end we used MACRO-APE soft-
ware (28), which also allowed for processing dinucleotide
PWMs in the same fashion.

Although the same pipeline processed all the ChIP-Seq
data, the resulting quality and motif enrichment of datasets
may vary. At the same time, some known or new binding
models may not reflect protein-binding preferences prop-
erly. Thus, we used information from known TF binding
models to select appropriate ChIP-Seq datasets and vice
versa.

Suppose there are N binding site models for a given TF.
For each dataset, we introduced the weighted AUC in the

following way:

wAUCdataset =
∑

models AUC(model, dataset)
Nmodels

Then for each model we introduced the weighted AUC:

wAUCmodel =
∑

datasets AUC(model, dataset) · wAUCdataset∑
datasets wAUCdataset

This allowed us to use information contained in several
datasets to evaluate the model quality and to use informa-
tion from several binding models to evaluate the quality of a
particular dataset. The weighted AUC performed in a simi-
lar way as an average AUC, but received a higher contribu-
tion from better datasets and better models.

Still, non-informative models and datasets depleted of
binding sites should have been completely excluded. To
this end, for each TF we iteratively removed datasets
with wAUCdataset < 0.65 and then removed models with
wAUCmodel < 0.65 until convergence was achieved. The ar-
bitrary wAUC threshold was selected to keep all bench-
marked HOCOMOCO v9 models with high (A and B) qual-
ity categories.

Table 1 displays the number of successfully benchmarked
TFs for each collection of models. After the wAUC-based
filtering of datasets and models, only 786 (206) datasets re-
mained for human (mouse) and the resulting benchmark
provided information on 127 (69) human (mouse) TFs.
The resulting wAUC values of the datasets are provided in
Supplementary Table S3. Finally, to compare overall per-
formance of different collections for each TF we selected
the best models from each collection based on the final
wAUCmodel score.

Assembling the final collection

By default, for each TF we took the model that was the best
in the benchmark. If there were no ChIP-Seq data for a par-
ticular TF or no datasets survived the filtering, the HOCO-
MOCO v9 ABC-quality models were preferred, while HT-
SELEX-I/R and HOCOMOCO D-quality had the next
priority in this order. We included only models from HO-
COMOCO v9 or obtained during this study to have all the
final models produced by the same motif discovery tool. In
addition to mononucleotide PWMs, we separately gathered
dinucleotide PWMs when they had better wAUC than the
respective mononucleotide counterparts.

In this update, we introduced a unified model quality as-
signment procedure based on AUC ROC. The general ideas
were the following: (i) the best quality should be assigned
to models passing the optimal AUC threshold for at least
two available datasets; (ii) if only one ChIP-Seq dataset was
available, the validation on such single dataset was more
convincing for models that were not derived from ChIP-Seq
data; (iii) for models not evaluated in the benchmarking, the
existing HOCOMOCO quality could be directly inherited.
With these ideas in mind we developed the quality assign-
ment procedure that assigns A–D quality classes, see Sup-
plementary Figure S1.

The choice of an optimal AUC threshold for high qual-
ity models was empirical and we were using quality met-
rics of HOCOMOCO v9 models as a baseline. The selected
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Table 2. The number of human transcription factors covered by TFBS
models of known motif collections

optimal AUC of 0.8 was reached by 70% (50 of 82) of
AB (high) quality HOCOMOCO v9 models and by a two
times smaller fraction (35%, 13 of 36 benchmarked) of CD
(medium-low) quality HOCOMOCO v9 models.

We additionally introduced the secondary (mostly single-
box) models with the special S quality to distinguish them in
the collection (thus allowing two models for the same TF).
The S models were included for 40 (31) human (mouse) TFs
when 2 distinct cases were curated in HOCOMOCO v9, or
when a new primary model resembled a notably longer or
different pattern (e.g. double-box).

RESULTS

HOCOMOCO v10 significantly expands the collection of
TFBS models for mammalian (human and mouse) TFs. We
used 992 high quality ChIP-Seq datasets obtained by fil-
tering from the total 1690 datasets, and 542 HT-SELEX
datasets. To the best of our knowledge this makes HO-
COMOCO the largest systematically derived collection of
TFBS models for human and mouse. The models were
manually curated, and when possible, verified using in vivo
experimental data. A brief comparison of different TFBS
model collections is given in Table 2.

As compared to the previous (9th) version, the key fea-
tures of the new release include:

� more than a hundred human and mouse dinucleotide
PWMs that account for dependencies between neighbor-
ing nucleotides are provided along traditional PWMs;
the models are accompanied by command-line tools for
motif finding;

� a unified benchmark for ChIP-Seq data processing and
quality assessment of derived TFBS models based on
a receiver-operating characteristic analysis of ChIP-Seq
data;

� for 200 human TFs without models in HOCOMOCO v9,
we supplied the TFBS models increasing the total num-
ber of represented TFs from 401 to 601.

Overview of the collection

HOCOMOCO v10 contains 601 (396) binding site mod-
els for human (mouse) TFs, with 274 (263) human (mouse)
high (ABC) quality models (curated in HOCOMOCO v9 or
benchmarked in this study). We also present a completely
new complementary collection of 86 (52) human (mouse)
dinucleotide PWM TFBS models, accounting for the dinu-
cleotide composition of binding sites, and providing an im-
provement in binding sites recognition over the respective
mononucleotide counterparts.

Models for 92 (52) human (mouse) TFs were produced
by motif discovery in ChIP-Seq data, models for 193 (1)
human (mouse) TFs were derived from HT-SELEX data
and models for 316 (343) human (mouse) TFs were inher-
ited from HOCOMOCO v9. Additionally, for 40 (30) TFs
HOCOMOCO v10 includes models of secondary patterns,
mostly inherited from HOCOMOCO v9; such models were
allowed when a physicochemical interpretation of two TF
subtypes was available or if there was an existing single-box
variant of a longer primary model.

Benchmarking results

To evaluate performance of different collections, for each
collection we counted TFs that participated in benchmark-
ing and estimated the number of TFs for which the model
from the selected collection had the best wAUC.

First, we compared each single collection versus all ex-
isting mononucleotide PWMs (Figure 2, left side, HOCO-
MOCO v10 excluded at this stage). Among existing col-
lections JASPAR and HOCOMOCO v9 were the best and
scored more than 20 ‘wins’ (TFs with the best models).
Newly generated ChIP-Seq models performed remarkably
well. Many in vitro models from HT-SELEX were not
so good at recognizing binding sites in ChIP-Seq peaks,
which agreed with a case study on pluripotency TFs (30). If
compared separately, new-made HT-SELEX models were
better than original HT-SELEX models in a half of the
tested cases. This supports our strategy of assembling HO-
COMOCO v10 as a combination of successful new-made
ChIP-Seq and HT-SELEX based mononucleotide models
combined with successful HOCOMOCO v9 models, and its
models perform quite well as compared to all known mono-
PWM models (Figure 2, right side).

In most cases where dinucleotide models were avail-
able, the dinucleotide models outperformed the mononu-
cleotide models. di-HOCOMOCO v10 was assembled of
di-PWMs that performed better than mono-PWMs from
mono-HOCOMOCO v10 for the same TFs.

Based on the total benchmark of all models, we provide
wAUC values as numerical estimates of binding site recog-
nition performance for 145 (76) human (mouse) mononu-
cleotide PWMs and for all dinucleotide PWMs. For each
model which has participated in benchmarking, the max-
imum (the best unweighted) AUC over all the datasets is
also provided for convenience. These values can be used as
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Figure 2. Results of the benchmark assessing performance of different model collections on human and mouse ChIP-Seq data. The full height of each bar
depicts the total number of assessed TFs for a particular case. The green fraction of a bar depicts the number of TFs for which a model from the given
collection was the best (had the highest wAUC). The white fraction of the mono-HOCOMOCO v10 bar consists of TFs with the best models found in the
databases that did not participate in the collection assembly (HOMER, SWISSREGULON, JASPAR and the published version of HT-SELEX).

estimates of a classification quality when a TFBS model is
used as a classifier of protein-bound and non-bound DNA
segments.

The benchmark allowed us not only to compare the per-
formance of binding sites recognition by different models,
but also to verify the datasets, i.e. to assess the abundance
of predicted binding sites in ChIP-Seq peaks using wAUC
values. In particular, only 992 of 1690 datasets passed the
datasets filtering stage. This could be a consequence of a
unified ChIP-Seq processing pipeline with generic settings
not adapted to each particular experiment, or could as well
be a consequence of technical problems with some ChIP-
Seq samples. A large-scale analysis study that focused on
basic ChIP-Seq analysis (32) reported similar results with
only approximately half of datasets marked as highly suc-
cessful.

Accessibility

The HOCOMOCO website was fully redesigned to provide
a system of interactive filters making it easier to browse
the tables of the collection. The default set of columns pro-
vides a compact view of the most important information on
TFBS models, more details can be fetched with custom col-
umn sets (via ‘select columns’ button). As in HOCOMOCO
v9, we provide collection downloads in all major formats,
from plain text to TRANSFAC/MEME/HOMER.

The primary mapping in HOCOMOCO is based on
UniProt, but we also provide links to Entrez Gene, HGNC-
MGI and FANTOM5 SSTAR (31). Furthermore, we in-
cluded data on TF structural families according to TF-
Class (33). A tree (Figure 3) depicting subfamilies of TFs
(grouped by families) serves as a starting interactive page
for the collection website.

Quite recently, an approach controlling the common false
positive rate was acknowledged as the least biased in the
extensive benchmarking study (34). Different PWMs re-
quire a selection of different threshold levels to achieve the
same P-value, the estimated prediction rate at random data
(35). Thus, we supplied all the PWMs, both mononucleotide
and dinucleotide, with the precomputed thresholds for vary-
ing P-value levels. For users interested in in-depth analy-
sis, e.g. P-value computation using different background
models, we advise to utilize our MACRO-APE tool (http:
//opera.autosome.ru/macroape/) that can convert P-values
to thresholds and vice versa for both mononucleotide and
dinucleotide PWMs.

A web-based GUI to scan a given set of sequences for mo-
tif occurrences using HOCOMOCO v10 is now available in
BioUML (http://hocomoco.biouml.org). Finally, for users
interested in applying dinucleotide PWMs for motif finding,
we provide a command line tool named SPRY-SARUS as
ChIPMunk addon (http://autosome.ru/chipmunk/). SPRY-
SARUS efficiently scans sequences for PWM occurrences
using a super-alphabet approach (36) and works with
mononucleotide and dinucleotide PWMs in the same fash-
ion.

DISCUSSION

The fact that only 992 out of 1690 ChIP-Seq datasets passed
the benchmarking step did not mean that all the discarded
datasets were of a low quality. Indeed, our model-centric
approach selected only datasets with TF binding specifici-
ties primarily agreeing with those of the known models.
If the majority of peaks of a dataset did not contain any
significant hits of a known or newly constructed and cu-
rated PWM model, this dataset was discarded during the
benchmarking step due to low wAUC. Some TFs display

http://opera.autosome.ru/macroape/
http://hocomoco.biouml.org
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Figure 3. Coverage of TF structural families by TFBS models of HOCOMOCO v10. The area of each blue circle is proportional to the total number of
members of a particular family; the orange smaller circle depicts the fraction of TFs for which TFBS models are available. The TF classification is given
according to TFClass.
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two clearly different binding subtypes (37). If two subtypes
were mixed in a set of ChIP-Seq peaks, no clear single mo-
tif would emerge from motif discovery and no single model
could provide good AUC ROC. This would also result in
discarding the dataset. Additionally, the common peak call-
ing pipeline for all samples could be non-optimal for some
specific dataset producing irrelevant peaks and, finally, also
forcing the dataset to be discarded during benchmarking.

We used the top 1000 strongest peaks for all datasets,
considering these peaks as more robust in terms of peak
calling and actual TF binding. In fact, the binding sites
enrichment in top peaks may be different for TFs having
high and low numbers of functional genomic TFBS. Tech-
nically, hundreds of sequences are enough to properly pro-
duce baseline models, e.g. the fixed number of peaks was
successfully used for motif discovery in FactorBook (38).
Yet, the problem of selecting the optimal subset of ChIP-
Seq peaks for motif discovery still waits for a final solution.
Since our objective was to obtain the single best motif for
each TF, we did not compare locations of peaks in different
ChIP-seq datasets, assuming that quite different peak sets
could yield the same motif. This distinguished our approach
from that used in the ENCODE motif discovery pipeline
(39), where only peaks identified in Irreproducible Discov-
ery Rate (IDR) analysis were considered (40).

Usage of the even-ranked/odd-ranked peaks for
training/testing might also appear too restrictive as
compared to a random subset of peaks. In fact, random
sampling of input data is used during motif discovery by
ChIPMunk, which indeed proved to be quite successful
(41–43). Thus, additional randomization during input
selection is not necessary. Additionally, the uniform dis-
tribution of peaks between training and testing appears
to have a lesser bias as compared to other strategies, like
using the top 500/next 500 peaks or random subsets. It is
known that the binding sites strength positively correlates
with the peak height and it seems logical to have similar
distributions of the binding sites strength in the training
set and in the test set. From a biological point of view
it is highly unlikely that there is a regular statistical bias
between odd and even ranked peaks.

It is noteworthy, that if several models for the same TF
were introduced, deep cross-validation might help to evalu-
ate the true number of distinct motifs optimally describing
the available ChIP-Seq data. Yet, we deliberately avoided
addressing this issue in HOCOMOCO, restraining our-
selves to the single basic model for each TF where possible.
Moreover, we skipped possible novel motifs that may come
out of lower peaks. In fact, it is quite hard to prove the bio-
logical relevance of motifs discovered from low peaks with-
out any direct experimental validation. However, it is pos-
sible, that in HOCOMOCO we miss specific motifs charac-
teristic for particular conditions and users should be aware
of this.

HOCOMOCO comprises binding models for 601 human
TFs, which is less than half of all known human transcrip-
tion factors (8). How to provide the binding sites models
for all known TFs is a non-trivial problem. A conserva-
tive approach used e.g. in JASPAR, HOCOMOCO or older
TRANSFAC releases, was to provide binding models sup-
ported by direct experimental evidence. This left many tran-

scription factors without binding models, but ensured the
presented models had comparable reliability. There are at
least two extensive ways to cover more transcription fac-
tors: (i) to collect as many models as possible from various
databases, as in e.g. FootprintDB (44), or (ii) to assign mod-
els to transcription factors based on DNA-binding domain
similarity, as in e.g. CIS-BP (45). We believe that fast in-
flow of direct experimental data on TF binding, at least for
well-studied model organisms, will make the number of TFs
having motifs with experimental evidence quickly approach
the total number of known TFs. On the other hand, this will
provide a more solid background for homology-based motif
assignment for TFs of the less studied species.

Knowledge of direct binding specificities for orthologous
TFs in related species, allows detecting differences in bind-
ing specificities. Considering HOCOMOCO v10, ChIP-
Seq-based mouse models are generally similar to those of
human orthologs. At the same time, there are some differ-
ences, e.g. in the orientation of boxes of the resulting STAT1
models, which is a tandem repeat for mouse and, preferably,
a palindrome for human TF (see Figure 4). Probably those
differences are linked with dimerization properties and it is
not fully clear whether they are truly related to species or re-
flect some features of particular ChIP-Seq experiments. In
this case a more flexible model allowing a variable spacer
and orientation of the boxes might be more suitable than
the fixed-width PWM model.

Finally, comparing mono- and dinucleotide models, the
major consensus sequences of dinucleotide PWMs are very
similar to those of the mononucleotide matrices. How-
ever, in general diChIPMunk picked up longer segments
that flank core consensus. The contribution of flanking se-
quences into binding site recognition accuracy is an open
question (26), and probably varies from one TF to an-
other. Probably, a strategy similar to the one we used for
benchmarking can be utilized to specially assess the opti-
mal length of the flanking sequences.

The differences in flanking sequences are, in particu-
lar, exhibited for GC-box binding proteins, such as SP or
E2F families. Motif discovery on ChIP-Seq datasets yielded
models with long G-rich flanks surrounding the known
core. It is difficult to estimate whether these flanks are infor-
mative or just reflect the general elevated GC-rich compo-
sition of the binding sequences (the results were not robust
and were highly dependent on motif discovery settings). In
this release we kept a shorter single-box version of such
models under the S quality section.

Finally, the set of D quality models also requires further
analysis and annotation. For example, YBX1 D-quality
model is currently inherited from HOCOMOCO v9, but
there is a ChIP-Seq based suggestion that YB-1 does not
bind to Y-box at all (46). Such inconsistencies can be re-
solved only with new in vivo and in vitro data.

In conclusion, it should be noted that direct information
on binding specificity is currently available only for about
half of human or mouse TFs. This limits the practical appli-
cation of sequence analysis in regulatory genomics. More-
over, for many TFs the binding models are derived from
limited datasets or are based only on in vitro data provid-
ing rather a rough estimation of in vivo binding specificities,
so a further model power estimation is necessary.
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Figure 4. Binding models of human and mouse STAT1 TFs. LOGO representations of selected models learned from different ChIP-Seq datasets are shown.
wAUC values of different models within species are extremely close (about 0.89 for human and 0.78 for mouse). HOCOMOCO v9 human model is shown
as the reference. One of human ChIP-Seq datasets yielded a mouse-like model subtype.

In this release of the HOCOMOCO database we used
newly published sources of experimental data to increase
the number of known binding models, estimated binding
site recognition accuracy for hundreds of TFs, and provided
the most complete up-to-date collection of dinucleotide
models. We believe our collection of models will help re-
searchers to further unravel the gene regulatory code, the
next prerequisite of gene expression control by intelligent
gene editing.
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