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Abstract

In both prokaryotic and eukaryotic cells, gene expression is regulated across the cell cycle to ensure ‘‘just-in-time’’ assembly
of select cellular structures and molecular machines. However, present in all time-series gene expression measurements is
variability that arises from both systematic error in the cell synchrony process and variance in the timing of cell division at
the level of the single cell. Thus, gene or protein expression data collected from a population of synchronized cells is an
inaccurate measure of what occurs in the average single-cell across a cell cycle. Here, we present a general computational
method to extract ‘‘single-cell’’-like information from population-level time-series expression data. This method removes the
effects of 1) variance in growth rate and 2) variance in the physiological and developmental state of the cell. Moreover, this
method represents an advance in the deconvolution of molecular expression data in its flexibility, minimal assumptions, and
the use of a cross-validation analysis to determine the appropriate level of regularization. Applying our deconvolution
algorithm to cell cycle gene expression data from the dimorphic bacterium Caulobacter crescentus, we recovered critical
features of cell cycle regulation in essential genes, including ctrA and ftsZ, that were obscured in population-based
measurements. In doing so, we highlight the problem with using population data alone to decipher cellular regulatory
mechanisms and demonstrate how our deconvolution algorithm can be applied to produce a more realistic picture of
temporal regulation in a cell.
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Introduction

Recent technological advances have made feasible studies of

biological systems at the single-cell level [1–4]. However, our

current understanding of single-cell biochemistry and physiology

has been largely inferred from averaged population measurements

that often mask individual cell dynamics and lead to a distorted

picture of cell behavior. Such cell population data can be difficult

to reconcile with single-cell models, such as those that attempt to

describe cell-cycle-dependent gene expression kinetics [5–7]. In

particular, mathematical models of single cells that rely on

population data for constraints on biochemical parameters may

arrive at incorrect conclusions.

Among the properties hidden by population averaging is cell-to-

cell variability, such as that found in gene expression and protein

production [8–11]. We refer to the natural variation found between

cells at the same position in their cell cycles as synchronous

variability. A population experiment in which synchronous

variability is the only source of variability can at most yield the

average of the observable of interest (e.g., gene expression levels).

However, in addition to the inherent synchronous variability,

typical time-series experiments on cells contain a significant

asynchronous variability: even if cells have been physically or

chemically synchronized, individual cells within a synchronized

population exist at variable points in their respective cell cycles. As a

result, the extraction of ‘true’ temporal data from such populations

is difficult, since contributions from cells in different stages of the cell

cycle are averaged.

From a mathematical perspective, population asynchrony may

be modeled as a kernel function that maps the average of an

observable in the absence of asynchronous variability to the value

measured at the population level. Population asynchrony has been

modeled in yeast as both a time-dependent [12,13] and time-

independent [14] source of variability. With an accurate

asynchrony model, extracting the average of an observable

becomes an inverse problem for which established regularization

methods can be used. These computational methods can

effectively remove from population data artifacts that are due

solely to asynchrony, or uncover features that are masked by

population averaging [13–15]. The resulting data is thus better

suited for comparison with single-cell models and parameter

estimation.
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Population asynchrony characterization is most easily done with

a synchronizable system such as the dimorphic bacterium

Caulobacter crescentus. Caulobacter begins its cycle as a motile

‘swarmer’ (SW) cell and differentiates to a non-motile ‘stalked’

(ST) cell just prior to the initiation of DNA replication. The SW

stage is thus analogous to the G1 phase of the eukaryotic cell cycle,

and the ST stage is analogous to the S and G2 phases [16]. At the

SW-to-ST transition, the flagellum is released and a narrow

cylindrical extension of the cell envelope (the ‘stalk’) is grown in its

place. A new flagellar assembly is constructed at the pole opposite

the stalk as the cell cycle progresses, and on cell division, a new

motile, chemotactic SW cell is spawned. The remaining ST cell

immediately commences another round of DNA replication and

division while the SW cell begins the full cell cycle (Fig. 1).

Centrifugation of a mixed culture of Caulobacter in Ludox or Percoll

separates SW cells from all other cell types, so that nearly pure

cultures of SW cells can be easily obtained [17,18]. However, even

a perfectly pure culture of SW cells includes a mixture of new and

old SW cells, and variance in the cell cycle times of individual cells

within this synchronized population leads to a further increase in

the heterogeneity of the population as time-series experiments

progress. Additional heterogeneity is introduced following cell

division, as each dividing cell results in both a SW and ST cell.

Thus, even a perfectly synchronized population develops a

significant and time-dependent population asynchrony.

We propose a simple model for the time-dependent distribution

of Caulobacter cell types in a population during synchronized

growth. Our model accurately matches observed distributions of

synchronized Caulobacter cells during a time-series experiment, and

may be extended to any organism for which the synchrony state

can be characterized—particularly those that undergo asymmetric

division. We then combine a generalization of deconvolution with

our Caulobacter distribution model to extract the ‘‘single-cell’’-like

synchronous average of gene expression profiles from published

cell cycle microarray data. The resulting expression profiles more

accurately predict the cell-cycle position and size of gene

expression peaks, display new features not evident in the original

microarray data set, and demonstrate robustness to uncertainty in

model parameters. This represents a new advance in the study of

cell-cycle dependent gene expression in Caulobacter. The deconvo-

lution method presented herein can be generally applied to

characterize time-dependent processes in a variety of biological

model systems.

Model

Cell-type distribution model
To effectively remove the effects of population asynchrony from

measured data, we must first establish a model describing the

temporal position of cells within their own cell cycles and how they

are distributed in the population. In this section we develop this

model in the context of Caulobacter, however, the modeling

framework and deconvolution procedure remain generally appli-

cable to other model systems.

We refer to the position of a cell within its own cell cycle as the

cell’s phase w, and define it to be a number between zero and one.

By our definition w~0 represents a new SW cell and w~1 is a

predivisional cell at the instant before cell division (Fig. 1). In

addition to w~0 and w~1, other phases of interest are the phase

at which the cell transitions from SW to ST, from ST to early

predivisional cell (EPD), and from early predivisional to late

predivision cell (LPD). The concept of a cell cycle phase has been

used previously, referred to as either the cell division unit or cell

cycle unit [19–21].

At time t following synchronization, we assume that each cell of

a large population of N tð Þ cells is described by three variables:

N w tð Þ: the phase of the cell at time t

N w sstð Þ
: the SW-to-ST transition phase

N T : the total cycle time (minutes)

All three of these cell-specific quantities are random variables;

w sstð Þ
and T do not change with time, and w is time dependent.

Therefore, a probability density function (PDF) may be written to

describe the distribution of these parameters in a population of

Figure 1. Caulobacter cell cycle shown with phase axis.
Caulobacter begins its cycle as a motile ‘swarmer’ (SW) cell and
differentiates to a non-motile ‘stalked’ (ST) state. Division produces two
morphologically distinct cells. The cell-cycle phase concept is described
in the Model section.
doi:10.1371/journal.pcbi.1000460.g001

Author Summary

Time-series analyses of cellular regulatory processes have
successfully drawn attention to the importance of
temporal regulation in biological systems. A number of
model systems can be synchronized such that data
collected on cell populations better reflect the dynamic
properties of the individual cell. However, experimental
synchronization is never perfect, and the degree of
synchrony that does exist at the outset of an experiment
is quickly lost over time as cells grow at different rates and
enter different developmental or physiological states on
cell division. Thus, data collected from a population of
synchronized cells can lead to incorrect models of
temporal regulation. Here we demonstrate that the
problem of relating population data to the individual cell
can be resolved with a computational method that
effectively removes the effects of both imperfect synchro-
ny and time-dependent loss of synchrony. Application of
this deconvolution algorithm to a cell cycle time-series
data set from the model bacterium Caulobacter crescentus
uncovers critical temporal details in the expression of
essential genes that are not evident in the raw population-
based data. The deconvolution routine presented here is a
robust and general tool for extracting biochemical
parameters of the average single cell from population
time-series data.

Deconvolution of Cell Cycle Time-Series Data
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cells at a given time t

p w sstð Þ,T ,w=t
� �

~p w sstð Þ,T
� �

p w
.

w sstð Þ,T ,t
� �

: ð1Þ

The variables T and w sstð Þ
are assumed to be independent and

normally-distributed (N mT ,s2
T

� �
and N msst,s

2
sst

� �
). The Caulobacter

cell cycle time coefficient of variation (COV) was previously

determined to be 0.13 [1], i.e. sT~0:13mT . We assume that w sstð Þ

has the same COV and a mean value of msst~0:25, consistent with

previous reports [17,22]. For notational simplicity, we let

h~ w sstð Þ,T
n o

and rewrite the Eq. (1) as p hð Þp w=h,tð Þ, with p hð Þ
given as the products of the two independent normal distributions

just described.

The conditional distribution p w=h,tð Þ is based on a phase

evolution model that is firmly rooted in experimental observations.

We begin by considering a single cell (indexed k) described by the

variables w
sstð Þ

k and Tk. This cell progresses through the phases of

its own cell cycle with a ‘velocity’ of 1=Tkð Þ as experiment time

passes; that is, wk tð Þ~wk 0ð Þzt=Tk for 0ƒtƒTk 1{wk 0ð Þð Þ.
When t~Tk 1{wk 0ð Þð Þ, and the cell reaches the end of its cycle,

two daughter cells emerge at different cell cycle phases: the new

SW (characterized by hk1~ w
sstð Þ

k1 ,Tk1

n o
) cell begins at wk1 0ð Þ~0

and the new ST cell (now characterized by hk2~ w
sstð Þ

k2 ,Tk2

n o
)

begins at the SW-to-ST transition phase wk2 0ð Þ~w
sstð Þ

k . The new

SW-to-ST transition phases and cell cycle times, hk1,hk2, are

redrawn from their respective distributions.

Mapping phase-varying gene expression in single cells to
measurements at the population-level

Having constructed a model for the distribution of cell types, we

now show how this distribution can be used to map gene

expression at the single-cell level to the expression data derived

from cellular populations. The signal intensity measured in a

typical microarray experiment is proportional to the population-

level concentration of the measured species [23]. Thus, for each

gene j in an RNA expression assay, the signal intensity Gj tð Þ at

measurement time t is

Gj tð Þ~Rj tð Þ
�

V tð Þ, ð2Þ

where Rj tð Þ is the number of RNA transcripts in the population

and V tð Þ is the total cellular volume. For a large number of cells

N tð Þ, the total population volume is

V tð Þ&
ðð

N tð Þvh wð Þp hð Þp w=h,tð Þdh dw

~N tð Þ
ð

~QQ w,tð Þdw,

ð3Þ

where vh wð Þ is the volume of a cell with h~ w sstð Þ,T
n o

at phase w,

and ~QQ w,tð Þ~
Ð

vh wð Þp hð Þp w=h,tð Þdh is the expectation of a single

cell’s volume over h. Similarly, the total number of RNA

transcripts at time t for a given gene j is

Rj tð Þ&N tð Þ
ðð

fj wð Þvh wð Þp hð Þp w=h,tð Þdh dw

~N tð Þ
ð

fj wð Þ~QQ w,tð Þdw,

ð4Þ

where fj wð Þ is the synchronous average cycle-dependent expres-

sion of gene j, i.e., the average expression of all cells at the exact

same phase. The expression level fj wð Þ has units (# transcripts/

volume). Note that we may substitute the synchronous average

expression function for the true single-cell function in the above

equation because the synchronous cell-to-cell variability is

independent of h,w (see supplementary Text S1 for more details).

It has been previously shown that the Caulobacter division plane is

not located at the center of the cell, rather the cell volume is

partitioned 40% SW cell to 60% ST cell [24]. We use this fact to

construct a simple piecewise linear approximation for the volume

vhk
wð Þ of cell k, with parameters hk~ w

sstð Þ
k ,Tk

n o
, as a function of

cell cycle phase

vhk
wð Þ~Vw~1|

0:4z
0:2

w
sstð Þ

k

w, 0ƒwvw
sstð Þ

k

0:6z
0:4

1{w
sstð Þ

k

w{w
sstð Þ

k

� �
, w

sstð Þ
k ƒwv1

8>>><
>>>:

, ð5Þ

where Vw~1 is the cell volume at w~1 just prior to division. We

have assumed that the variance of the final cell size distribution is

small so that Vw~1 is effectively constant across all cells.

Using the above approximations, the total concentration of gene

j transcripts at time t (Eq. (2)) can then be written as an integral

transform

Gj tð Þ~ Rj tð Þ
V tð Þ

~

Ð
fj wð Þ~QQ w,tð ÞdwÐ

~QQ w,tð Þdw

~

ð
Q w,tð Þfj wð Þdw,

ð6Þ

where Q w,tð Þ~~QQ w,tð Þ
.Ð

~QQ ~ww,t
� �

d~ww is the kernel of the trans-

form, and has the intrepretation of a fractional volume density.

That is, Q w,tð Þ represents the fraction of the total population

volume at time t that exists in (a small interval around) phase w.

Evaluation of Q w,tð Þ
The kernel mapping function Q w,tð Þ~~QQ w,tð Þ

.Ð
~QQ ~ww,t
� �

d~ww

depends on ~QQ w,tð Þ~
Ð

vh wð Þp hð Þp w h,tjð Þdh, where the volume

vh wð Þ and probability p hð Þ are known functions. However, the

functional form of p w h,tjð Þ is complicated by the facts that cells

evolve at different rates and that new cells are being generated at

different phases. We therefore resort to simulation methods in

order to evaluate ~QQ w,tð Þ and Q w,tð Þ.
The rule-based Caulobacter cell-type phase evolution model

described above enables us to simulate cell populations and growth.

An initial population of cells was subjected to simulated growth for a

length of time equal to 10 average cell division times. We observe,

empirically, that this amount of time is sufficient in order to obtain a

steady state population of cells whose phase distribution is

independent of the initial seed population. The synchronized

population is then drawn from the steady state population by

keeping only those cells in the SW state and rejecting all others. The

steady state distribution is shown in Fig. 2A, and the distribution of

synchronized cells is shown in Fig. 2B. After synchronization, time

t~0 is declared, and the expression experiment begins. Our results

utilized 106 synchronized cells at t~0.

Deconvolution of Cell Cycle Time-Series Data
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Rewriting ~QQ w,tð Þ as

~QQ w,tð Þ~p w tjð Þ
ð

vh wð Þp h w,tjð Þdh ð7Þ

we see that ~QQ is the product of i) the probability (density) of

observing w at time t and ii) the average cell volume at time t

conditioned on phase w. These two quantities are evaluated

through the simulation by allowing the synchronized cells to

evolve until a desired time t is reached and the current population

of cells, bt, can be used to evaluate ~QQ.

For a desired w,t, let the bw,t denote the indices of the cells with

phases approximately equal to w

bw,t~ k : w{wkj jvd=2, k [ btf g, ð8Þ

where d~1=Nk is a small interval. The marginal probability

density is approximated as

p w tjð Þ&
bw,t

�� ��
d btj j

, ð9Þ

with bj j denoting the cardinality of set b. The expected volume is

similarly calculated as

ð
vh wð Þp h w,tjð Þdh&

1

bw,t

�� ��
X

k [ bw,t

vhk
wkð Þ: ð10Þ

he integral
Ð

~QQ ~ww,t
� �

d~ww may be approximated using quadrature

methods on a sampled version of ~QQ w,tð Þ or by observing that the

integral is the expected volume over all cells at time t, which is

calculated by substituting bt for bw,t in the right hand side of Eq. (10).

Hence, Eq. (9) and Eq. (10), combined with a rule-based model of

the evolution of cell types within a population enable us to compute

the kernel transformation needed to invert population measurements

into single-cell data. The kernel Q w,tð Þ is shown for six different

times following synchronization in Fig. 3. The time evolution of

Q w,tð Þ is also shown with 0.5 minute resolution in supplementary

Video S1. We observe that the kernel structure is highly time

dependent and not well-modeled by any common form. As such, any

attempts to reconstruct expression functions by deconvolving with

fixed kernels, e.g. a Gaussian kernel, will lead to poor results.

Estimating synchronous average single-cell gene
expression using cubic splines

With the complete noiseless measurement model given as the

integral equation in Eq. (6), extracting average single-cell

information involves solving the integral equation for f wð Þ given

a set of concentration measurements g~ G t1ð Þ . . . G tNm
ð Þ½ �T (the j

subscripts on fj wð Þ and Gj tð Þ are dropped for notational clarity).

Because the number of measurements Nm is finite and small, the

inversion process is ill-posed and requires a degree of regulariza-

tion, i.e., the introduction of additional information. Since f wð Þ is

a physical process, we expect it to be a smooth continuous function

and model it as a natural cubic spline. That is, we assume f wð Þ can

be well-modeled by a number of piecewise cubic polynomials with

boundary constraints ensuring that the entire function is smooth.

Cubic splines have been previously used to regularize and simplify

ill-posed integral equations [25,26] and to represent gene

expression profiles [13]. Under the cubic spline model, the

expression function may be written

f wð Þ~
XNk

i~1

aiyi wð Þ, ð11Þ

where y1 wð Þ . . . yNk
wð Þ form a set of Nk basis functions for the

natural cubic splines with a particular set of knots w1 . . . wNk
. See,

e.g., [27,28], for a discussion of splines and methods of

constructing the basis functions yi wð Þf g. The coefficients

a~ a1 . . . aNk
½ �T determine the particular realization of f wð Þ from

within the family of functions spanned by the natural cubic spline

basis. We choose a dense sampling of Nk~100 knots uniformly

spread over the [0, 1] domain of f wð Þ. With Y~ yj wið Þ
n o

an

Nk|Nk matrix, f ~Ya is an Nk-vector representing f wð Þ
evaluated at the knot values.

In order to estimate the expression function, which is solely

specified by a in our model, we minimize the following cost criterion

Figure 2. Caulobacter cell cycle phase distribution, before and
after synchronization. (A) The simulated steady state cell cycle phase
distribution shown here is achieved after ,10 average cell division times.
Each cell k in the population progresses through the phases of its own
cell cycle with a ‘velocity’ of 1=Tkð Þ as time passes, and when the cell
reaches the end of its cycle, a new SW cell and new ST cell emerge. The
steady state is independent of any initial phase distribution. (B) From the
steady state distribution the simulated cells are synchronized as real cells
are: by keeping only those cells in the SW stage and rejecting all ST cells.
doi:10.1371/journal.pcbi.1000460.g002

Deconvolution of Cell Cycle Time-Series Data
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C lð Þ~
XNm

m~1

G tmð Þ{ĜG tmð Þ
� �2

s2
m

zl

ð
f ’’ wð Þ2
n o

dw, ð12Þ

where ĜG tmð Þ~
Ð

Q w,tmð Þf wð Þdw. The first term is a data fidelity

measure that quantifies the closeness of the model-predicted

measurements to the actual measurements, weighted by the inverse

of the measurement variance of each particular measurement,

s2
m~5|G tmð Þz:047 (see supplementary Text S1). The second

term in Eq. (12), a second derivative cost, is a regularization term

that penalizes solutions containing rapid fluctuations and is

commonly used in regularizing natural smooth systems [28–31].

The constant l is a smoothness parameter that establishes a tradeoff

between data fidelity and smoothness enforced by the second

derivative norm. The smoothness parameter is chosen though cross-

validation (described in the next section).

The cost function C lð Þ is minimized subject to two constraints

1. Positivity constraint. Because RNA concentrations cannot be

negative, we constrain a such that all the elements of f are non-

negative

Ya§0 ð13Þ

2. Continuity constraint. RNA concentrations must be continuous

across cell division. The constraint may be concisely written as

a single linear equation

wT f ~0, ð14Þ

where w~ w1 . . . wNk
½ �T is a constraint vector that, in addition to

enforcing continuity across cell division, also specifically takes into

account the partitioning of mRNA according to the average

relative volumes of SW and ST cells. The full development of the

continuity constraint is given in the supplementary Text S1.

The final optimization problem is to minimize C lð Þ subject to

the two constraints

âa~arg min
a

C lð Þ s:t: Ya§0 and wT Ya~0: ð15Þ

As illustrated in the supplementary Text S1, the cost function C lð Þ
may be written as a quadratic form. For the results presented in

this paper Eq. (15) was solved using the quadprog function of

MATLAB’s Optimization Toolbox version 4.0. The sampled

estimated expression function is then given as f̂f ~Yâa, or the

elements of âa may be used in Eq. (11) to evaluate f̂f wð Þ for any

value of w.

Cross-validation for determination of l
The solution to the optimization problem (Eq. (15)) depends on

the value of the smoothness parameter l: small l favor data fidelity

Figure 3. The integral transform kernel Q w,tð Þ describes the time-dependent population asynchrony. At the outset of the experiment,
all cells can be found in the SW stage. The distribution broadens as experiment time goes on and cells progress through their cycles at different rates.
Following division, new peaks emerge in the distribution as daughter cells enter the population with different cell cycle phases: SW cells with w~0
and new ST cells with w~w sstð Þ . We observe that the kernel structure is highly time dependent and not well-modeled by any common form, such as a
Gaussian. Experiment time is shown relative to the average cell cycle time mT .
doi:10.1371/journal.pcbi.1000460.g003

Deconvolution of Cell Cycle Time-Series Data
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and are susceptible to overfitting, large l may oversmooth the

estimated expression function. Cross-validation provides a princi-

pled method to select an appropriate value of l. The results in this

paper utilize leave-one-out cross-validation [28,32] as follows.

For a fixed value of l, the optimization is first performed using

all the data except for measurement m (with value G tmð Þ). Denote

the resulting estimated expression function as f {m w, lð Þ. The

process is repeated, excluding a different measurement each time.

The total cross-validation measure

CV lð Þ~
XNm

m~1

G tmð Þ{
ð

Q w, tmð Þf {m w, lð Þdw

� �2

ð16Þ

is then minimized over l to obtain lmin, which is then used in Eq.

(15) with all the data in order to obtain the optimal âa which, in

turn, produces the desired expression estimate.

Results

Our model accurately describes the time-dependent
state of a Caulobacter population

The cell-type distribution model enables us to mathematically

determine the probability that a cell taken from a synchronized

population is in a given phase. For example, the probability that a

single Caulobacter taken from a population t0 minutes following

synchronization is in the SW phase is

PSW,t0
~

ð
h

p hð Þ
ðw sstð Þ

0

p w hj , t0ð Þdw dh: ð17Þ

However, because p w hj , t0ð Þ is difficult to compute directly, we

may alternatively calculate various probabilities from the simula-

tion described in the previous section.

Our simulated distribution, with cells grouped broadly into the

SW, ST, EPD, and LPD types, is shown alongside the

experimentally-determined distribution in Fig. 4. The ST-EPD

and EPD-LPD transition phases were fixed at 0.69 and 0.87

respectively, with the mean cell-cycle time taken to be

mT~150 minutes with COV = 0.13. Experimental data was

reproduced from Judd et al. [33]. As can be seen in Fig. 4, our

cell-type distribution model predicted highly similar fractions of

SW, ST, EPD, and LPD cells. Experimentally, distinguishing

between ST and EPD cells and EPD and LPD cells is difficult as

the morphological differences between them are subtle, thus our

assignment of those transition phases is somewhat arbitrary. The

difference between SW and ST is more easily observed

experimentally. Overall, our model predicted a distribution of

cells that is, on average, only a few percent different from

experimental observation at all time points and for all cell types.

Extracted data show new details in essential gene
expression profiles

There are over 500 cell cycle-regulated genes in the Caulobacter

genome [34]. In this paper we apply our deconvolution method to

analyze the expressions of a subset of these: genes that are essential

for cell viability or proper development and have been included in

previous models of the Caulobacter cell cycle control network [6,7,35–

37]. Microarray data for 10 cell cycle-regulated genes (ctrA, dnaA,

ccrM, gcrA, cckA, chpT, pleC, divJ, divK, and ftsZ) was taken from a cell-

cycle Affymetrix expression data set published by McGrath et al.

[38]. The original microarray measurements, model-predicted

measurements ĝg tð Þ, and spline-predicted profiles f̂f wð Þ are shown

in Fig. 5. The regularization parameters used, as determined by

cross-validation, are listed in supplementary Table S1.

In general, the deconvolution procedure yielded expression

profiles with peaks shifted to later times relative to the population

data, and recovered details lost in the population averaging. For

example, the deconvolved expression profile for ctrA remains flat

until the SW-to-ST transition, and shows an expression ‘shoulder’

before the main peak around the phase of cell compartmentali-

zation (transition from EPD-LPD). The transcription of chpT, pleC,

and ftsZ is similarly delayed until the SW-to-ST transition. Both

ccrM and divK are highly repressed until just prior to the EPD

stage. Many of the genes also show a narrowing of the expression

peaks. An extended analysis of these 10 deconvolved gene profiles

is left for the Discussion section.

Deconvolved gene expression profiles are robust to
variability in model parameters

Uncertainty in mean SW-to-ST transition phase. The

average w sstð Þ
(written as msst) used in our model was taken from

Figure 4. The simulated distribution of a growing, synchronized population of Caulobacter matches the experimentally-observed
distribution. A comparison of the simulated and experimentally-determined distributions shows that the population fractions of SW cells, young ST
cells, early predivisional (EPD) cells, and late predivisional (LPD) cells are similar in both. Experimental data is reproduced from Judd et al. [33].
doi:10.1371/journal.pcbi.1000460.g004
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the literature, where it has been reported to be approximately 0.25

under rolled test tube conditions [17,22] or as high as 0.33 [39,40].

However, we are unaware of any detailed, quantitative study of

the timing of SW-to-ST transition. As a major parameter in our

distribution model, determination of a precise value for msst was

prudent.

Fortunately, the natural adhesion and asymmetric division of

Caulobacter allow for studies of cell cycle timing in microfluidic

devices with high temporal resolution [1,41]. We used a simple

microfluidic apparatus to monitor a large number of cells and

determine both the full cell cycle time and the time from the SW-to-

ST transition to cell division (see supplementary Text S1). This

latter time period, referred to as the ST cell division time, was

measured for 727 cells (Fig. 6A). The time between the first

attachment of a SW and the first division of that cell, i.e., the full cell

cycle time, was measured for 150 cells (Fig. 6B). The means of these

two distributions are 58.3 minutes and 68.8 minutes respectively.

We then arrived at an estimate of the average time the cell spends in

the SW stage as 10.5 minutes, the difference between the two

means. This translates to a surprising msst of ,0.15 ( = 10.5/68.8),

significantly lower than has been observed previously.

It is clear from our microfluidic growth assays that the mean

SW-to-ST transition phase is dependent on growth and/or

environmental conditions. Our choice of msst~0:25 in the

deconvolution of the microarray data is based on the fact that

the data were taken from cells grown under standard rolled test

tube conditions. However, one may not always know a priori the

true value of msst under particular environmental conditions. Thus

it is worth considering what impact a mismatched msst has on the

estimated expression profiles.

To evaluate this impact, we replaced the msst~0:25 in our

population distribution model with msst~0:15 and reapplied the

expression estimation routine. The various genes’ expression

functions calculated using msst~0:25 f̂f 0:25 wð Þ
� �

are plotted along

with the functions calculated using msst~0:15 f̂f 0:15 wð Þ
� �

and

shown in supplementary Figure S1. Regularization parameters are

listed in supplementary Table S1. The f̂f0:25 wð Þ and f̂f0:15 wð Þ are

Figure 5. Deconvolved gene expression profiles reveal features hidden in the population-level measurements. Shown here in arbitrary
units are the original microarray data (blue line), the model-predicted measurements ĜG tð Þ (red line), and the deconvolved profiles f̂f wð Þ for 10 genes
shown to be essential components of the Caulobacter cell cycle control network. Microarray data are taken from a cell-cycle Affymetrix expression
data set published by McGrath et al. [38].
doi:10.1371/journal.pcbi.1000460.g005
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qualitatively similar, however, to assess their quantitative differ-

ences, we discretized the functions into 100 phase points wi

between 0 and 1 and calculated the residuals normalized by the

maximum expression:

resi~
f̂f 0:25 wið Þ{f̂f 0:15 wið Þ

max
w

f̂f 0:25 wð Þ
: ð18Þ

We also determined the Spearman rank correlation coefficients r

between the f̂f0:15 wð Þ and f̂f0:25 wð Þ. For each gene, the mean

absolute value of the normalized residuals and the correlation

coefficient is shown in Table 1. Despite the significant change in

the SW-to-ST transition model parameter (,40%), the average of

the absolute value of the differences between f̂f0:25 wð Þ and f̂f0:15 wð Þ
for all genes ranges from 8–12% of maximum expression. The

functions are also highly correlated, with no pair exhibiting a

correlation coefficient less than ,0.77.

Uncertainty in cell volume model. The function for the

phase-dependent volume of a single cell (Eq. (5)) is an additional

aspect of the model for which there has been no prior detailed

investigation. We chose a reasonable piecewise linear model based

on the measured average volume fraction of SW vs. ST cells,

however, as with the transition phase, an analysis of the effect of

changes to the single-cell volume function was warranted. We

therefore reapplied the expression estimation replacing the volume

function Eq. (5) with a constant cell volume, and discretized the

functions into 100 phase points as before. The normalized

residuals were calculated analogously to those in Eq. (18). The

mean absolute value of the residuals and Spearman correlation

coefficient for each gene are shown in Table 1. As can be seen in

the Table, a change to a constant volume model has even less of an

effect on the results of the deconvolution than the change in msst.

The means of the absolute values of the residuals are as low as

,1% of maximum expression, and the functions are very highly

correlated: rw0:98 for all genes.

Discussion

While population-level experimental techniques typically allow

for high-throughput and fast data collection, they are unable to

capture many of the details present at the level of single cells. This

is an unavoidable consequence of population averaging; popula-

tion-based data are in fact transforms of organism- and condition-

specific population asynchrony kernels with single-cell data. Thus,

an assumption of equivalence of population and single-cell data is

an assumption of a non-physical delta function integral kernel.

Recognizing this, cell distribution models have been proposed with

Figure 6. The fraction of the cell cycle spent as a SW cell is
reduced considerably under rapid growth in microfluidic
culture. Histograms of single-cell division times for ST cells only (A)
and for the full cell cycle (B), measured under microfluidic conditions,
show an average SW-to-ST transition time 10.5 minutes (difference
between the two histogram means). This translates to a msst of ,0.15
( = 10.5/68.8), significantly less than has been previously reported.
doi:10.1371/journal.pcbi.1000460.g006

Table 1. Effect of change in model parameters on
deconvolved profiles.

Dmsst Dmsst Dvol Dvol

Gene name SS resij jj jTT r SS resij jj jTT r

ctrA 0.10 0.9580 0.060 0.9846

dnaA 0.10 0.8882 0.022 0.9941

ccrM 0.11 0.8058 0.025 0.9942

gcrA 0.11 0.8741 0.019 0.9980

cckA 0.10 0.7922 0.021 0.9923

chpT 0.09 0.9378 0.011 0.9995

pleC 0.09 0.7685 0.017 0.9958

divJ 0.08 0.9453 0.014 0.9985

divK 0.10 0.8850 0.028 0.9898

ftsZ 0.12 0.8653 0.015 0.9986

The minimal effect of variation in model parameters is characterized by (i) the
mean absolute value of the normalized residuals and (ii) the Spearman rank
correlation coefficients r between discretized deconvolved expression functions.
The change in msst (Dmsst) is a comparison of expression profiles f̂f0:25 wð Þ calculated
with mss~0:25 and profiles f̂f0:15 wð Þ calculated with msst~0:15. Change in cell
volume (Dvol) is a comparison of profiles calculated with the cell volume model
vh wð Þ described previously (Eq. 5) with profiles calculated assuming constant cell
volume.
doi:10.1371/journal.pcbi.1000460.t001
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the aim of extracting more detailed information from biological

time-series data. Perhaps the simplest improvement on the delta

function model is a fixed kernel such as a Gaussian. Further

improvements have been made by allowing for a Gaussian kernel

whose width increases with time (e.g., [13]). However, a normal

distribution of this kind is not sufficient to describe the complex

cell-phase distribution of organisms that undergo asymmetric

division, and attempts to deconvolve single-cell expression for such

organisms will lead to unreliable results. As a result, we have

developed an intuitive mathematical model of the cell-type (or,

alternatively, the cell-phase) distribution of asymmetrically-divid-

ing cells as a function of time following synchronization, using

Caulobacter as a specific example. Our model takes into account the

initial population asynchrony and, similar to the yeast cell cycle

phase probability density model presented in Orlando et al. [12],

captures the phase variability resulting from asymmetric cell

division and differences in cell cycle times. An appealing aspect of

our model is its simplicity; a knowledge of three easily-measured

parameters—namely the mean SW-to-ST transition phase (or

equivalent), division time COV, and SW/ST cell total volume

fraction (or equivalent)—and the initial synchronization state (i.e.,

the cell-type distribution at the outset of an experiment) are all are

that is required to describe the time-dependent cell-type

distribution.

The aforementioned parameters and initial synchronization

state are specific to a given model system and experimental

condition. For a synchronized population of Caulobacter under

normal growth conditions, we use a mean SW-to-ST transition

phase of ,0.25, division time COV of 0.13, cell volume

partitioned 40% SW to 60% ST, and a simulated initial cell cycle

phase distribution that accurately models the real synchronization

process. But Caulobacter is not the only synchronizable model

system to which our cell-type distribution model can be applied.

Indeed, synchronizable model systems are found across the tree of

life, including E. coli [42], S. cerevisiae [43], and mammalian cells

[44]. A 1957 review by Campbell describes synchronization

methods for 11 microbial species [45]. For the symmetrically

dividing E. coli, the equivalent of the SW-to-ST transition phase

would be set to zero, and the two daughter cells would (on average)

have the same volume. In the case of S. cerevisiae, the SW-to-ST

transition phase equivalent is equal to the average fraction of the

cell cycle that the budded daughter cell remains in the early G1

stage [46], with the average size of the budded cell being smaller

than that of its mother [47]. The division time COVs for a number

of commonly studied systems have already been published (a

compilation of these values can be found in [1]). Initial cell

distributions for many of these organisms have to be determined.

We note that we have assumed a perfect Caulobacter synchrony,

i.e., exactly 100% of the cells at the beginning of the experiment

are SW cells. In real cell synchrony experiments, SW fractions are

close but not necessarily equal to 100% (see, e.g., [22]). However,

minor differences in the purity of a synchronized population are

not expected to significantly alter our results. That our cell-phase

distribution model is consistent with experimental observations of

the time-dependent state of a Caulobacter population (Fig. 4)

supports this assumption.

Along with characterization of cell distribution, there has been

considerable interest in recent years in extracting ‘‘single-cell’’-like

information from population data using deconvolution-type

algorithms [13–15,48,49]. Although all algorithms of this kind

are somewhat limited in the level of detail they can provide about

biological systems—at best, only synchronous average informa-

tion, and not the full stochastic variability between cells at identical

phases, can be determined—they have been highly effective at

uncovering features not visible in the population data. The model-

based deconvolution method presented here is an extension to

these previous methods and a powerful tool for the analysis of

biological data, requiring no more information than the

parameters described previously, and is applicable to any time-

series data set for which the state of the synchrony is known or can

be predicted. In particular, our method can be applied to time-

series gene expression data to identify additional cell cycle-

regulated genes not previously discovered and to complete meta-

analyses across multiple platforms (i.e. competitive hybridization

oligo arrays or non-competitive hybridization arrays such as

Affymetrix). Although the differences in the data obtained from

different platforms may require modifications to the kernel

function, the method itself is independent of the experimental

and biological details; indeed, the method supports arbitrary

kernel functions.

Even with a detailed and accurate kernel and an accepted

deconvolution-type algorithm, the precise shape of a deconvolved

function is in general highly sensitive to the value of the

regularization parameter (l in this work; see Eq. (12)). To

objectively address this problem, we employ a cross-validation

routine that provides a sensible and well-established criterion for

determining the appropriate amount of regularization. Our use of

cross-validation in deconvolution of time-series gene expression

data thus represents an improvement over methods that use

arbitrary regularization based only on visual inspection of the

estimated profiles.

By construction, the model-based deconvolution method

presented in this paper mitigates the effects of synchronization

loss in expression experiments. However, as with all time series

experiments, the estimates remain dependent on the sample rate of

the data. If the sample rate is insufficiently high to capture salient

gene activity, important events in the expression profile may be

missed. In principal, lower sampling rates may be accommodated

by increasing the number of assumptions made about the

expression profile to be estimated. In this paper, smoothness

(Eq. (12)), positivity (Eq. (13)), and continuity (Eq. (14)) were all

used to decrease the effective degrees of freedom and supply a

maximal, yet realistic, amount of a priori information. The cubic

splines support a broad class of potential expression functions,

however more restrictive models could be used to supply stronger

assumptions and support lower sampling rates—at the cost of

potentially being overly restrictive and not capturing the true gene

expression profile. See, e.g., [50] for further consideration of

sample rates in temporal data.

The synchronous average expression profiles extracted using

our generalized deconvolution algorithm are, with the effects of

population asynchrony removed, a much-improved reflection of

biological reality. We demonstrated this with Caulobacter, calculat-

ing deconvolved expression profiles for 10 genes previously found

to be cell cycle-regulated and essential for cell viability or polar cell

development (Fig. 5). As mentioned in Results, the deconvolved

expession profiles generally have their peaks shifted to later times

relative to the population data. This is to be expected, since even a

perfectly-synchronized population at the outset of an experiment

contains both young SW cells (w&0) and old SW cells (and all cells

in between). Many of the genes analyzed here also show a

narrowing of their expression peak(s) following deconvolution,

although this is not universally true. The expression profile of divJ,

for example, is shifted to later times but not otherwise

fundamentally changed; the peak, located just after the SW-to-

ST transition in the deconvolved profile, is as broad as in the

population measurement. Thus, expression peak narrowing is not

an artifact of the deconvolution method, but rather a property of

Deconvolution of Cell Cycle Time-Series Data
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an individual gene’s expression profile. Here we highlight some of

our Caulobacter-specific results that also demonstrate the power of

combining an organism-specific kernel with a generalized

deconvolution routine:

ctrA. As the master regulator of the Caulobacter cell cycle [51],

ctrA is arguably the most well-characterized of Caulobacter genes. It

has been shown that ctrA expression is controlled by two promoters

(P1 and P2) that are differentially-regulated by phosphorylated

CtrA (CtrA,P): the weaker P1 is negatively-controlled by

CtrA,P and the stronger P2 is positively-controlled (Fig. 7A).

The P1 promoter is activated in the early ST cell, immediately

following replication of the chromosomal ctrA locus. Activation of

the weak P1 promoter leads to an increase in the CtrA,P

concentration, which then activates the stronger P2 and represses

P1 [52]. The differential regulation can be seen in Fig. 7B, left

panel (data reproduced from Reisenauer and Shapiro [53]).

Although these details are not visible in the population-level

microarray data, they are revealed in the deconvolved expression

profile (Fig. 7B, middle and right panels). For example, in the

deconvolved profile, ctrA expression remains flat until DNA

replication is initiated at the SW-to-ST transition. Perhaps most

interestingly, the initial expression ‘shoulder’ is consistent with

expression from P1, and the main peak beginning around the

phase of cell compartmentalization (transition from EPDLPD), is

consistent with expression from P2. The shape of the deconvolved

ctrA profile is thus validated by our previous knowledge of the

mechanism of ctrA regulation.

ftsZ. The tubulin homolog FtsZ is essential for bacterial cell

division. It has been shown that transcription of ftsZ is repressed in

SW cells and activated only when the DNA replication begins

[20]. However, this regulation is not clear from the microarray

data alone. Specifically, the raw microarray data show no delay in

ftsZ transcription from the time the experiment begins (Fig. 8, left

panel). In contrast, the deconvolved expression profile reveals the

delay in transcription initiation until the beginning of the ST stage

(Fig. 8, right panel), consistent with our understanding of ftsZ

regulation.

divK and ccrM. DivK is an essential single-domain response

regulator that is transcriptionally-activated by CtrA,P and plays a

role in the cell cycle-regulated proteolysis of CtrA [54]. The

essential ccrM DNA methyltransferase gene [55] has an expression

profile similar to that of divK. In both cases, deconvolution reveals

that expression begins in the EPD cell, and that the change from

zero to maximal expression happens over a much shorter time

(i.e., the response is more switch-like) than is evident from the

population data.

cckA. One of the more interesting results is the predicted

transcription profile of cckA, which encodes an essential histidine

kinase responsible for CtrA phosphorylation [56]. The population-

level microarray measurements show a single expression peak

approximately half-way through the cell cycle, while the

deconvolved profile shows two peaks: one beginning at the SW-

to-ST transition and another peaking in the EPD cell. Although

this result has not been previously reported, it does suggest the

interesting possibility that cckA is under the control of additional

Figure 7. The deconvolved profile for ctrA reveals sequential
expression from its two promoters during the cell cycle. (A) ctrA
expression is controlled by two promoters (P1 and P2) that are
differentially-regulated by the CtrA protein: the weaker P1 is negatively-
controlled by CtrA and the stronger P2 is positively-controlled. (B) The
(early) P1 promoter is activated immediately after replication of the ctrA
chromosomal locus following the SW-to-ST transition. The subsequent
increase in the cellular CtrA concentration activates the (late) P2
promoter, leading to an even higher concentration of CtrA and the
repression of P1 (top panel, data reproduced from Reisenauer and
Shapiro [53]).
doi:10.1371/journal.pcbi.1000460.g007

Figure 8. A delay in ftsZ expression until the SW-to-ST
transition is visible in the deconvolved profile. Looking only at
the population-level microarray expression data for ftsZ, there appears
to be no delay in transcription from the time the experiment begins
(left panel). However, it has been previously shown that transcription of
ftsZ is repressed in SW cells and activated only when the DNA
replication begins [20]. Repression of ftsZ expression in the SW phase is
confirmed in the deconvolved expression profile (right panel). The gray
bar indicates mean SW-to-ST transition phase +/2 one standard
deviation.
doi:10.1371/journal.pcbi.1000460.g008
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and unknown layers of transcriptional regulation during the cell

cycle.

These deconvolution results appear to be relatively insensitive to

changes in model parameters. Of the parameters used in the cell

cycle phase distribution model, the mean SW-to-ST transition

phase is the one that is known with the least certainty. However,

we found that precise knowledge of the mean transition phase

under a given condition is not absolutely necessary for extraction

of average single-cell data with our deconvolution algorithm. Even

a substantial change in the assumed SW-to-ST transition phase

had only a small effect on the deconvolved profiles. With respect to

the single-cell volume model employed in the deconvolution

algorithm, even the extreme and false assumption of fixed cell

volume had an insignificant effect on the shape of the deconvolved

expression profile.

One Caulobacter-specific result that merits further discussion is

the SW-to-ST transition phase. Although accepted as around 0.25,

or even up to 0.33, for standard growth in a rolling tube or shaken

flask [17,22,39,40], it can change under other conditions. We

present data showing that the mean transition phase is reduced to

0.15 in a microfluidic environment in which the cells are rapidly

growing. We recognize that a possible explanation for this low

value may be that the timing of the SW-to-ST transition in our

microfluidic growth experiments is skewed by a division control

system in which ST cells that have just transitioned from the SW

stage divide on a different time scale than ST cells that follow from

cell division. However, we are not aware of any data that would

suggest that this is the case. Indeed, the morphology of ST cells

after the transition from SW cells appears to be the same as the

morphology of ST cells after division, and a single mean SW-to-

ST transition phase in our model is consistent with experimental

observations (Fig. 4). Furthermore, given that a population of

Caulobacter cells starved for carbon or nitrogen tend to arrest during

the SW phase [57,58], it is likely that the SW-to-ST transition

phase can both increase and decrease, and be well above 0.33

under less-favorable environmental conditions. That the timing of

this cell cycle ‘checkpoint’ may vary with growth conditions is a

fascinating result that deserves more detailed study.

To our knowledge, our deconvolution method is the first to

specifically deal with the unique analytical challenges posed by

dimorphic organisms. Although this method can be applied to any

time-series measurement made on a cellular population, we have

demonstrated its utility with an analysis of cell-cycle regulated gene

expression in Caulobacter. Certainly, directly measuring the concen-

tration of individual transcripts in real time in single cells remains

the gold standard in quantifying the gene expression behavior of

single cells; the insights provided by such real-time, single-cell

studies of mRNA have been profound [59–62]. Still, despite recent

progress and a number of successes, the real-time measurement of

mRNA in single cells remains a challenging problem. Our method

allows for the simple analysis of mRNA concentrations measured

with common laboratory tools and advances the performance of

population-level methods closer to that of single-cell studies. Thus,

combining high-throughput experimental expression data with

novel computational algorithms can provide new and exciting

insights into the function of cellular systems.

Supporting Information

Text S1 Supporting Text

Found at: doi:10.1371/journal.pcbi.1000460.s001 (0.08 MB PDF)

Figure S1 A comparison of expression functions calculated using

msst = 0.25 and msst = 0.15 shows that they are qualitatively similar,

despite the significant change in the value of msst. Regularization

parameters are listed in Supplementary Table S1.

Found at: doi:10.1371/journal.pcbi.1000460.s002 (0.86 MB EPS)

Video S1 The kernel structure, shown here with 0.5 minute

resolution, is highly time dependent and not well-modeled by any

common form.

Found at: doi:10.1371/journal.pcbi.1000460.s003 (1.46 MB

MOV)
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