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Over the last 2 decades, we have begun to gain traction on the neural systems that 
support creative cognition. Specifically, a converging body of evidence from various 
domains has demonstrated that creativity arises from the interaction of two large-scale 
systems in the brain: Whereas the default network (DN) is involved in internally-oriented 
generation of novel concepts, the executive control network (ECN) exerts top-down control 
over that generative process to select task-appropriate output. In addition, the salience 
network (SN) regulates switching between those networks in the course of creative 
cognition. In contrast, we know much less about the workings of these large-scale systems 
in support of creativity under extreme conditions, although that is beginning to change. 
Specifically, there is growing evidence from systems neuroscience to demonstrate that 
the functioning and connectivity of DN, ECN, and SN are influenced by stress – findings 
that can be used to improve our understanding of the behavioral effects of stress on 
creativity. Toward that end, we review findings from the neuroscience of creativity, behavioral 
research on the impact of stress on creativity, and the systems-level view of the brain 
under stress to suggest ways in which creativity might be affected under extreme 
conditions. Although our focus is largely on acute stress, we also touch on the possible 
impact of chronic stress on creative cognition.
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INTRODUCTION

Human beings not only work under optimal conditions, but also under stressful conditions 
that require physical and psychological resilience for survival, performance, and growth (Suedfeld 
and Steel, 2000). There is indeed a large scientific literature on the impact of stress on 
psychological and physiological functioning, but it is only recently that this work has begun 
to focus on the impact of stress on large-scale networks in the brain, including their functional 
connectivity (Hermans et al., 2014; van Oort et al., 2017; see also Menon, 2011). The overarching 
aim of this manuscript is to review this nascent literature in an effort to improve our understanding 
of the impact of extreme environments – specifically those that cause stress – on creativity. 
This is made possible by virtue of the fact that the three large-scale networks in the brain 
that are impacted by stress are also precisely the ones that have begun to shape our understanding 
of the emergence of creative ideas in the neuroscience of creativity (Beaty et  al., 2016).  
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Toward that end, we  will begin by reviewing our current 
understanding of the neuroscience of creativity, before moving 
to a discussion of the impact of stress on the functioning and 
connectivity of large-scale networks in the brain. In the process, 
we will selectively review the behavioral literature on the impact 
of stress on creativity. We  hope that this exercise will improve 
our understanding of the behavioral effects of stress on creativity, 
by revealing the key neural systems and their interactions that 
could mediate that link.

NEUROSCIENCE OF CREATIVITY: A 
BRIEF HISTORICAL TOUR

Although electrophysiological studies of the neurological bases 
of creativity can be  traced back to Martindale’s pioneering 
research five decades ago (e.g., Martindale and Hines, 1975), 
it was with the advent of modern neuroimaging techniques 
around the turn of the century that our understanding of 
the neuroscience of creativity has blossomed (for reviews, 
see Vartanian et al., 2013; Abraham, 2018; Jung and Vartanian, 
2018). Much of the early exploratory work in this area was 
motivated by brain mapping approaches, and typically focused 
on discovering single, isolated brain regions that might underlie 
the generation of novel and useful thoughts. The tasks varied 
widely, including creative story generation, open-ended problem 
solving, drawing, divergent thinking, finding pragmatic links 
between incoherent sentences, and analogy and metaphor, to 
name a few. In addition, there was equal if not more variability 
in the neuroimaging methodologies used to study the brain, 
each of which was characterized by its own intricate analytic 
workflow, signal-to-noise ratio, and temporal and spatial 
resolution. As such, the early results were characterized by 
high levels of variability and inconsistency (for reviews, see 
Arden et  al., 2010; Dietrich and Kanso, 2010).

Soon, however, a number of quantitative meta-analyses of 
this literature followed, which demonstrated an altogether 
different picture of the creative brain at work (Vartanian, 2012; 
Gonen-Yaacovi et  al., 2013; Boccia et  al., 2015; Wu et  al., 
2015; see also Cogdell-Brooke et al., 2020). These meta-analyses 
illustrated two points: First, there is no single brain region 
that drives creativity. Rather, the entire brain contributes to 
creative cognition. Second, and critically, the neural correlates 
of creativity are process-specific and domain-specific. For 
example, there are dissociable neural regions that contribute 
to creativity in the verbal vs. non-verbal (spatial) vs. musical 
domains (Gonen-Yaacovi et  al., 2013; Boccia et  al., 2015). 
Similarly, there are dissociable neural regions that contribute 
to processes related to creativity such as analogy vs. metaphor 
(Vartanian, 2012), as well as creativity tasks that involve 
generation vs. combination of ideas (Gonen-Yaacovi et  al., 
2013). As is the case with other higher-order constructs such 
as reasoning (Goel, 2007; Prado et  al., 2011), this early body 
of work demonstrated that creativity is hierarchical and 
componential, and emerges from the flexible and dynamic 
reconfiguration of brain regions that contribute to its various 
instantiations. This picture is consistent with componential 

models of creativity (Amabile, 2012) and problem solving 
(Sternberg, 1980), according to which higher-order cognitive 
abilities are decomposable into specific sub-processes (e.g., 
semantic memory, attention, etc.). As such, brain regions that 
exhibit a degree of functional specificity in relation to those 
sub-processes contribute to the types of creativity that draw 
on those functions.

NEUROSCIENCE OF CREATIVITY: FROM 
REGIONS TO NETWORKS

A significant shift in the neuroscience of creativity occurred 
when researchers began to focus on the contribution of large-
scale networks rather than isolated brain regions to the 
emergence of creative thoughts. Those networks were initially 
discovered using the technique of resting-state connectivity, 
based on which one can identify brain regions that exhibit 
similar patterns of fMRI activity fluctuations, and can therefore 
be  grouped into large-scale brain systems called “networks” 
(Zabelina and Andrews-Hanna, 2016). In other words, at any 
given time, regions within the same network (e.g., visual, 
language, somatomotor, etc.) are likely to exhibit correlated 
activity when the individual is engaged in a task or at rest 
(i.e., not engaged in a task). It is important to note that the 
seven large-scale networks that have been identified to date 
also exhibit differing patterns of between-network connectivity 
(Lee et al., 2012). These patterns of between-network connectivity 
can be  conceptualized better when we  consider that, despite 
their functional differences, some networks can work together 
to support the same type of cognition. For example, when 
the individual is engaged in externally-oriented cognition (i.e., 
responding to stimuli in the external world), the visual, 
somatomotor, and dorsal attention networks show high levels 
of between-network connectivity (Yeo et  al., 2011; Buckner 
et al., 2013). This makes sense, given that in many circumstances 
such externally-oriented cognition requires one to attend to 
and process sensory input.

Important for creativity researchers, a growing body of 
evidence has emerged to demonstrate that novel ideas emerge 
as a function of the dynamic interaction of the default 
network (DN) and the executive control network (ECN) in 
the brain (Beaty et  al., 2016). Regions within DN are more 
active during task-unrelated thought than during task-related 
thought, and frequently come online during episodes of mind 
wandering, daydreaming, and imagination (Christoff et  al., 
2016; Raffaelli et  al., 2020). In contrast, ECN is activated 
when the individual is engaged in tasks that require cognitive 
control. In most instances, DN and ECN activities are 
negatively correlated because individuals tend to be  engaged 
in either task-related thought that necessitates cognitive 
control or task-unrelated thought that is not under top-down 
regulation. What is remarkable about creativity is that it 
represents a form of thinking that is supported by the dynamic 
interaction of these two modes of thought. Specifically, in 
the early phase of creative problem solving, when internally-
oriented thoughts support idea generation, DN is relatively 
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more active. In turn, in the later phases of creative problem 
solving, when the generated ideas are pruned to satisfy task 
demands, ECN is also engaged to exert top-down control 
to select appropriate output. Interestingly, aside from 
supporting goal-directed memory retrieval and inhibition of 
prepotent responses that represent some of its core functions, 
ECN may also facilitate internal orientation by shifting 
attention away from sensory input toward internally-generated 
thought processes carried out by DN (Benedek et  al., 2016; 
Beaty et  al., 2019; Figure  1).

An important early study that laid the groundwork for 
this interactive model was conducted by Ellamil et  al. (2012), 
who presented design students with short verbal descriptions 
of the contents of books while in the fMRI scanner, and 
then instructed them to design book covers to represent them. 
In the generation phase, the participants drew and/or wrote 
down their ideas using an MRI-compatible tablet, whereas 
in the evaluation phase, they assessed the quality of their 
ideas and productions. During generation there was greater 
activation in DN, specifically the hippocampus. This is consistent 
with the constructive episodic simulation hypothesis, according 
to which memory and imagination involve flexible recombination 
of episodic details (e.g., people, places, and events; Schacter 
and Addis, 2007; Beaty, 2020). In other words, as we  generate 
new ideas using imagination, it is likely that we  mine our 
episodic memory to locate and flexibly recombine episodic 
details to support novel ideation. In turn, during evaluation 
not only was there activation in DN, but also additional 
activation in ECN, most notably in the dorsolateral prefrontal 
cortex that plays an important role in cognitive control. 

Additional analysis demonstrated that there was greater 
functional connectivity between DN and ECN during the 
evaluation phase, suggesting that there is close communication 
between those networks in the later stages of creative thinking 
when cognitive control is applied on the contents of generated 
ideas for their evaluation. Since then, data from several 
studies including musical improvisation (Pinho et  al., 2016) 
and poetry composition (Liu et  al., 2015) have also shown 
dynamic coupling between DN and ECN – interpreted to 
reflect the spontaneous generation of ideas derived from 
long-term memory and the evaluation of those ideas to 
meet specific task goals, respectively. Using dynamic causal 
modeling, Vartanian et  al. (2018) have recently shown that 
ECN exerts unidirectional control over the activation of 
DN regions in the course of divergent thinking, supporting 
the causal model that underlies their interaction.

Beaty et al. (2015) used whole-brain functional connectivity 
analysis to highlight a network of brain regions associated 
with divergent thinking. This study was important because 
beyond DN and ECN, it also focused on the salience network 
(SN). SN has an important role to play in many types of 
higher-order cognition because it is involved in the detection 
and allocation of attention and neural resources to behaviorally 
relevant (i.e., salient) stimuli (Bressler and Menon, 2010; Menon 
and Uddin, 2010; Uddin, 2015). In this role, it can trigger 
the engagement of other networks based on their relevance 
to the task at hand. Analyses of Beaty et  al. (2015) revealed 
that the posterior cingulate cortex (PCC) – a region that lies 
within the DN – exhibits increased functional coupling with 
ECN regions including the dorsolateral prefrontal cortex, as 
well as regions within SN such as the bilateral insula. Then, 
using dynamic functional connectivity analysis conducted in 
the course of engagement with the Alternate Uses Task, Beaty 
et al. (2015) demonstrated that the time-course of the coupling 
between the PCC and regions within SN and ECN varies as 
a function of the phase of the task. Specifically, the PCC 
showed early coupling with the insula and later coupling with 
the dorsolateral prefrontal cortex. There is evidence to show 
that one of the roles of SN is to facilitate switches between 
DN and ECN (Cocchi et  al., 2013). As such, its involvement 
in divergent thinking could be to facilitate later coupling between 
DN and ECN.

Building on this work, Beaty et al. (2018) used connectome-
based predictive modeling (CPM) – a machine learning algorithm 
for identifying functional connections in the brain that predict 
behavioral traits – to demonstrate that creative people are 
characterized by stronger functional connections between DN, 
ECN, and SN, and that this specific pattern of connectivity 
predicted their creativity scores. Interestingly, this dynamic 
interplay between DN and ECN has also been shown to be the 
case based on resting-state data, when people are not engaged 
in a task. Specifically, Beaty et al. (2014) reported that compared 
to less creative people, more creative people exhibit stronger 
DN-ECN coupling during rest, suggesting that at a fundamental 
neurological level more and less creative people may 
be  distinguished by stable functional differences involving the 
coupling of key regions involved in creative cognition.

FIGURE 1 | Cognitive mechanisms of brain network interactions during 
creative cognition. DN, default-mode network; ECN, executive control network; 
VN, visual network. Adapted with permission from Beaty et al. (2019).
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STRESS AND CREATIVITY: BEHAVIORAL 
EFFECTS

It is generally assumed that stress has a detrimental effect on 
creativity. This assumption is not unreasonable: given that in 
the immediate aftermath of stress, physiological, and cognitive 
resources are reallocated to promote vigilance and survival 
(Hermans et  al., 2014), it is likely that higher-order cognitive 
capacities that would otherwise support creative cognition would 
be  shifted to meet those more urgent needs. Indeed, it has been 
demonstrated that stress has a negative impact on processes 
related to creativity, including task switching and cognitive flexibility 
(Steinhauser et  al., 2007; Plessow et  al., 2011, 2012). However, 
the impact of stress on creativity is not necessarily and universally 
negative, and depends in part on how stress-inducing the stressor 
is perceived to be, and the type of stress that is induced. For 
example, Byron et  al. ’s (2010) meta-analysis of 76 experimental 
studies that had examined the impact of stress on creativity 
demonstrated that uncontrollable stress leads to worse performance 
on creativity tasks, where uncontrollability was defined as the 
extent to which an individual believes that one’s actions can 
affect outcomes (Dickerson and Kemeny, 2004). In addition, they 
found that whereas high social-evaluative threats decreased creative 
performance, low social-evaluative contexts increased creative 
performance, where social-evaluative threats were considered to 
“occur when an aspect of self is or [can] be  negatively judged 
by others” (Dickerson and Kemeny, 2004, p. 361). Thus, it appears 
that stress impacts creativity, but not necessarily in negative ways. 
Importantly, the findings are broadly consistent with appraisal 
models of stress (e.g., Lazarus and Folkman, 1984), according 
to which one’s perception of the stress and individual differences 
that underlie vulnerabilities to those stressors are important 
factors that influence the stress-creativity relationship.

THE BRAIN UNDER STRESS: A 
NETWORK VIEW

At this point, we will consider how our knowledge of the workings 
of the brain can shed light on the impact of stress on creativity. 
Until recently this would have been difficult to do because with 
the exception of a few studies (e.g., Vartanian et al., 2014), we know 
very little about how the functioning of the creative brain is 
affected by various stressors. Fortuitously, however, we  are now 
in a position to consider this question because a growing body 
of evidence from systems neuroscience has demonstrated that 
the three systems that support the emergence of creative thought 
under normal conditions are precisely the three systems whose 
functioning and connectivity is impacted by stress (for reviews, 
see Hermans et  al., 2014; van Oort et  al., 2017; see also Menon, 
2011; Figure  2). As such, this offers one the opportunity to 
consider the ways in which the altered functioning and connectivity 
of SN, DN, and ECN can explain the impact of stress on creativity.

Following exposure to stress, a cascading series of physiological 
changes is triggered that ultimately impact neuronal function in 
temporally- and spatially-specific ways (Joëls, 2018). At the 
neuroendocrine level, central levels of catecholamines in the brain 

(e.g., norepinephrine and dopamine) increase rapidly and normalize 
shortly thereafter, whereas corticosteroid levels in the brain rise 
more slowly and remain high for a longer period of time (Hermans 
et  al., 2014). The rapid rise in the level of catecholamines in 
the brain is associated with an increase in SN activity, and a 
decrease in ECN activity (Hermans et  al., 2014; van Oort et  al., 
2017). Hermans et  al. (2014) have argued that this represents a 
reallocation of resources to SN, a network that underlies orienting 
attention toward salient information in the environment (Menon, 
2011). There is also a strengthening of the functional connectivity 
between SN and sensory cortices as the organism attends to 
sensory input (Li et  al., 2014). Psychologically, this represents a 
hypervigilant state geared toward maximizing the likelihood of 
survival in the immediate aftermath of stress. This reallocation 
of resources comes at the cost of ECN, where activation diminishes 
or remains the same. Interestingly, and perhaps counterintuitively, 
there is an increase in DN activity immediately following exposure 
to stress. One reason might be  that stress can lead to increased 
negative self-referential processing, which is known to engage 
the DN. Indeed, high social-evaluative threats are known to 
decrease creative performance (Byron et  al., 2010). In addition, 
increased activity in the anterior sector of DN might be  due to 
attempts to regulate emotion, another process that engages DN. 
Acute stress also brings about increased SN-DN functional 
connectivity, which may play an important role in memory 
consolidation given the association between SN and regions within 
DN that encode episodic memory such as the hippocampus 
(van Oort et al., 2017). After the stress has subsided, the allocation 
of resources to SN and ECN reverses, thereby restoring higher-
order cognitive functions that are necessary for linking stressful 
events to the specific context, and to encode this information 
for future retrieval (Hermans et  al., 2014; Joëls, 2018).

What does this mean for the creative brain under stress? 
Under normal circumstances, DN activity dominates in the early 
phase of creative problem solving. This is in stark contrast to 
what occurs in the acute response to stress where SN and sensory 
cortex activities increase (van Marle et  al., 2010), as does their 
functional connectivity (Li et  al., 2014). Furthermore, ECN 
activity decreases in the immediate aftermath of stress, and may 
not be  prioritized in relation to SN activity until 1  h after the 
onset of stress (Hermans et al., 2014). Because creative cognition 
necessitates a dynamic interaction between DN and ECN, the 
downregulation of the latter will in all likelihood adversely impact 
the emergence of creative output (see Vartanian et  al., 2018). 
In summary, despite the fact that DN activity increases in the 
immediate aftermath of stress, the reallocation of resources away 
from ECN to SN, as well as the increased functional connectivity 
between SN and sensory cortices for prioritizing attention to 
salient stimuli may well hamper the neural dynamics that support 
the emergence of creative thought.

ACUTE VS. CHRONIC STRESS

In this paper, our focus has been on the impact of acute 
stress on the functioning of large-scale brain networks, 
with  possible downstream impact on creative cognition.  
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In other words, we  have attempted to paint a picture of brain 
function in support of creative cognition in cases where a 
person encounters an extreme, stressful environment. However, 
quite aside from such acute forms of stress, one can also envision 
a host of chronic stressors that can negatively impact cognitive 
function, including creativity. Danese and McEwen (2012) 
reviewed the large literature on adverse childhood experiences, 
and demonstrated that such forms of chronic stress can have 
enduring impacts on the nervous, endocrine, and immune 
systems. Such long-lasting physiological changes (i.e., biological 
embedding) are perceived to represent the body’s allostatic 
response to chronic stress (Sterling, 1988). For example, adults 
with a history of childhood trauma exhibit smaller prefrontal 
cortex and hippocampal volume, with associated deficits in 
declarative memory. Given the important role that the semantic 
system is known to play in divergent thinking (see Beaty and 
Schacter, 2018; Kenett, 2018), it is plausible that such chronic 
forms of stress that have a deleterious impact on the nervous 
system may also negatively impact creative cognition.

Indeed, the functioning of the three large-scale networks that 
have been the focus of our discussion here are known to 
be  affected by a wide host of psychiatric and neurological 
disorders that have long-lasting effects on brain structure and 
function. Review by Menon (2011) of the network neuroscience 
literature demonstrated that functional disruptions in the ECN 
as well as abnormalities in the intrinsic functional connectivity 
within the DN and SN are associated with virtually every major 
psychiatric and neurological disorder, including anxiety disorders, 
mood disorders, and schizophrenia, among others. Synthesizing 
this literature in his Triple network model of psychopathology, 

Menon (2011) argued that deficits in access, engagement, and 
disengagement of large-scale neural networks are a defining 
feature of psychopathology. To the extent that various psychiatric 
and neurological disorders can be  viewed as chronic forms of 
stress, this body of research suggests a close correspondence 
between the neurological markers of acute and chronic stress 
at the network level, and suggests that a complete representation 
of the impact of stress on higher cognition including creativity 
requires an understanding of both its acute and chronic effects.

CONCLUSION

Creative cognition has been shown to be  supported by the 
dynamic interaction of DN, ECN, and SN. Furthermore, 
during divergent thinking, attention to sensory input is 
attenuated, and instead shifted to internally-generated thought. 
In contrast, in the acute response to stress (i.e., <1  h after 
the onset of stress) SN activity increases, whereas ECN activity 
decreases. There is also increased functional connectivity 
between SN and sensory cortices, as attention is directed to 
salient stimuli to maximize chances of survival. Although 
there is an increase in DN activity and DN-SN functional 
connectivity, this is likely related to self-referential cognition 
and emotion regulation rather than thought processes related 
to creativity. This pattern can help explain why under certain 
circumstances creativity is impacted negatively by stress, and 
points to network neuroscience as a useful avenue of research 
for studying the functioning of the creative brain under acute 
and chronic stress.

FIGURE 2 | Major functional connectivity networks in the acute stress response. This figure is a schematic representation of the major functional connectivity 
networks relevant for the brain’s stress response. The core regions of the salience network (SN) are the insular cortex (IC), dorsal anterior cingulate cortex (dorsal ACC), 
temporal pole, and amygdala. The DN comprises the medial prefrontal cortex (mPFC), the posterior cingulate cortex/precuneus (PCC/PCu), and the inferior parietal 
lobule. The parahippocampal gyrus and hippocampus (HP) are strongly related to the DN. The ECN is centered on the dorsolateral prefrontal cortex (dlPFC) and 
posterior parietal cortex (PPC), and also includes part of the dorsomedial prefrontal cortex and frontal eyefields. Adapted with permission from van Oort et al. (2017).
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