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Abstract: The objective of this study was to examine the optimal mixing ratio of municipal incinerated
bottom ash (MIBA) and PET pellets used as a partial replacement of fine aggregates in the manufacture
of cement mortars. As a partial replacement for sand, 15 mortar specimens were prepared by mixing
0%, 10%, 20%, 30%, and 40% municipal incinerated bottom ash (MIBA) (A) and 0%, 10%, and 20%
PET pellets (P) in 5 cm × 5 cm × 5 cm cube molds. The cement/aggregate ratio was 1:3, and the
water/cement ratio was 0.5 for all specimens. The results showed that the compressive strength
of cement mortars decreased when increasing the amount of MIBA and PET pellets. The mortar
specimens with 10% PET pellets achieved the highest compressive strength (49.53 MPa), whereas the
mortar specimens with 40% MIBA and 20% PET pellets achieved the lowest compressive strength
(24.44 MPa). Based on this finding, replacing 10% and 20% sand in cement mortar with only MIBA or
only PET pellets could result in compressive strengths ranging from 46.00 MPa to 49.53 MPa.

Keywords: cement mortars; municipal incinerated bottom ash; PET pellets

1. Introduction

In 2018, cities around the world generated approximately two billion tons of solid
waste [1]. Improper disposal, such as landfilling and incineration, has resulted in the release
of toxic elements and pollutants that contaminate air, water, and soil and endanger human
health [2,3]. Waste recycling contributes to decoupling economic growth from resource
use [4–6] while reducing emissions of greenhouse gases and pollutants.

The waste management problem in Si Chang Island is a long-standing problem. The
main reasons are geographic problems such as rocky areas, a lack of appropriate technology,
and a lack of funds. Most of the waste is treated by incineration, which generates municipal
incinerated bottom ash (MIBA) that is not properly managed. Recyclable waste is also
difficult to manage as it needs to be transported to recycling facilities on the shore. One type
of recycled waste is PET bottles, which are imported and consumed in large quantities [7,8].

The waste composition at the Si Chang disposal site in 2020 showed food waste as
the most significant component (43.46%), followed by glass waste (22.25%) and plastic
waste (12.35%). Some recycling wastes were sorted before incineration, but most waste
is still incinerated without complete separation. Since incinerators have a low efficiency,
they can eliminate around 78% of the waste collected daily. The incineration residue
consists of mixed ash (municipal incinerated bottom ash, MIBA), which is approximately
2000 kg per month and is disposed of in dumpsites with the potential to contaminate
the environment [9,10]. Many studies have shown that the chemical composition of ash
depends on the types of waste. They also investigated the possibilities of utilizing ash as
fine and coarse aggregate in various applications such as mortar, concrete, road pavements,
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masonry blocks, lightweight concrete, and foamed concrete [10–12]. Therefore, this study
was interested in using MIBA as a partial replacement for fine aggregates.

Data from the 2017 to 2019 waste bank projects operated by Si Chang municipality
confirm that PET bottle waste is the most common type of waste compared to other plastic
waste, at approximately 635 kg per year [13]. Its current management is to store it for
approximately 3–6 months and send it by marine transport to a recycling facility on the
mainland. However, PET bottles require more space for storage due to their low density,
causing higher management costs [8]. Therefore, finding a solution for handling PET plastic
bottle waste on the island is an exciting alternative.

Population growth and tourism development have increased the demand for construction.
As a result, construction materials have become more expensive due to the scarcity of natural
resources and rising transportation costs [14]. Numerous studies have been conducted on
the compressive strength of cement mortars made from mixed materials [15–17]. Instead of
dumping PET waste into the environment, it can be reused by partially replacing aggregates
in concrete and mortar. Moreover, the effect of sand replacement by PET plastic waste was
proven using different forms, and it was found that the shape and size can affect the concrete
properties [18–20]. Saikia and de Brito [21] suggested that the replacement of sand with PET
plastic waste resulted in a higher compressive strength than that of shredded PET plastic waste.
However, the compressive strength was lower when the PET pellet form was used. Therefore,
this research aimed to investigate the mechanical and physical properties of cement mortars
using MIBA and PET bottle waste as a partial replacement for fine aggregate. The compressive
strength, water absorption, and density were investigated. In addition, microstructures were
examined using scanning electron microscopy. The results of this study can provide an
alternative method for Si Chang Island to manage the incineration bottom ash and PET bottles
as construction materials.

2. Materials and Methods
2.1. Raw Materials

The PET bottle waste used in this study was in the form of PET pellets made from recycled
PET bottle waste. The PET pellets were obtained from Grand Siam Polymer Co., Ltd. The
bottom ash used in this study was mixed ash consisting of fly ash and bottom ash and was
obtained from an incinerator in the Si Chang municipality. Sand, MIBA, and PET pellets were
sieved prior to use, and the particle size (less than 4.75 mm) was passed through a No. 4 sieve.

Sand, MIBA, and PET pellets were tested for aggregate properties, including particle
size distribution, shape, surface texture, fineness modulus, water absorption, and specific
gravity. Chemical composition was analyzed using an X-ray fluorescence spectrometer
(Bruker model S8 Tiger). Mineral phases were identified using an X-ray diffraction instru-
ment (Bruker AXS model S4 Pioneer, Karlsruhe, Germany). Microstructural characteristics
were identified using a scanning electron microscope (Jeol JSM-6480LV). Only MIBA was
analyzed for heavy metal leaching using the Toxicity Characteristic Leaching Procedure
(TCLP) (USEPA, Washington, DC, USA, 1992).

2.2. Production of Mortar Specimens

The mix proportion was designed according to ASTM C109 and modified to achieve
the target compressive strength at 40 MPa after 56 days of curing by immersion in water.
As shown in Table 1, the binder/fine aggregate ratio was 1:3, and the water/cement ratio
was 0.5 for all mixes. MIBA was used as a replacement for fine aggregate at 0%, 10%, 20%,
30%, and 40% w/v, and PET pellets were used as a replacement for fine aggregate at a
replacement level of 0%, 10%, and 20% w/v. Twelve mortar specimens were prepared for
each mix. Six specimens were used for compressive strength tests and another six for water
absorption tests. The specimens from all mixes were tested for compressive strength and
water absorption according to ASTM C39 and ASTM C64, respectively.
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Table 1. Mortar formulations.

Name
Binder Fine Aggregate

Water/Cement
Cement Sand (%) MIBA (%) PET Pellets (%)

Control 100 100 0 0

0.5

A10P0 100 90 10 0

A20P0 100 80 20 0

A30P0 100 70 30 0

A40P0 100 60 40 0

A0P10 100 90 0 10

A10P10 100 80 10 10

A20P10 100 70 20 10

A30P10 100 60 30 10

A40P10 100 50 40 10

A0P20 100 80 0 20

A10P20 100 70 10 20

A20P20 100 60 20 20

A30P20 100 50 30 20

A40P20 100 40 40 20
Note: A refers to MIBA, and P is defined as PET pellets.

3. Results and Discussion
3.1. Raw Materials
3.1.1. Fine Aggregate Properties

Sand, MIBA, and PET pellets (PET) were analyzed to investigate the particle size dis-
tribution, shape, surface texture, fineness modulus, water absorption, and specific gravity.

1. Particle Size Distribution

The particle size distribution was analyzed using the sieving method to determine
the average particle size of raw materials (Figure 1). The particle size distribution results
indicated that the PET pellets were larger than sand and MIBA. This is due to the fixation
and size consistency of PET pellets, which were retained only on sieves No. 7 (2.8 mm) and
No. 16 (1.18 mm). As a result, the D50 values for MIBA, sand, and PET pellets were 0.3 mm,
0.5 mm, and 3 mm, respectively.
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2. Shape and Surface Texture

Sand has different grain sizes and shapes and is rough and angular. MIBA is fine-
grained, dry, and dark gray in color. In comparison, PET pellets are cylindrical with smooth
surfaces and bright colors. The appearance of raw materials is shown in Figure 2.
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Figure 2. General appearances of sand, MIBA, and PET pellets.

3. Fineness Modulus

Sand, MIBA, and PET pellets have a fineness modulus (F.M.) of 2.35, 1.86, and 4.53,
respectively. Increasing the F.M. can affect the compressive strength of the samples and
improve it [21]. The water absorption of fine aggregates was analyzed according to ASTM
C128. The water absorption of sand, MIBA, and PET pellets was 1.1%, 18.5%, and 0%,
respectively. The PET pellet is a nonabsorbent material with a smooth, nonporous sur-
face [22]. Meanwhile, the high-water absorption of MIBA requires more water, reducing
the actual water–cement ratio [21].

The specific gravity of fine aggregates was analyzed according to ASTM C128. The
results showed that the specific gravity of sand, MIBA, and PET pellets is 2.48, 1.27, and
1.28, respectively.

4. Characteristics of Fine Aggregates

3.1.2. Chemical Composition

The chemical compositions of raw materials were analyzed using an X-ray fluorescence
spectrometer (Bruker model S8 Tiger). As shown in Table 2, SiO2 (73.6%) and CaO (31.3%)
are the major components of sand and MIBA, respectively. Chlorine (Cl) is also high in
MIBA (5.22%). Due to improper waste incineration without efficient waste separation,
the CI content can be inherited from PVC, chloride-contained plastics, and chloride salts
in kitchen waste [23]. The chloride content in MIBA can corrode the reinforcing steel in
concrete, causing the structure to collapse [24].

Table 2. Chemical composition of sand and MIBA.

Oxides
Content (wt.%)

Sand MIBA

SiO2 73.6 17.0
Al2O3 4.72 4.22
K2O 2.96 3.03

Fe2O3 0.765 2.07
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Table 2. Cont.

Oxides
Content (wt.%)

Sand MIBA

Na2O 0.266 3.57
TiO2 0.125 1.19
MgO 868 PPM 2.31
CaO 868 PPM 31.3
BaO 359 PPM 729 PPM
P2O5 345 PPM 1.96
Rb2O 184 PPM 60 PPM
ZrO2 141 PPM 156 PPM
SO3 105 PPM 3.04

MnO 87.4 PPM 875 PPM
SrO 34.7 PPM 402 PPM
PbO 27.4 PPM 300 PPM
Cl Not detected 5.22

CoO Not detected Not detected
NiO Not detected 81.6 PPM
CuO Not detected 0.118
ZnO Not detected 0.22

As2O3 Not detected Not detected

5. Mineral Phases

The X-ray diffraction pattern of raw materials is shown in Figure 3. The major crys-
talline phases of sand are quartz (SiO2) and orthoclase (KSi3AlO8). The major crystalline
phases of MIBA are synthetic hartrurite (Ca3SiO5) and wollastonite (CaSiO3), whereas the
minor mineral phases are marcasite (FeS2) and pyrrhotite (FeS).
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6. Microstructure and Elemental Composition of Raw Materials

The microstructure and elemental composition of raw materials are shown in Figure 4. The
particle morphologies were observed at 50× resolution for sand and MIBA and 30× resolution
for PET pellets. The results showed that sand had a rough and angular surface, while MIBA was
noticeably smaller and more porous than sand, which was confirmed at the same magnification.
However, the PET pellets were much larger than sand and MIBA and had a smooth non-angular
surface, and were nonporous. In addition, these products have different elemental components.
For example, Si and C are the major elements of PET and sand, respectively. On the other hand,
MIBA has a relatively diverse composition consisting of several elements, with CaO being the
most prominent.
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7. Leaching of Heavy Metals from MIBA

Only MIBA was examined for the leaching of heavy metals, including Ba, As, Co, Cd,
Fe, Cr, Mn, Cu, Se, Zn, Ni, and Pb, using the TCLP method. As shown in Table 3, the results
were compared to the regulatory levels of the U.S. Code of Federal Regulations [25] and
the soil quality standards of the Thai Pollution Control Department [26]. The heavy metal
concentration of MIBA was within the maximum contaminant concentration for toxicity
characteristics. As a result, MIBA can be classified as nonhazardous waste and used as a
raw material in this study. Thus, the cement mortars made from MIBA did not require
heavy metal leaching testing.
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Table 3. Leaching of heavy metals from MIBA.

Heavy Metal MIBA (mg/L) Regulatory Level (mg/L) Soil Quality
Standards (mg/kg)

Ba 0.638 ± 0.169 100.0 -
As Not detected 5.0 3.9
Co Not detected - -
Cd 0.003 ± 0.000 1.0 37
Fe Not detected - -
Cr 0.228 ± 0.028 5.0 300
Mn Not detected - 1800
Cu 0.188 ± 0.058 - -
Se 0.010 ± 0.000 1.0 390
Zn 0.013 ± 0.008 - -
Ni Not detected - 1600
Pb 0.011 ± 0.003 5.0 400

3.2. Mortar Specimens
Physical Properties of Mortar Specimens

1. General Appearance

As shown in Figure 5, the general appearance of mortar specimens differs slightly in
those with high levels of MIBA. In addition, the mixture layers, surface roughness, and
dryness can be observed compared to the control.
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2. Compressive Strength

Figure 6 shows the compressive strengths of mortar specimens after 56 days. The
results show that the compressive strength of each group decreased as the amount of MIBA
used to replace sand increased. Four mortar specimens have compressive strengths greater
than 40 MPa, but less than the control (51.32 MPa), as follows: A10P0 (49.19 MPa), A20P0
(46.25 MPa), A0P10 (49.53 MPa), and A0P20 (46 MPa).
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As shown in Table 4, data analysis two-way ANOVA for compressive strength shows no
interaction between PET pellets and MIBA, F (8, 60) = 1.897, p = 0.08. This demonstrates that
the combination of PET pellets and MIBA has no significant effect on specimen compressive
strengths. At the same time, the effects of PET pellets and MIBA have a p-value = 0.000,
indicating that the amount of PET pellets and MIBA affects the compressive strength of the
specimen at a significant level of 0.01. This can describe how different replacement levels of
both materials affect the compressive strength. However, as shown in Figure 7, the profile
plot of estimated marginal means of compressive strength between PET pellets and MIBA
shows trends in the same direction.

Table 4. Compressive strength tests between PET pellets and MIBA effects. Test of Between-Subjects
Effects. Dependent Variable: Compressive strength.

Source
Type III
Sum of
Squares

df Mean
Square F Sig. Partial Eta

Squared

Corrected
Model 5282.550 a 14 377.325 22.857 0.000 0.842

Intercept 106,129.133 1 106,129.133 6428.935 0.000 0.991
PET 1508.426 2 754.213 45.688 0.000 0.604

MIBA 3523.559 4 880.890 53.361 0.000 0.781
PET*MIBA 250.564 8 31.321 1.897 0.077 0.202

Error 990.483 60 16.508
Total 112,402.165 75

Corrected
Total 6273.033 74

a R Squared = 0.842 (Adjusted R Squared = 0.805).
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3. Water Absorption

Figure 8 shows the water absorption of mortar specimens. The results indicate that the
highest water absorption rate was A40P10 (5.5%), followed by A40P20 (5.44%), whereas
the lowest was A20P20 (4.27%). This experiment shows that using 20% MIBA caused the
lowest water absorption for each group. In addition, among all ratios, 20% MIBA and 20%
PET pellets have the lowest water absorption. It can be concluded that replacing sand with
20% PET pellets and 20% MIBA resulted in the best aggregate arrangement with the least
porous matrix and less water absorption.
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The data analysis of water absorption (Table 5) revealed an interaction effect between
PET pellets and MIBA, F (8, 60) = 2.22, p = 0.004. This demonstrates that combining different
levels of PET pellets and MIBA significantly impacts the specimen’s water absorption.
Furthermore, the plot of estimated marginal means for different replacement levels of PET
pellets and MIBA (Figure 9) shows that the use of 30% and 40% MIBA tends to differ from
other scenarios.

Table 5. Water absorption tests between PET pellets and MIBA effects. Test of Between-Subjects
Effects. Dependent Variable: Water absorption.

Source
Type III
Sum of
Squares

df Mean
Square F Sig. Partial Eta

Squared

Corrected
Model 2413.943 a 14 172.425 9.764 0.000 0.695

Intercept 760,274.953 1 760,274.953 43,051.327 0.000 0.999
PET 123.614 2 61.807 3.500 0.037 0.104

MIBA 1835.554 4 458.889 25.985 0.000 0.634
PET*MIBA 454.775 8 56.847 3.219 0.004 0.300

Error 1059.584 60 17.660
Total 763,748.480 75

Corrected
Total 3473.527 74

a R Squared = 0.695 (Adjusted R Squared = 0.624).
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4. Density

Figure 10 shows the density of mortar specimens. The tendency of density is similar
to that of compressive strength, indicating that these two parameters are correlated. The
control has the highest density (2172 kg/m3), followed by A0P10 (2158 kg/m3) and A10P0
(2156 kg/m3). On the other hand, A40P20 presented the lowest density (1979 kg/m3).
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Figure 10. The average density of mortar specimens.

The density analysis results (Table 6) revealed that the amount of PET pellets and
MIBA significantly affected the specimen’s density. It can be observed that there is no
interaction effect when using PET pellets with MIBA, F(8, 60) = 1.44, p = 0.2. The plots of
the estimated marginal mean for different replacement levels of PET and MIBA (Figure 11)
show a similar trend to the compressive strength plot.

Table 6. Density tests between PET pellets and MIBA effects. Test of Between-Subjects Effects.
Dependent Variable: Density.

Source Type III Sum
of Squares df Mean Square F Sig. Partial Eta

Squared

Corrected
Model 294,711.711 a 14 21,050.837 20.365 0.000 0.826

Intercept 323,728,515.6 1 323,728,515.6 313,176.841 0.000 1.000
PET 81,567.215 2 40,783.608 39.454 0.000 0.568

MIBA 201,231.402 4 50,307.851 48.668 0.000 0.764
PET*MIBA 11,913.094 8 1489.137 1.441 0.199 0.161

Error 62,021.543 60 1033.692
Total 324,085,248.9 75

Corrected
Total 356,733.254 74

a R Squared = 0.826 (Adjusted R Squared = 0.786).
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5. Microstructure of Mortar Specimens

The microstructure of mortar specimens was identified using a scanning electron
microscope (IT300) at 1500× magnification. Only mortar specimens selected from the
control (no waste), A0P10 (best performance), A0P20 (highest PET pellet replacement),
A40P0 (highest MIBA replacement), and A40P20 (worst performance, most uses of both
wastes) were analyzed. The results revealed calcium silicate hydrate (CSH) and ettringite on
the surface of mortar specimens (Figure 12). Ettringite shows needle-like crystals resulting
from the hydration reaction of tricalcium aluminate (C3A) as sulfate ions of gypsum reacted
with water. On the other hand, CSH is formed by the hydration reaction of calcium silicates
(C3S and C2S) with water. Therefore, CSH is like a gel and serves as a binder that connects
the aggregates and provides strength to the specimens [27].
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Figure 12. Microstructure of mortar specimens: control (a), A0P10 (b), A0P20 (c), A40P0 (d), and
A40P20 (e).

The microstructures of mortar specimens with PET pellets are shown in Figure 13a,b
at 50× and 3000× magnifications, respectively. The smooth surface of PET pellets was
found to be poorly connected with the mixture, resulting in more free space and voids.

The physical properties of mortar specimens showed a decline in compressive strength
with the increased replacement of PET pellets and MIBA. da Silva and de Brito [22] studied
the replacement of sand with two types of plastic aggregates: PET pellets and PET flakes.
The results showed that PET pellets with a smooth surface, low specific surface area,
and no water absorption decreased the W/C ratio and improved the workability of the
mortar. However, a poorly connected matrix/aggregate results in high-porosity mortars.
In addition, the mortar density is reduced linearly when using more plastic aggregate due
to the lower density of the plastic aggregates than sand.
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Figure 13. Microstructure of mortar specimens with PET pellets at 50× magnification (a) and 3000×
magnification (b).

At the same time, Naran and Gonzalez [28] reported that single-plastic aggregates (PA)
are hydrophobic, resulting in less water absorption. The excess water was used to coat and
decrease the friction between particles. Moreover, the bonding between cement and PA is not
strong and causes voids, resulting in a lower compressive strength and high-water absorption.

According to the morphology of MIBA, which is irregular in shape, rough surfaces
and a high porosity cause a high water absorption. In addition, MIBA has a lower density
than natural aggregates, causing a lower density of the specimens when increasing the
replacement of sand [29].

Kunther and Ferreiro [30] studied the influence of the Ca/Si ratio on the compressive
strength of the sample and found that the high Ca/Si ratio decreased the quantity of
calcium silicate hydrates. In addition, the raw material analysis showed that MIBA had
higher CaO than SiO2. Therefore, the Ca/Si ratio of mortar specimens increased when
increasing the replacement levels of MIBA, decreasing the compressive strength. The Ca/Si
ratio also affects the microstructure of the samples, increasing the compressive strength,
reducing water absorption, and reducing microcracks [31].

A previous study of using reactive aggregate to produce concrete samples shows that
the effects of the alkali–silica reaction on the compressive strength and elastic modulus
of the samples can be observed after curing by immersion for 28 days, lowering the
compressive strength and elastic modulus of concrete samples [32].

The relationship between density and compressive strength shows that mortar specimens
with a high density had a high compressive strength. Increasing the sand replacement rate
by lightweight waste results in a decrease in density. MIBA and PET pellets have a lower
specific gravity than sand, with poor bonding between aggregates. Moreover, MIBA has a
high CaO content. Hence, using more MIBA may increase the Ca/Si ratio. The results showed
that the compressive strength decreased as the amount of CSH was reduced. On the other
hand, the water absorption of mortar specimens is related to the porosity and the connection
between aggregates. The results showed that using 20% MIBA with different levels of PET
pellets provided the lowest water absorption for each group, and the trend was similar for
each group. Therefore, it can be concluded that a 20% sand replacement by MIBA is a suitable
ratio that leads to the lowest water absorption. The effect of water absorption is not directly
related to compressive strength. However, as MIBA increased, the CSH formation decreased,
resulting in poor aggregate connectivity, pore generation in the microstructure, and a decrease
in compressive strength. However, the 10% and 20% replacement of MIBA produced different
results. As a result of the diversity of MIBA sizes, substitution at 10% could result in poor
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alignment and the development of pores. However, at a 20% substitution, better results were
obtained because the CaO content in MIBA was optimal.

4. Conclusions

This study aimed to investigate the feasibility of utilizing MIBA and PET plastic waste
from Si Chang Island. Both wastes were used as partial substitutes for the fine aggregate in
cement mortar production. The optimal ratio of cement mortar production was determined,
and the properties of the cement mortars were examined. The following conclusions can be
drawn from the results of this study:

1. The compressive strengths of mortar specimens cured for 56 days was greater than
40 MPa, and are as follows:

• A0P10 with 10% sand replaced by PET pellets obtained a compressive strength
of 49.53 MPa.

• A10P0 with 10% sand replaced by MIBA obtained a compressive strength of
49.19 MPa.

• A20P0 with 20% sand replaced by MIBA obtained a compressive strength of
46.25 MPa.

• A0P20 with 20% sand replaced by PET pellets obtained a compressive strength
of 46.00 MPa.

2. The properties of the mortar specimens showed that the amount of waste replaced by
fine aggregate in the manufacture of cement mortar affected the reduced compressive
strength and density of mortar specimens due to the poor bonding of aggregates
in the mortar specimen matrix and low-density properties of the waste. However,
mortar specimens with 20% sand replaced by PET pellets obtained the lowest wa-
ter absorption.

The MIBA used in this study was classified as nonhazardous waste due to the amount
of leaching heavy metals examined by the TCLP method not exceeding the regulatory
levels of the U.S. Code of Federal Regulations and the soil quality standards of the Thai
Pollution Control Department. In addition, this study showed that replacing 10% and 20%
sand in cement mortar with only MIBA or only PET pellets could result in compressive
strengths ranging from 46.00 MPa to 49.53 MPa. Based on these findings, the following
future research topics were proposed for the alternative use of MIBA and PET bottles
in building and construction work in Si Chang Island: an investigation of mechanical
properties, such as tensile strength, elastic modulus, and stress–strain curves, as well as a
life cycle assessment and economic feasibility.
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