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Introduction
The mitochondrion is central for pathways of ATP production, 

metabolite synthesis and degradation, lipid metabolism, and 

iron–sulfur cluster assembly (Koehler, 2004). Mitochondrial 

dysfunction contributes to a broad range of neural and muscu-

lar diseases, including the X-linked disease Barth syndrome 

(BTHS; Barth et al., 1983, 1999, 2004). BTHS is character-

ized by cardiac and skeletal myopathies, delayed growth until 

puberty, and cyclic neutropenia. The disease presents in in-

fants and, if undiagnosed, is frequently fatal because of car-

diac failure or sepsis. The human tafazzin (TAZ) gene, located 

on Xq28 and expressed at high levels in cardiac and skeletal 

muscle, was recognized as mutated in BTHS patients (Bione 

et al., 1996). To date, �28 different mutations resulting in sin-

gle amino-acid changes in the Taz protein have been identifi ed 

in BTHS patients (a comprehensive database of TAZ muta-

tions is available on the Barth Syndrome Foundation website 

[http://www.barthsyndrome.org]). Aside from mutations re-

sulting in either complete loss of Taz protein expression or 

 expression of a severely truncated Taz, a biochemical explanation 

for the defect associated with any identifi ed BTHS point 

 mutation has not been provided.

Bioinformatics studies showed that tafazzin was similar to 

acyltransferases, suggesting that BTHS might be caused by an 

acyltransferase defi ciency (Neuwald, 1997). Analysis of fi bro-

blasts derived from BTHS patients demonstrated decreased 

steady-state levels of the mitochondrial-specifi c phospholipid 

cardiolipin (CL), although the biosynthetic rate of CL was nor-

mal (Vreken et al., 2000). CL is hypothesized to obtain its fi nal 

composition of fatty acyl groups via a remodeling process 

(Schlame and Rustow, 1990). According to this model, the fi nal 

step in CL biosynthesis occurs when newly synthesized CL is 

deacylated to form monolyso-CL (MLCL) and subsequently 

reacylated with polyunsaturated fatty acyl chains, forming ma-

ture CL. Because the CL contained in patient samples was defi -

cient in the mature tetralinoleoyl form of CL, which is the 

predominant form in normal cardiac muscle (Schlame et al., 

2003), the defect associated with BTHS was suggested to occur 

during the process of CL remodeling.

Yeast contains an orthologue of TAZ1 and has proven 

 effective as a BTHS model (Vaz et al., 2003; Gu et al., 2004; 

Ma et al., 2004). Yeast lacking taz1 (∆taz1) arrest growth at 37°C 

in ethanol media and have decreased CL content. Importantly, 

as observed in patient samples, the predominant mature CL acyl 

species of wild-type (wt) cells (C18:1 and C16:1) are replaced 

with immature, saturated fatty acids. In addition, MLCL, which 
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one of the 28 identifi ed point mutations in ta-

fazzin (Taz1p), which is the mutant gene product 

associated with Barth syndrome (BTHS), has a 

biochemical explanation. In this study, endogenous Taz1p 

was localized to mitochondria in association with both the 

inner and outer mitochondrial membranes facing the inter-

membrane space (IMS). Unexpectedly, Taz1p does not 

contain transmembrane (TM) segments. Instead, Taz1p 

membrane association involves a segment that integrates 

into, but not through, the membrane bilayer. Residues 

215–232, which were predicted to be a TM domain, were 

identifi ed as the interfacial membrane anchor by model-

ing four distinct BTHS mutations that occur at conserved 

residues within this segment. Each Taz1p mutant exhibits 

altered membrane association and is nonfunctional. How-

ever, the basis for Taz1p dysfunction falls into the follow-

ing two categories: (1) mistargeting to the mitochondrial 

matrix or (2) correct localization associated with aberrant 

complex assembly. Thus, BTHS can be caused by muta-

tions that alter Taz1p sorting and assembly within the 

 mitochondrion, indicating that the lipid target of Taz1p is 

resident to IMS-facing leafl ets.
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is the predicted intermediate in the remodeling cycle, accumu-

lates in the ∆taz1 yeast strain. Epitope-tagged Taz1p constructs 

have been localized to mitochondria (Ma et al., 2004; Testet 

et al., 2005) and suggested to reside in the outer membrane 

(OM), facing the IMS (Brandner et al., 2005). However, this 

 localization has not been confi rmed for endogenous Taz1p and 

is diffi cult to reconcile with CL enrichment in the inner membrane. 

Interestingly, a recent study in the yeast Saccharomyces cerevisiae 

suggests that Taz1p might additionally function as a lyso-

 phosphatidylcholine (PC) acyltransferase (Testet et al., 2005). 

In fact, analyses of ∆taz1 yeast and samples derived from BTHS 

patients have shown that PC, in addition to CL, is altered 

(Schlame et al., 2003; Testet et al., 2005; Xu et al., 2005). 

Therefore, the true functions of Taz1p, and, thus, the molecular 

basis for the pathologies observed in BTHS patients, are at 

 present unknown.

In this study, yeast was used to determine if Taz1p does 

localize to mitochondria; and, if so, in which submitochondrial 

compartment it resides. The detailed subcellular and submito-

chondrial localization of Taz1p presented herein shed new in-

sight into the mechanism of Taz1p function. Moreover, a group 

of authentic BTHS point mutations that occur in an identifi ed 

membrane anchor of Taz1p are characterized and provide the 

fi rst molecular explanations for any of the numerous mutations 

identifi ed to date that are linked to this important human 

disease. Strikingly, mutations in one membrane anchor result 

in two distinct biochemical fates for the characterized mutant 

tafazzins, which are all, nonetheless, nonfunctional.  Specifi cally, 

for three of the characterized mutants, nonfunctional Taz1p is 

mislocalized to the matrix side of the inner membrane, indicat-

ing that its target lipid localizes to the IMS-sided leafl ets of the 

membrane. Surprisingly, the fourth characterized BTHS Taz1p 

mutant localized appropriately within the mitochondrion, but, 

presumably because of an altered association with membranes, 

assembled into aberrant complexes. Thus, proper Taz1p sorting 

and assembly is critical for Taz1p activity, and the defect associ-

ated with a cluster of BTHS patients is caused by the missorting 

or misassembly of the mutated Taz1p.

Results
Taz1p is a membrane-associated 
mitochondrial resident
To gain insight into Taz1p functions, we sought to confi rm the 

mitochondrial localization of endogenous Taz1p and, if endo-

genous Taz1p is a mitochondrial resident, to determine its sub-

mitochondrial localization. To this end, we raised a polyclonal 

antiserum in rabbits against the recombinant, full-length yeast 

His6Taz1 protein (Fig. S1, available at http://www.jcb.org/cgi/

content/full/jcb.200605043/DC1). The specifi city of the result-

ing antiserum was confi rmed by immunoblot analysis of whole-

cell extracts derived from a wt S. cerevisiae strain and an isogenic 

Figure 1. Taz1p is a mitochondrial resident. 
(A) Fractions were prepared from the wt strain 
through a series of differential centrifugations. 
50 μg of each fraction was separated by SDS-
PAGE and analyzed by immunoblot using 
 antisera specifi c for the indicated subcellular 
organelle. n = 2. (B) Taz1p localizes to the 
IM and OM in immunogold-labeled ultrathin 
cryosections of the parental wt strain. 
n,  nucleus; ne, nuclear envelope; pm, plasma 
membrane; m, mitochondria. Arrows, OM; 
 arrowheads, IM. Bars, 0.1 μm.
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strain in which the endogenous TAZ1 gene was deleted (∆taz1). 

The polyclonal antisera detected Taz1p in wt, but not ∆taz1, 

 extracts at the predicted molecular mass of 44 kD (Fig. S1).

To determine the subcellular localization of Taz1p, a se-

ries of differential centrifugations were performed on dounced 

homogenates derived from the wt strain, and the resulting frac-

tions were analyzed by immunoblotting with antisera specifi c 

for assorted organellar markers (Fig. 1 A). Taz1p did not cofrac-

tionate with the ER marker Sec62p, the ribosomal marker 

α- nascent polypeptide–associated chain, or the cytosolic marker 

hexokinase. Based on cofractionation with the ADP/ATP carrier 

(AAC), Taz1p was demonstrated to be a mitochondrial resident. 

Additionally, we determined the subcellular localization using 

immunoelectron microscopy. In representative sections (Fig. 1 B), 

Taz1p localized to mitochondria, associating with the inner 

membrane (IM; Fig. 1 B, arrowheads) and, occasionally, with 

the OM (Fig. 1 B, arrows). Nuclei and cytoplasmic matrix were 

devoid of signifi cant labeling (Fig. 1 B1). In the ∆taz1 strain, 

Taz1p was not detected (not depicted).

Because Taz1p is hypothesized to function as an acyltrans-

ferase, we investigated the nature, if any, of the membrane associa-

tion of Taz1p with wt mitochondria. Sonication (Fig. S2, available 

at http://www.jcb.org/cgi/content/full/jcb.200605043/DC1) dis-

criminates between soluble proteins residing within the IMS 

(cytochrome b2), the matrix (Mas1p), and proteins that are in-

tegrally or peripherally associated with either the mitochondrial 

OM or IM. That Taz1p remained largely in the pellet fraction 

after sonication provides evidence that it is membrane associ-

ated, but does not reveal the nature of this membrane  association. 

To determine if Taz1p associates with mitochondrial membranes 

peripherally through electrostatic interactions, mitochondria or 

mitoplasts, which were generated by placing mitochondria in hy-

poosmotic conditions resulting in OM rupture (a process termed 

osmotic shock), were washed with either 1 M KCl or 0.5 M NaCl 

(Fig. S2). Cytochrome b2 was released after osmotic shock, in-

dependent of the addition of high salt. In contrast, cytochrome c, 

which is known to be peripherally anchored to the IM through 

electrostatic interactions with CL and/or phosphatidylglycerol 

(Tuominen et al., 2002), was only released after a high-salt wash 

of mitoplasts, but not of intact mitochondria. Taz1p, like the inte-

gral membrane protein AAC, remained in the pellet fraction after 

every tested treatment.

To distinguish between a peripheral and an integral mem-

brane association, mitochondria were incubated with 0.1 M 

Na2CO3 at increasing pH; integral membrane proteins remain in 

the pellet after centrifugation, whereas peripheral membrane 

and soluble proteins release into the supernatant. Taz1p and 

Tim23p fractionated similarly, suggesting that Taz1p may be an 

integral membrane protein (Fig. 2 A). Importantly, the observa-

tion that the peripherally associated cytochrome c was released 

at every tested pH further confi rms the conclusion that Taz1p is 

not a peripheral membrane protein.

To gain insight as to which mitochondrial membrane 

Taz1p associates with, we used a fractionation technique that 

allows the separation of IM, OM, and so-called contact sites, 

which are areas where the IM and OM are connected (Pon et al., 

1989). Sonicated submitochondrial particles were separated 

over a linear sucrose gradient, fractions were collected from 

bottom to top (Fig. 2 B, fraction 1 and 16, respectively), and 

equal amounts of protein derived from each fraction were ana-

lyzed by immunoblot (Fig. 2 B). Three distinct peaks corre-

sponding to IM (heavy density; revealed by the presence of IM 

proteins, AAC [depicted], Cox2p, and cytochrome c1), contact 

sites (intermediate density; contains detectable IM and OM 

markers), and OM (light density; enriched in OM45 [Fig. 2 B], 

porin, and Tom70p) were identifi ed after quantitation of the im-

munoblots. Interestingly, Taz1p was present in each of the three 

peaks, indicating that it is localized in all three mitochondrial 

membrane compartments. Therefore, Taz1p is a new member of 

an emerging class of mitochondrial-resident proteins that have a 

dual localization to the IM and OM.

Taz1p is an integral interfacial membrane 
protein lining the IMS
Because Taz1p is a nonperipherally associated membrane 

 protein, we used a variety of TM prediction programs to iden-

tify potential membrane-spanning domains (Table S1, available 

Figure 2. Taz1p nonperipherally associates with the IM, OM, and contact 
sites. (A) Wt mitochondria were analyzed by alkali extraction using 0.1 M 
carbonate at the indicated pH values. Equal volumes of the pellet (P) and 
TCA-precipitated supernatant (S) fractions were resolved by SDS-PAGE, 
transferred to nitrocellulose, and immunoblotted for the indicated mitochon-
drial markers. n = 3. (B) Sonicated mitochondrial membrane vesicles were 
prepared from wt mitochondria for fractionation on linear sucrose gradi-
ents (0.85–1.8 M). Fractions were collected from heavy (fraction 1; bot-
tom) to light density (fraction 16; top), and 5 μg of each fraction was 
immunoblotted as indicated. Chemiluminescent images were also collected 
and two exposures per blot were quantifi ed. For each individual mitochon-
drial marker, the amount in each fraction is expressed as the percentage of 
the sum of the signals for that marker in all of the fractions. For both the IM 
and OM, the mean ± SD of three different markers of each compartment 
are presented (IM represents AAC, Cox2p, and cytochrome c1; OM repre-
sents OM45p, porin, and Tom70p). The immunoblots and derived data 
are from a single representative experiment. n = 3.
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at http://www.jcb.org/cgi/content/full/jcb.200605043/DC1). 

The programs did not predict the same regions, but two 

stretches, 26–46 and 215–232, were consistently predicted in 

the 381–amino acid protein. Collectively, these different predic-

tion  methods suggest that Taz1p may contain from zero to two 

membrane-spanning domains.

To decipher which, if any, of these potential TM domains 

exist, three Taz1p constructs were generated with an epitope tag 

placed at either termini (MycTaz and TazHA for N- or C-terminal–

tagged Taz1p, respectively) or between the two putative TM do-

mains (TazMycTaz; Fig. 3 A). After transformation in the ∆taz1 

strain (Fig. S3, available at http://www.jcb.org/cgi/content/

full/jcb.200605043/DC1), each construct rescued a growth de-

fect of the ∆taz1 strain on galactose medium at 37°C (Fig. S3), 

as well as Taz1p function, as demonstrated by the lack of accu-

mulation of MLCL in these strains (Fig. 3, B and C). That each 

construct localized to mitochondria indicates that the immedi-

ate N or C termini are not required for mitochondrial targeting. 

Lastly, the membrane association of each construct in mito-

chondria was investigated by alkali extraction (Fig. 3 D). Quan-

titation of the alkali extraction profi les demonstrated that each 

construct  behaved in a manner indistinguishable from endo-

genous Taz1p (Fig. 3 E).

Insight into the topology of Taz1p was obtained by ascer-

taining the proteinase K accessibility of endogenous Taz1p (Fig. 

4 A) and the three tagged Taz1p constructs (Fig. 4, C–E) in 

 intact mitochondria (Fig. 4, A–E, lanes 2–5), osmotically 

shocked  mitoplasts (Fig. 4, A–E, lanes 6–9), and 0.1% Triton 

X-100– solubilized mitochondria (Fig. 4, A–E, lanes 10–13). 

As expected, Tom70p, which is an OM protein, was readily 

 degraded by proteinase K added to intact mitochondria (Fig. 4, 

A–E, lanes 2–5); Tim54p, which is an integral IM protein facing 

the IMS, was accessible to added proteinase K after OM rupture 

by osmotic shock (Fig. 4, A–E, lanes 6–9); and α-ketoglutarate 

dehydrogenase (KDH), which is a matrix resident, was only de-

graded by proteinase K when the mitochondria were solubilized 

with  Triton X-100 (Fig. 4, A–E, lanes 10–13). Interestingly, 2–3 

 fragments (Fig. 4 A, gray arrows) could be detected in 

wt- derived samples after each experimental condition in the ab-

sence of added proteinase K (Fig. 4 A, lanes 2, 6, and 10). Each 

of these bands is not detected in samples prepared from ∆taz1 

 mitochondria (Fig. 4 B, background bands highlighted with 

 asterisks). The same three fragments, migrating slightly slower 

because of the appended epitope tags, are detected in MycTaz- 

(Fig. 4 C) and TazMycTaz- (Fig. 4 D), but not in TazHA- 

(Fig. 4 E), derived samples, implying that these fragments are 

generated through the removal of increasingly larger portions 

of the C terminus. Upon further characterization (unpublished 

data), these fragments are generated during the TCA precipita-

tion step used to completely inactivate proteinase K. Therefore, 

the presence of these bands refl ects the persistence of full-length 

Taz1p at the end of an indicated incubation; and, conversely, 

Figure 3. Three epitope-tagged Taz1p con-
structs are functional. (A) Schematics of the 
three constructs, with potential TM domains 
indicated. (B) After steady-state labeling with 
32Pi, phospholipids were extracted from the 
indicated strains, separated by TLC, and re-
vealed by phosphoimaging. The migration 
of phospholipids is indicated (PI, phosphat-
idylinositol; PS, phosphatidylserine; PA, phos-
phatidic acid). (C) The relative abundance of 
MLCL was determined for each strain. The 
amount of MLCL in each strain is expressed 
as a percentage of the total phospholipids in 
each strain. Mean ± SEM. n = 6. ∆taz1 yeast 
accumulate signifi cant amounts of MLCL rela-
tive to wt yeast (P ≤ 0.001), as determined by 
t-test. Control ∆taz1 yeast transformants ([Vec-
tor Alone]) accumulate signifi cant amounts of 
MLCL relative to ∆taz1 yeast transformed with 
wt Taz1p ([WT Taz1p]) or any of the epitope-
tagged constructs (P < 0.001) as determined 
by one way analysis of variance (ANOVA), 
with Holm–Sidak pairwise comparisons. 
(D) Purifi ed mitochondria from the indicated 
yeast strains were analyzed by alkali extraction 
as before, except that Taz1p was identifi ed by 
immunoblotting with monoclonal anti bodies 
specifi c for the appropriate epitope tag. 
(E) Quantitation was performed as previously 
described. The percentage of Taz1p present in 
the derived supernatants after carbonate extrac-
tion was determined as follows: S/(S + P) × 100,
where S is the volume of Taz1p detected 
in the supernatant at a given pH and P is the 
volume associated with the pellet at the same 
pH. Mean ± SD. n = 3.
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Figure 4. Taz1p is an interfacial membrane protein facing the IMS. Intact mitochondria, mitochondria subjected to osmotic shock (mitoplasts), or mito-
chondria solubilized with 0.1% Triton X-100 were incubated alone or in the presence of the indicated concentration of proteinase K. Equivalent 
amounts of each sample (designated by the indicated quantity of starting material) were resolved by SDS-PAGE and immunoblotted as indicated. The 
source of the mitochondria for each image is wt (A), ∆taz1 (B), MycTaz (C), TazMycTaz (D), and TazHA (E). The three gray arrows highlight Taz1p 
fragments generated during the TCA precipitation step performed to inactivate proteinase K, which involves the removal of increasing amounts of the 
C terminus. The white arrow, which designates an �27-kD fragment generated upon addition of low amounts of proteinase K to mitoplasts, lacks at 
least the N-terminal 154 amino acids, and contains the C terminus, which is stabilized in 0.1% Triton X-100. The black arrow reveals an �24-kD frag-
ment only generated upon addition of high concentrations of proteinase K to wt mitoplasts. To visualize the Taz1p fragments, overexposed immunoblots 
are presented, except for D, where the indicated exposure lengths for the anti-Myc immunoblots were spliced together using Photoshop. Asterisks in 
A and B highlight background bands identifi ed in the ∆taz1 mitochondria immunoblots (B). (F) Drawing summarizing the localization and membrane 
association of Taz1p. n = 3.
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their absence refl ects a loss in full-length Taz1p caused by pro-

teinase K–mediated degradation.

No diminution in the full-length Taz1p signal was ob-

served upon addition of increasing amounts of proteinase K to 

intact mitochondria (Fig. 4, A and C–E, lanes 3–5). In wt mito-

plasts, the addition of low amounts of proteinase K results in a 

decrease in detectable full-length Taz1p and the appearance of 

an �27-kD fragment (Fig. 4 A, lanes 7 and 8, white arrow). 

Addition of high concentrations of proteinase K results in the 

loss of the �27-kD Taz1p fragment and the appearance of a 

novel �24-kD protected band (Fig. 4 A, lanes 8–9, black 

 arrow). It is worth noting that the full-length Taz1p detected after 

addition of proteinase K to mitoplasts refl ects the proportion of 

mitochondria remaining intact after the osmotic shock  reaction. 

To detect the Taz1p fragments, overexposed images of the 

Taz1p immunoblots are presented (for lighter exposure see 

Fig. 6 E). Importantly, neither of these bands is detected in 

samples prepared from ∆taz1 (Fig. 4 B), MycTaz (Fig. 4 C), or 

TazMycTaz (Fig. 4 D) mitoplasts (lanes 6–9), demonstrating 

that these fragments are generated by the removal of at least 

the N-terminal 155 amino acids of Taz1p (the fi rst amino acid 

downstream of the integrated tag in TazMycTaz). In TazHA 

mitoplasts (Fig. 4 E), the addition of increasing amounts of 

proteinase K results in the sequential appearance and disap-

pearance of an �29-kD fragment. Thus, the fi nal protected 

�24-kD fragment observed in wt mitoplasts (Fig. 4 A, black 

arrow) results from the proteinase K–mediated removal of the 

C-terminal �27 amino acids of Taz1p.

Interestingly, 0.1% Triton X-100 stabilizes a core struc-

ture of Taz1p, which is �27 kD and resists degradation, even at 

100 μg/ml proteinase K (Fig. 4 A, lane 13, white arrow). This 

band is not detected in samples prepared from ∆taz1- (Fig. 4 B), 

MycTaz- (Fig. 4 C), or TazMycTaz-solubilized (Fig. 4 D) mito-

chondria (lanes 11–13). In TazHA-solubilized mitochondria, 

a �29-kD band is readily detected at 10 μg/ml proteinase K. 

However, upon addition of 10× more proteinase K, this frag-

ment is much fainter, suggesting that the appended C-terminal 

HA tag is not included in the fi nal 0.1% Triton X-100–stabilized 

Taz1p core structure. Collectively, both termini of Taz1p are ex-

posed to the IMS. Moreover, given that the banding profi le for 

Figure 5. Yeast Taz1p harboring authentic BTHS mutations that occur in the putative interfacial membrane anchor of Taz1p localize to mitochondria, but 
are nonfunctional. (A) ClustalW alignment of the putative interfacial membrane anchor (boxed) of Taz1p from human, mouse, and S. cerevisiae. The BTHS 
mutations are indicated at the top, with mutations occurring at conserved and identical residues provided in green and red, respectively. (B) The relative ex-
pression of the four different BTHS mutants (three clones/mutant) was determined from whole-cell extracts by immunoblotting for Taz1p (bottom) with KDH 
serving as a loading control (top). (C) The same as B, except that three clones derived from a humanized yeast Taz1p were analyzed next to the three 
Taz1p mutants harboring single BTHS mutations occurring at conserved residues. (D and E) Steady-state 32P labeling and analyses were performed as de-
scribed in Fig. 3 (B and C). ∆taz1 yeast accumulate signifi cant amounts of MLCL relative to wt yeast (P ≤ 0.001), as determined by t-test. All of the BTHS 
mutants, with the notable exception of the humanized Taz1p, demonstrate a statistically signifi cant accumulation of MLCL relative to ∆taz1 transformed with 
wt Taz1p ([WT Taz1p]; P < 0.001) as determined by one-way ANOVA, with Holm–Sidak pairwise comparisons. Mean ± SEM. n = 4, except for human-
ized Taz1p, where n = 3. (F) Fractions were prepared from the indicated yeast strains through a series of differential centrifugations. 50 μg of each fraction 
was separated by SDS-PAGE and analyzed by immunoblot using antisera specifi c for the indicated subcellular organelle. n = 2.
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the MycTaz and TazMycTaz constructs are identical and that 

Taz1p is not a peripheral membrane protein, we conclude that 

Taz1p is a so-called integral interfacial protein, associating with 

mitochondrial membranes by protruding into, but not through, 

the lipid bilayer (Fig. 4 F).

A cluster of BTHS mutations alter 
the normal integral interfacial membrane 
association of Taz1p
To date, 28 distinct mutations resulting in single amino acid 

changes in Taz1p have been identifi ed in BTHS patients, 21 of 

which occur at residues that are either conserved or identical 

in the yeast orthologue. Interestingly, a cluster of four such 

conserved BTHS mutations reside within the second predicted 

TM domain, amino acid residues 215–232 of Taz1p (Fig. 5 A). 

This predicted TM domain is located within the Triton X-100– 

stabilized, tightly folded Taz1p structural element and is an 

 attractive candidate for mediating the integral interfacial

association of Taz1p with membranes. To test the hypothesis 

that yeast Taz1p residues 215–232 are an integral interfacial 

membrane anchor and that the BTHS mutants occurring within 

the orthologous region of human Taz1p inactivate this func-

tion, each of the four mutations were modeled in yeast Taz1p 

and individually expressed in the ∆taz1 yeast strain.  Compared 

with ∆taz1 yeast transformed with wt Taz1p (WT Taz1p), the 

expression of the BTHS mutations was either drastically 

(V223D, V224R, and I226P) or slightly (G230R) reduced 

(Fig. 5 B). Moreover, none of these BTHS mutants rescued the 

growth defect of the ∆taz1 yeast strain (not depicted) or pre-

vented the accumulation of MLCL, which is a hallmark of loss 

of Taz1p activity (Fig. 5, D and E). As three of the four Barth 

syndrome mutations occur at conserved, but not identical, res-

idues in the yeast orthologue, a “humanized” yeast Taz1p was 

generated, containing the human residues at all three  positions. 

Importantly, the humanized yeast Taz1p was expressed at 

levels similar to wt Taz1p expressed in ∆taz1 yeast (Fig. 5 C), 

rescued the growth defect of the ∆taz1 strain (not depicted), 

and prevented the accumulation of MLCL (Fig. 5, D and E). 

Thus, all four BTHS mutations, when modeled in yeast Taz1p, 

are nonfunctional.

One possibility for the inability of each of these mutations 

to rescue Taz1p function is that they fail to localize properly to 

mitochondria. However, all four mutations were exclusively 

 localized to mitochondria (Fig. 5 F), demonstrating that this 

cluster of BTHS mutations does not result in the inactivation of 

a mitochondrial targeting signal in Taz1p.

The membrane association of each of the mutants was 

 investigated. Surprisingly, all four BTHS mutants retained the 

ability to associate with mitochondrial membranes based on 

their continued presence in the pellet fraction after sonication 

(Fig. 6 A). Identical to wt Taz1p, high-salt washing of intact 

 mitochondria or osmotically swollen mitoplasts failed to strip any 

of the four mutants off of the mitochondrial membranes (unpub-

lished data). However, when the membrane association of each of 

the mutants was assessed by alkali extraction, all four BTHS 

 mutants were signifi cantly more extractable by 0.1 M Na2CO3, 

pH 10.9 and 11, than wt Taz1p (Fig. 6, B and C, red arrows). 

 Therefore, whereas each of the BTHS mutants retains some 

 capacity to associate with mitochondrial membranes, the nature 

of that membrane association is altered. This is consistent with 

the hypothesis that residues 215–232 of yeast Taz1p represent 

a membrane anchor.

To determine if the altered membrane association of each 

of the BTHS mutants resulted in a different submitochondrial 

localization, the compartment in which each mutant resides 

was assessed using a proteinase K protection assay (Fig. 6 E). 

Intriguingly, the three BTHS mutants occurring in the middle of 

the postulated membrane anchor are mislocalized to the mito-

chondrial matrix because they are not susceptible to protease 

digestion during osmotic shock (Fig. 6 E, red arrows); rather, 

the mutants are only digested by protease when Triton X-100 is 

added to disrupt the mitoplasts. Thus, for these three BTHS 

 mutants, the failure to rescue Taz1p function in the ∆taz1 yeast 

strain is explained by a mislocalization within the  mitochondrion. 

In contrast, the BTHS mutation occurring more toward the 

edge of the predicted membrane anchor, G230R, is resident to 

IMS-facing mitochondrial membranes, similar to wt Taz1p.

Given that the G230R mutant displayed an altered mem-

brane association and was unable to rescue Taz1p function in the 

∆taz1 yeast strain, the assembly of the G230R Taz1p mutant into 

macromolecular complexes was assessed by blue native–PAGE 

after solubilization of mitochondria with 1.5% (wt/vol)  digitonin. 

Importantly, wt Taz1p overexpressed in the ∆taz1 yeast 

strain provided an identical profi le of Taz1p complexes as en-

dogenous Taz1p, with the expected increase in intensity of each 

detected complex; thus, overexpression of Taz1p, per se, does 

not alter its complex assembly. Specifi cally, wt Taz1p migrated 

on blue native gels as a broad smear ranging from �45–140 kD, 

with three larger 160-, 220-, and 280-kD complexes evident 

(Fig. 6 D, black, green, and blue arrows, respectively); critically, 

all of these Taz1p complexes were not detected in mitochondrial 

extracts derived from either ∆taz1 yeast or ∆taz1 yeast trans-

formed with empty vector (Fig. 6 D, Vector Alone). In stark con-

trast to the three mislocalized mutants, the G230R Taz1p mutant 

migrated as a broad and intense smear from �45 to 400 kD; 

however, a discrete and unique 460-kD complex was also ob-

served (Fig. 6 D, red arrow). Thus, a single point mutation that 

alters the membrane association of Taz1p, but not its sub-

mitochondrial localization, results in the inappropriate assembly 

of G230R Taz1p into aberrant protein complexes or, instead, 

freezes G230R Taz1p into protein complexes that are normally 

dynamic and transient in nature. In conclusion, these data dem-

onstrate that Taz1p residues 215–232 are, in fact, an integral in-

terfacial membrane anchor and provide the fi rst mechanistic 

explanations for a series of BTHS mutations.

Discussion
More than a CL acyltransferase?
In this study, using a new anti-Taz1p antiserum, we have demon-

strated that endogenous Taz1p is a normal resident of mitochon-

dria, consistent with the hypothesis that it functions as a CL 

acyltransferase. Moreover, we show that Taz1p associates with 

all mitochondrial membranes facing the IMS. The conclusion 
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that Taz1p associates with the inner leafl et of the OM and the 

outer leafl et of the IM and, thus, effectively lines the IMS is based 

on three separate observations. First, Taz1p was only susceptible 

to added proteinase K upon osmotic shock of the OM, demon-

strating that it resides within the IMS. Second, Taz1p was associ-

ated with both the IM and OM, as assessed by immunoelectron 

microscopy (Fig. 1 B). Third, Taz1p was localized to the IM, 

OM, and contact sites after separation of these compartments 

using a linear sucrose gradient (Fig. 2 B). Our conclusion that 

Taz1p is localized to the IM, as well as to the OM, contrasts 

with recent results in which it was concluded that an epitope-

tagged Taz1p was found exclusively in association with the OM 

(Brandner et al., 2005), which is a localization that is diffi cult to 

reconcile with the vast enrichment of CL in the IM. However, 

this conclusion was drawn although their IM and OM resolved in 

immediately adjacent fractions. In addition, a recent paper de-

scribing the proteome of purifi ed OM vesicles failed to identify 

Taz1p (Schmitt et al., 2005). That Taz1p was identifi ed in another 

proteomic study using whole mitochondria (Sickmann et al., 

2003) indicates that Taz1p can be identifi ed in a proteomics-

based approach and that the failure to identify it in the OM may 

refl ect its relatively low abundance in this compartment.

Is it surprising that Taz1p is localized on both the IM and 

OM of mitochondria? As only two other mitochondrial proteins, 

Mgm1p and Fzo1p, have been demonstrated to have this dual-

membrane topology (Fritz et al., 2001; Sesaki et al., 2003), the 

Figure 6. Altered membrane association of the BTHS Taz1p mutants results in two fates: matrix mistargeting or aberrant complex assembly. Mitochondria 
isolated from the indicated strains were analyzed by sonication (A) or alkali extraction (B), as previously described. (C) Quantitation and data analyses 
were performed as described in Fig. 3 E. The asterisks indicate a statistically signifi cant increase in the release into the supernatant of each of the BTHS 
Taz1p mutants, relative to endogenous Taz1p (P < 0.001) as determined by one-way ANOVA, with Holm–Sidak pairwise comparisons. Mean ± SD. 
n = 3. (D) 100 μg mitochondria from the indicated strain was solubilized in 1.5% (wt/vol) digitonin and subjected to blue native–PAGE (6–16% acrylamide), 
and then Taz1p was detected by immunoblotting. The black, green, and blue arrows highlight 160-, 220-, and 280-kD Taz1p-containing complexes identi-
fi ed in wt and [WT Taz1p] mitochondrial extracts. The red arrow highlights a 460-kD complex distinctly observed in mitochondrial extracts derived from 
the G230R Taz1p mutant. n = 4. (E) Mitochondria derived from the indicated strains were treated exactly as described in Fig. 4. n = 3. For simplicity, 
only one set of control immunoblots is presented in B and E. The controls for every source of mitochondria are provided in Fig. S4. Fig. S4 is available 
at http://www.jcb.org/cgi/content/full/jcb.200605043/DC1.
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simple answer is yes. CL is highly enriched in the IM, and the 

expectation was that Taz1p would, as a CL acyltransferase, 

 reside in the IM. However, CL has been additionally detected in 

both contact sites and the OM (Ardail et al., 1990; Simbeni 

et al., 1991), although the proportion of CL associated with 

these two membrane compartments relative to the IM is, at pre-

sent, controversial. Quite possibly, our determination that Taz1p 

resides on the IM and OM of wt mitochondria refl ects the rela-

tive distribution of its putative target, CL.

However, recent work has suggested that, in yeast, Taz1p 

may additionally function as a lyso-PC acyltransferase (Testet 

et al., 2005). That this might not be a yeast-specifi c phenome-

non is suggested by the observation that the molecular composi-

tion of PC and phosphatidylethanolamine (PE) is altered in 

specimens from BTHS patients (Schlame et al., 2003; Xu et al., 

2005). Moreover, a pathway of CL remodeling identifi ed in rat 

liver and human lymphoblast mitochondria was recently de-

scribed, in which PC and PE acted as the acyl donor for either 

CL or MLCL (Xu et al., 2003). Importantly, this transacylation 

pathway was decreased in lymphoblasts derived from BTHS 

patients. PC constitutes approximately half of all mitochondrial 

phospholipids and is slightly enriched in the OM, relative to the 

IM (Voelker, 2004). Additionally, the OM has long been known 

to be enriched in a lyso-PC acyltransferase activity (Sarzala 

et al., 1970; Waite et al., 1970). Therefore, if Taz1p were to act 

as an acyltransferase for both CL and PC, then the observed 

dual localization might refl ect the relative distribution of PC 

 between the IM and OM.

Two fates associated with mutations 
in one membrane anchor
As Taz1p was not removed by high salt and exhibited an alkali 

extraction profi le distinct from the peripherally associated 

 cytochrome c and similar to the integrally associated Tim23p, 

it was expected that Taz1p is an integral membrane protein. 

Instead, a series of functional epitope-tagged constructs allow-

ing the unambiguous determination of the membrane topology 

of Taz1p revealed that Taz1p does not contain any TM domains 

(up to two TM domains were predicted by the different 

 programs). Our conclusion is supported by the fact that the re-

gions of Taz1p on either side of the fi rst potential TM domain 

both face the IMS, as does the extreme C terminus of Taz1p. 

Thus, we concluded that Taz1p is a monotopic integral inter-

facial membrane protein, which is an emerging class of mem-

brane proteins that includes the alternative oxidase of plants 

and prostaglandin H2 synthase-1 (Andersson and Nordlund, 

1999; Nina et al., 2000). Members of the monotopic integral 

interfacial membrane protein class are proposed to associate 

with membranes by protruding into, but not completely 

through, a lipid bilayer (Fig. 4 F). Worth briefl y considering is 

that although alkali extraction, in combination with sonication 

and high-salt washes, can clearly identify peripheral mem-

brane proteins, it cannot distinguish between classical integral 

membrane proteins, such as Tim23 with four TM domains, and 

nonclassical membrane proteins, such as Taz1p, which associate 

with membranes presumably through TM-like loops into the 

lipid bilayer.

An attractive candidate for mediating the integral inter-

facial association of Taz1p with the membrane was the second 

region (residues 215–232) predicted to be a TM domain. The 

importance of this domain in Taz1p function was fi rst suggested 

by the observation that a cluster of four BTHS mutations occur 

within the orthologous region of human Taz1p. Modeling each 

of these mutations in yeast Taz1p results in a loss of Taz1p 

 function. Consistent with the assignment of residues 215–232 as 

an interfacial membrane anchor, each of these BTHS mutants 

 exhibited an altered association with mitochondrial membranes 

(Fig. 6 C). Perhaps the most interesting aspect of this cluster 

of mutations was that there were two different consequences of 

mutations within this defi ned region. Three of the BTHS  mutants 

were mislocalized to the mitochondrial matrix. As each of these 

mutations occurs in the middle of the predicted membrane 

 anchor, it is tempting to speculate that they result in the inacti-

vation of a stop–transfer signal that normally prevents the trans-

port of Taz1p across the IM. Implicit in this observation is that 

the import of Taz1p into mitochondria normally involves an 

 interaction with one of the translocases of the IM. This lends 

further weight to our conclusion that Taz1p includes the IM as 

one of its resident compartments. Thus, BTHS can be caused by 

Taz1p missorting within the mitochondrion (Fig. 7 B). 

The fourth BTHS mutant, G230R, localized appropri-

ately to membranes lining the IMS, but assembled into abnor-

mal complexes or abnormally stable complexes. Because this 

mutation occurs near the edge of the membrane anchor and 

 involves the acquisition of a positive charge, we suggest that 

the membrane anchor is pulled partially out of the membrane 

by interactions between the positively charged Arg and nega-

tively charged phospholipid headgroups (Fig. 7 C). Therefore, 

although the stop–transfer activity of this region is intact, the 

association of G230R with mitochondrial membranes facing 

the IMS is altered, leading to aberrant complex formation and 

loss of Taz1p function.

Finally, the conclusion that Taz1p is a monotopic, inte-

gral, interfacial membrane protein that lines the IMS indicates 

that the acyltransferase activity of Taz1p is mechanistically 

performed in the context of only those membrane leafl ets fac-

ing the IMS (Fig. 7 A). Thus, the fi nal distribution of remod-

eled CL and/or PC within mitochondrial membranes would 

require traffi cking between leafl ets of a bilayer subsequent to 

Taz1p-mediated acylation. Future detailed investigations such 

as these will provide important insights into the mitochondrial 

dysfunction associated with BTHS and potential targets for 

treating this disease.

Materials and methods
Cloning and recombinant protein expression
Tafazzin was cloned into pBSK after PCR, using genomic DNA isolated 
from the wt GA74-6A strain as a template and 5′ and 3′ primers hybridizing 
�300 bp upstream of the predicted start translation and 430 bp 
 downstream of the stop translation codon of TAZ1. This construct, termed 
pBSK.Taz, acted as the template in all subsequent cloning procedures 
 involving tafazzin. To generate Taz1p containing an N-terminal His6 tag, 
the entire open reading frame was cloned into the pET28a vector (Novagen) 
in frame and downstream of the His6 tag and thrombin cleavage site 
 provided by the vector. His6Taz was induced in BL21-CodonPlus(DE3)-RIL 
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Escherichia coli (Stratagene) and purifi ed under native conditions using 
Ni2+-agarose (QIAGEN) as per the manufacturer’s instructions. Tafazzin 
with an in-frame C-terminal HA tag was generated using a 5′ primer that 
hybridized �300 bp upstream of the start translation codon and a 3′ 
primer containing a stop translation codon, the sequence for the HA tag, 
and the 19 bps immediately upstream of the endogenous stop codon. To 
generate tafazzin with an in-frame N-terminal Myc tag, overlap extension 
(Ho et al., 1989) was performed using a primer set that placed a Kozak 
and Myc tag sequence in frame with the fi rst predicted amino acid of ta-
fazzin, still downstream of the same �300 upstream of the endogenous 
start site used in the previous construct. To insert a Myc tag between the 
two potential TM domains, overlap extension was performed using a 
primer set that inserted the fi rst seven amino acids of the myc tag sequence 
between amino acids 154 and 155 of tafazzin, with the fi nal two amino 
acids (Asp and Leu) of the Myc tag provided by amino acids 155 and 156 
of tafazzin. The series of BTHS point mutations were also generated 
by overlap extension. Each construct was cloned into pRS425. The se-
quence of every construct was verifi ed by sequencing. The sequences of all 
primers are available upon request.

Yeast strains
The wt parental S. cerevisiae yeast strains used were as follows: 
GA74-6A (MAT α, his3-11,15, leu2, ura3, trp1, ade8, rho+, mit+) and 
GA74-1A (MAT a, his3 -11,15, leu2, ura3, trp1, ade8, rho+, mit+). The 
∆taz1His1.5 (MAT a, leu2, ura3, trp1, ade8, ∆taz1::HISMX6) strain was 
constructed by replacing the entire open reading frame of TAZ1 with the 
His3MX6 marker using a PCR-mediated one-step gene replacement stra-
tegy (Wach et al., 1994). The ∆taz1His1.5 strain was transformed and 
 selected as previously described (Gietz et al., 1992) with the empty vector, 
pRS425, WT Taz1p, or the aforementioned epitope-tagged Taz1p or BTHS 
Taz1p  mutant constructs, all cloned into pRS425.

Antibodies
Antibodies were raised in rabbits using the yeast His6Taz. Yeast whole-cell 
extracts were prepared as previously described (Yaffe and Schatz, 1984). 
Most of the antibodies used in this work were generated in the Schatz 
 laboratory (J. Schatz, University of Basel, Basel, Switzerland) or our labo-
ratory and have been described previously. Other antibodies used were as 
follows: mouse anti-Sec62p (gift of David Meyers, University of California, 
Los Angeles, Los Angeles, CA), anti–β-Actin (Abcam Inc.), anti-HA  (Covance 
Research Products, Inc.), anti-Myc (strain 9E10; Evan et al., 1985; ob-
tained from the Developmental Studies Hybridoma Bank; developed under 
the auspices of the National Institute of Child Health and Human Develop-
ment and maintained by the University of Iowa), and anti-Myc (clone 9B11; 
Cell Signaling Technology) monoclonal antibodies, and horseradish 
 peroxidase–conjugated secondary antibodies (Pierce Chemical Co.).

Immunoblot
After resolution on 12% SDS-PAGE gels under reducing conditions, pro-
teins were transferred to nitrocellulose membranes (Schleicher and Schuell 

BioScience) at 1 Amp for 60–75 min at room temperature. Immunoblots 
were performed exactly as previously described (Claypool et al., 2002). 
All of the presented images were captured on fi lm. For quantitation of 
 immunoblots, images were captured with a VersaDoc controlling a charge-
coupled device camera (Bio-Rad Laboratories), and bands from two expo-
sures per blot were quantitated with the affi liated Quantity One software. 
Formulas for specifi c calculations are presented in the appropriate 
fi gure legends. Statistical analyses were performed using SigmaStat 3.0 
(Jandel Corp.).

Subcellular fractionation
For the subcellular fractionation studies, wt yeast were grown at 30°C in 
YPEG medium containing 1% yeast extract, 2% tryptone, 3% glycerol, 
and 3% ethanol. The mitochondria isolated for all of the other experi-
ments were derived from cultures grown at 30°C to an OD600 of �0.8–1 
in rich lactate medium (1% yeast extract, 2% tryptone, 0.05% dextrose, 
and 2% lactic acid, 3.4 mM CaCl2 2H2O, 8.5 mM NaCl, 2.95 mM 
MgCl2 6H20, 7.35 mM KH2PO4, and 18.7 mM NH4Cl). Mitochondria 
were isolated as previously described (Daum et al., 1982). Subcellular 
fractions were collected through a series of differential centrifugations. 
The amount of protein in each fraction was determined using the BCA 
 assay (Pierce Chemical Co.).

Immunogold labeling of ultrathin cryosections
Immunoelectron microscopy was performed as previously described 
 (Rieder et al., 1996). In brief, cells were fi xed in suspension for 15 min by 
adding an equal volume of freshly prepared 8% formaldehyde contained 
in 100 mM PO4 buffer, pH 7.4. The cells were pelleted, resuspended in 
fresh fi xative (8% formaldehyde, 100 mM PO4, pH 7.4), and incubated 
for an additional 18–24 h at 4°C. The cells were washed briefl y in PBS 
and resuspended in 1% low-gelling–temperature agarose. The agarose 
blocks were trimmed into 1-mm3 pieces, cryoprotected by infi ltration with 
2.3 M sucrose/30% polyvinyl pyrrolidone (10,000 mol wt)/PBS, pH 
7.4, for 2 h, mounted on cryopins, and rapidly frozen in liquid nitrogen. 
Ultrathin cryosections were cut on an ultramicrotome (UCT; Leica) 
equipped with an FC-S cryoattachment and collected onto formvar/ 
carbon-coated nickel grids. The grids were washed through several drops 
of 1× PBS containing 2.5% fetal calf serum and 10 mM glycine, pH 7.4, 
and then blocked in 10% FCS for 30 min and incubated overnight in rab-
bit anti-Taz1p antibody. After washing, the grids were incubated for 2 h 
in 5-nm gold donkey anti–rabbit conjugate (Jackson ImmunoResearch 
Laboratories). The grids were washed through several drops of PBS, fol-
lowed by several drops of ddH2O. Grids were then embedded in an 
aqueous solution containing 3.2% polyvinyl  alcohol (10,000 mol 
wt)/0.2% methyl cellulose (400 centipoises)/0.1% uranyl acetate. The 
sections were examined and photographed on a transmission electron 
microscope (EM 410; Philips) at 100 kV and images were collected with 
a digital camera (Megaview III; Soft Imaging System).  Figures were as-
sembled in Photoshop (Adobe), with only linear adjustment of contrast 
and brightness.

Figure 7. Model of Taz1p function and the de-
fect associated with the two distinct classes of 
BTHS Taz1p variants. (A) Taz1p (blue) associ-
ates with IMS-facing membranes via a TM-like 
loop. Here, it transfers fatty acyl groups 
(light green) to MLCL (gray) and/or lyso-PC 
(light blue), forming CL and PC, respectively. 
(B) The V223D, V224R, and I226P Taz1p 
 mutations  inactivate a putative stop–transfer sig-
nal (red squiggle) resulting in Taz1p mistargeting 
to the mitochondrial matrix. In this compartment, 
Taz1p is unable to function (red X), potentially 
caused by the absence of its physiological lipid 
target within the matrix. (C) The stop–transfer 
activity is preserved in the G230R BTHS mutant; 
however, possibly because of charge interac-
tions between the positively charged Arg and 
negatively charged phospholipid headgroups, 
the mutant Taz1p exhibits an altered associa-
tion with mitochondrial membranes. This results 
in aberrant complex assembly  (unidentifi ed 
components depicted in yellow, purple, and 
dark green) and loss of function (red X).
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Submitochondrial localization
For submitochondrial localization, with the exception of the epitope-tagged 
Taz1p strains, all studies were performed using at least two different batches 
of isolated mitochondria per strain. To assay membrane association by soni-
cation, the pellet fraction after osmotic shock of 0.5 mg mitochondria was 
 resuspended in 0.6 M sucrose, 3 mM MgCl2, and 20 mM Hepes-KOH, 
pH 7.4, and sonicated for 3 × 10 s, with 30-s intervals in an ice bath, using 
a microtip attached to a Sonic Dismembrator 550 (Fisher Scientifi c) with the 
amplitude set at 3.5. After removal of unbroken mitoplasts by centrifugation 
at 20,000 g for 10 min at 4°C, the submitochondrial particles were sepa-
rated from soluble matrix components with an airfuge at 27 psi for 30 min at 
4°C. High-salt washes were performed for 15 min at 4°C by the addition of 
0.5 M NaCl or 1 M KCl to either intact mitochondria or mitoplasts after 
 osmotic shock. Alkali extraction was performed essentially as previously de-
scribed (Fujiki et al., 1982), except that 0.2 ml of 0.1 M Na2CO3 at the indi-
cated pH was added to 0.2 mg mitochondria, and the pellet and supernatant 
fractions were separated with an airfuge at 27 psi for 15 min at 4°C. For ex-
periments using intact mitochondria, mitochondria were incubated in 0.6 M 
sorbitol and 20 mM Hepes-KOH, pH 7.4. Osmotic shock was performed by 
incubating mitochondria for 30 min on ice in 0.03 M sorbitol and 20 mM 
Hepes-KOH, pH 7.4. Where designated, the indicated concentration of pro-
teinase K ±0.1% (vol/vol) Triton X-100 was included. Any proteinase K re-
maining associated with the pellets was inactivated, as previously described 
(Glick et al., 1992). The supernatants were TCA precipitated and the pellet 
and supernatant fractions resuspended in equal volumes of thorner buffer 
(10% glycerol, 8 M urea, 5% (wt/vol) SDS, 40 mM Tris, pH 6.8, 4 mg/ml 
bromophenol blue, and 5% β-mercaptoethanol).

The separation of sonicated membranes over linear sucrose gradients 
was performed essentially as previously described (Pon et al., 1989). In brief, 
5 mg of mitochondria were osmotically shocked (1 mM EDTA added to swell-
ing medium) for 30 min and then shrunk for 10 min on ice by the addition of 
sucrose to 0.45 M. Sonication was performed as before, except six cycles 
were performed. After removal of unbroken mitoplasts by centrifugation 
for 10 min at 20,000 g at 4°C, the sonicated vesicles were harvested with an 
airfuge at 27 psi for 30 min at 4°C and the membrane-containing pellet was 
resuspended with 0.5 ml of 0.45 M sucrose, 10 mM KCl, 1 mM EDTA, 
and 5 mM Hepes-KOH, pH 7.4, loaded onto a linear sucrose gradient 
(1.8–0.85 M sucrose, 10 mM KCl, 1 mM EDTA, and 5 mM Hepes-KOH, pH 
7.4; 4 ml total volume), and centrifuged in a SW41Ti rotor (Beckman Coulter) 
at 100,000 g for 20 h at 4°C. Using a syringe plunger to control the fl ow, a 
hole was punched into the bottom of the tubes using an 18-gauge needle and 
�0.2-ml fractions collected in individual wells of a 96-well plate. The fractions 
were quantifi ed using the Bio-Rad Protein Assay (Bio-Rad Laboratories).

Phospholipid analyses
Starter cultures were diluted to an OD600 = 0.2 in 2 ml of yeast peptone 
dextrose (wt or ∆taz1 yeast) or SC-Leu (all remaining tested strains) supple-
mented with 10 μCi/ml 32Pi and grown at 30°C for �24 h. After a wash 
with H2O, the yeast pellets were resuspended in 0.3 ml MTE buffer (0.65 M 
mannitol, 20 mM Tris, pH 8.0, and 1 mM EDTA) supplemented with 1 mM 
PMSF, 10 μM leupeptin, 2 μM pepstatin A, and 10 μM chymostatin (the lat-
ter three were obtained from Sigma-Aldrich), transferred to an Eppendorf 
tube containing 0.1 ml glass beads, and disintegrated by vortexing on high 
for �30 min at 4°C. A crude mitochondrial fraction was sedimented after a 
low-speed spin at 250 g to remove the glass beads and any remaining intact 
yeast by centrifugation for 5 min at 13,000 g at 4°C. Phospholipids from 
equal amounts of labeled crude mitochondria, as determined by liquid scin-
tillation, were extracted with 1.5 ml 2:1 chloroform/methanol by vortexing 
at room temperature for 1 h. 0.3 ml of ddH2O was added, the samples were 
vortexed on high for 1 min, and the phases were separated by centrifugation 
at 1,000 rpm in a clinical centrifuge at room temperature. The upper aque-
ous phase was removed by aspiration and the organic phase washed with 
0.25 ml 1:1 methanol/H2O. After phase separation carried out as before, 
the lower organic phase was transferred to a new borosilicate tube and 
dried down under a stream of liquid nitrogen. Chloroform-resuspended sam-
ples were loaded onto silica gel TLC plates (Analtech) and resolved in 1D 
twice using chloroform/ethanol/H2O/triethylamine (30:35:7:35), as previ-
ously described (Vaden et al., 2005). Labeled phospholipids were revealed 
using a K-screen and FX-Imager (Bio-Rad Laboratories), quantitation was per-
formed using the affi liated Quantity One software, and statistical analyses 
were performed using SigmaStat 3.0 (Systat Software, Inc.).

Blue native gel electrophoresis
Detergent solubilization of mitochondria (5 mg/ml) was performed for 
30 min on ice with 20 mM Hepes-KOH, pH 7.4, 10% glycerol, 50 mM 
NaCl, 1 mM EDTA, and 2.5 mM MgCl2 supplemented with 1.5% (wt/vol) 

digitonin (Biosynth International, Inc.) and protease inhibitors, as listed in 
phospholipid analyses; insoluble material was removed by centrifugation for 
30 min at 20,000 g at 4°C. �100 μg of solubilized material was analyzed 
by blue native gel electrophoresis on a 6–16% linear polyacrylamide  gradient 
and Taz1p was detected by immunoblot after transfer to PVDF membranes.

Online supplemental material
Fig. S1 shows that a rabbit anti-Taz1p antiserum specifi cally recognizes 
yeast Taz1p. Fig. S2 shows that Taz1p associates with mitochondrial mem-
branes. Fig. S3 shows that the three epitope-tagged Taz1p constructs rescue 
growth of the ∆taz1 yeast strain on YP-galactose at 37oC. Fig. S4 shows 
the altered membrane association of the BTHS Taz1p mutants results in two 
fates; matrix mistargeting or aberrant complex assembly. Table S1 shows 
Taz1p transmembrane domain predictions. Online supplemental material 
is available at http://www.jcb.org/cgi/content/full/200605043/DC1.
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