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Abstract

Background: The M type-specific surface protein antigens encoded by the 5' end of emm genes
are targets of protective host immunity and attractive vaccine candidates against infection by
Streptococcus pyogenes, a global human pathogen. A history of genetic change in emm was evaluated
for a worldwide collection of > 500 S. pyogenes isolates that were defined for genetic background
by multilocus sequence typing of housekeeping genes.

Results: Organisms were categorized by genotypes that roughly correspond to throat specialists,
skin specialists, and generalists often recovered from infections at either tissue site. Recovery of
distant clones sharing the same emm type was ~4-fold higher for skin specialists and generalists, as
compared to throat specialists. Importantly, emm type was often a poor marker for clone.
Recovery of clones that underwent recombinational replacement with a new emm type was most
evident for the throat and skin specialists. The average ratio of nonsynonymous substitutions per
nonsynonymous site (Ka) and synonymous substitutions per synonymous site (Ks) was 4.9, 1.5 and
I.3 for emm types of the throat specialist, skin specialist and generalist groups, respectively.

Conclusion: Data indicate that the relationships between emm type and genetic background differ
among the three host tissue-related groups, and that the selection pressures acting on emm appear
to be strongest for the throat specialists. Since positive selection is likely due in part to a protective
host immune response, the findings may have important implications for vaccine design and
vaccination strategies.

Background

A molecular arms race between pathogen and host often
emerges when an immune response favors the selection of
microorganisms displaying altered antigens on their sur-
face. The mechanisms by which bacterial pathogens
undergo immune escape include point mutation and
replacement of antigen genes by homologous recombina-

tion following horizontal transfer of DNA between organ-
isms of different strains. Genetic change provides the raw
material upon which natural selection acts, and a host
immune response is one of the strongest selection pres-
sures a microbial pathogen will encounter.
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The fibrillar M protein molecule present on the surface of
Streptococcus pyogenes, a bacterial pathogen afflicting
humans throughout the world, is often the target of a pro-
tective immune response mounted during infection [1-3].
M protein is an essential virulence factor and provides the
basis for serotype [4]. A more recent typing scheme based
on the nucleotide (nt) sequence at the 5' end of the emm
gene, encoding the distal fibril tip, closely parallels sero-
logic findings and has led to the identification of ~160
emm types [5]. Importantly, strong protective immunity to
S. pyogenes infection is often M type-specific.

S. pyogenes strains can be divided into 3 major groups that
roughly correspond to preferred tissue site for infection.
Historically, it has been recognized that certain M types
are strongly associated with cases of pharyngitis, whereas
other M types are more often recovered from superficial
skin infections (i.e., impetigo) [6-8]. Genotypic markers —
known as emm patterns - are based on the phylogeny of
the 3' end of emm genes, encoding the semi-conserved cell
wall-spanning domain of M protein [9,10]. Of biological
relevance is the finding that emm pattern genotypes dis-
play strong associations with strains causing superficial
infections at the throat or skin, whereby emm pattern A-C
strains tend to cause pharyngitis (referred to as throat spe-
cialists), pattern D strains tend to cause impetigo (skin
specialists), and pattern E strains as a group are often
found in association with infections at both tissues (gen-
eralists) [11,12]. Data from 11 population-based surveil-
lance studies on streptococcal pharyngitis and/or
impetigo, spanning all 6 major continents, provide strong
support for these biological groupings (Table 1), even
though tissue associations are not strict and occasionally
deviate, particularly in communities having high rates of

Table I: Population-based surveillance of S. pyogenes.*
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both pharyngitis and impetigo [11,13-20]. Also, organ-
isms found in association with throat carriage (versus
infection) may not correlate as well with the emm pattern
groupings [11,17].

Extensive analysis of multilocus sequence typing (MLST)
data for S. pyogenes strains assigned to the emm pattern-
defined groups indicates that there is a history of ample
flow of housekeeping genes between the 3 groups [21,22].
Furthermore, there is a lack of housekeeping gene
sequence clustering among isolates derived from patients
known to have throat versus skin infection. The emm pat-
tern-defined groups do not appear to represent deep
ancestral lineages of S. pyogenes, based either on concate-
nated housekeeping gene trees or individual housekeep-
ing gene tree topologies. Yet, for > 98% of emm types, all
isolates examined that share an emm type are assigned to
the same emm pattern group [23], suggesting that a given
emm type is largely restricted to a single emm pattern
group; this finding was recently validated in another study
[20]. Experiments in which emm genes are swapped
between strains of different emm pattern groups show that
M protein function depends on interactions with other
cell factors [24,25]. Several emm pattern-linked traits
encoded by physically distant loci have been identified
and they may work in concert to play a critical role in
adaptation of the organism to different ecological niches
[26-29].

S. pyogenes is responsible for a large global burden of dis-
ease, and development of a preventative vaccine is a high
priority [3,30,31]. The strong protective immunity elicited
by M type-specific epitopes has led to efforts to develop an
M type-based vaccine. In this report, genetic changes in

Location of
surveillance

No. of S. pyo-
genes isolates

% of pharyngitis (or tonsillitis) isolates that are
emm pattern:

% of impetigo isolates that are emm pattern:

A-C D E A-C D E

Australia, 125 NR NR NR 13 46 41
tropical

Rome (Italy) 114 50 | 48 n/a n/a n/a
Germany 216 51 0 49 n/a n/a n/a
Spain 520 32 | 68 nfa nfa n/a
Mexico 282 54 | 44 n/a n/a n/a
USA > 1,900 53 | 47 n/a n/a n/a
Ethiopia 104 26 28 35 0 32 47
Nepal 53 NR NR NR 19 30 51
Brazil 87 20 20 6l 3 55 42
Brussels 163 55 0 45 NR NR NR
(Belgium)

Australia, 129 NR NR NR 13 53 35
tropical

* emm pattern is inferred based on emm-type (McGregor et al., 2004; reference 23) NR, < |0 isolates recovered; n/a, not applicable.
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emm type — due to mutation and/or recombination - are
evaluated for strains defined for tissue site preference of
infection.

Results

Characteristics of the strain sample set

Infection type is defined by a clear set of clinical criteria in
each of the population-based surveillance studies listed in
Table 1, upon which the strength of the association
between infection type (pharyngitis, impetigo) and emm
pattern genotype rests. However, in order to rigorously
address the relationship between emm and genetic back-
ground on a global scale, a genetically diverse set of organ-
isms spanning a wide time frame and geographic space is
required instead. A genetically diverse set of S. pyogenes
strains, isolated from > 25 countries throughout the
world, was assembled for analysis (see Additional file 1).

Nucleotide (nt) sequence data was obtained for 7 house-
keeping loci, providing ST assignments, and for the type-
specific region of emm positioned at the 5' end of the
locus, providing emm type and emm allele assignments.
MLST and emm typing data was previously reported for
493 of the isolates under study [23,32,33]; an additional
89 isolates were included based on their large geographic
distance relative to isolates sharing that emm type; emm
alleles were determined for the majority of isolates (see
Additional file 1).

The complete data set contains 582 isolates represented
by 259 sequence types (STs) and 156 emm types (Table 2).
ST is used as a marker to distinguish among isolates with
different genetic backgrounds. Approximately 97% of the
known emm types of S. pyogenes [34] are included in the
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sample set. Nearly all of the isolates (577 of 582) can be
assigned to one of the 3 emm pattern groups [23], a geno-
type that corresponds well to throat specialists (pattern A-
C; N = 156), skin specialists (pattern D; N = 181) and gen-
eralists (pattern E; N = 240).

Each emm pattern-defined group is highly diverse, as evi-
denced by Simpson's diversity index (D) values of 0.950,
0.985 and 0.990 for emm pattern A-C, D and E isolates,
respectively. For the D value calculation, S. pyogenes clones
are defined by their combination of emm type and ST. A D
value equal to one signifies that the genotyping method
distinguishes between all isolates, whereas a D value
equal to zero means that all isolates are the same clone.

In summary, the strain sample set is characterized as being
both comprehensive, including representatives of most
known genotypes, and highly diverse, containing rela-
tively few isolates that represent identical clones.

Diversifying selection in emm alleles

Because the M type-specific region is a target of a protec-
tive immune response by the human host [1,2], nt substi-
tutions at nonsynonymous sites and insertions or
deletions (indels) have the potential to modify the anti-
genic structure of the surface protein and render an
immune response ineffective.

Alignment of nt sequences assigned to the same emm type
were generated by Clustal W. Fifty-one of the 582 isolates
corresponded to emm types that are unique to a single iso-
late and were not aligned (see Additional file 1). Two or
more isolates were sampled for 105 emm types (see Addi-
tional file 2). The 105 separate alignments include emm

Table 2: Summary of S. pyogenes sample (sub)sets analyzed in this study.

Distribution according to emm pattern:

Sample (sub)set  Characteristic Total A-C D E Undefined or other
Complete Number of isolates 582 156 181 240 5
Complete Number of STs represented 259 42 91 123 5
Complete Number of emm types represented 156 29 62 6l 4
Complete Number of unique combinations of emm 280 47 104 124 5
type and ST
Complete Simpson's diversity index * 0.993 0.950 0.985 0.990 n.d.
Complete Simpson's diversity index, 95% confidence 0.992-0.995 0.938-0.963 0.979-0.991 0.987-0.992 n.d.
intervals
emm nt substitution Number of isolates 520 137 155 220 8
emm nt substitution Number of emm types represented 105 18 40 44 3
emm nt substitution Number of emm alleles represented 188 54 57 71 6
emm HGT Number of isolates 531 143 156 224 8
emm HGT Number of emm types represented 105 18 40 44 3
emm HGT Number of STs represented 219 34 75 108 2

* Based on unique combinations of emm type and ST. Abbreviations: n.d., not determined; HGT, horizontal gene transfer; nt, nucleotide; ST,

sequence type
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sequences from 520 isolates (11 of the 531 sequences
were not assessed), represented by 189 distinct emm alle-
les. For each of the 105 Clustal W alignments of emm type,
whereby each alignment contains 150 nt sites and at least
2 emm sequences, Ka and Ks values were calculated. Non-
synonymous substitutions (measured by Ka) result in an
amino acid change, whereas synonymous substitutions
(measured by Ks) are silent. Since 58 of the 105 emm type
alignments were devoid of nt polymorphisms, the average
mean of the Ka and Ks values for all 105 alignments was
determined. The ratio of the average mean Ka value to the
average mean Ks value was 1.96 (Table 3), indicative of
positive diversifying selection acting on the type-specific
region of emm genes.

The impact of diversifying selection was next examined
for emm types in accordance with emm pattern group. The
average mean of the Ka and Ks values was calculated and
yielded a Ka to Ks ratio of 4.92 for the pattern A-C subset
of emm types, but only 1.53 and 1.26 for the patterns D
and E groups, respectively (Table 3). Pair wise compari-
sons between raw Ka and Ks values were significantly dif-
ferent for the pattern A-C emm types (t < 0.01, paired t-test,
2 tailed), but not for the pattern D or E emm types (see
Additional file 2). Also, the raw Ka values were signifi-
cantly different for pattern A-C emm types versus either
pattern D or E emm types (t < 0.05, unpaired t-test, 2-
tailed); no significant differences were found for the Ks
values.

The average mean Ka to Ks ratio for pattern A-C emm types
exceeded the values observed for pattern D and E emm
types by 3- to 4-fold. The data provide evidence that diver-
sifying selection is strongest for pattern A-C emm types.
Because the emm types associated with S. pyogenes are
largely restricted to this bacterial species [35,36], the
observed genetic changes most likely originated as muta-
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tions within the S. pyogenes population, rather than hav-
ing arisen by lateral transfer from another species.

Small indels within the emm type-specific region can lead
to alterations in the phenotypic surface expression of M
protein. Only 2 isolates belonging to the complete data set
- both of which are pattern A-C and not included among
the 520 isolates comprising the emm gene sequence align-
ments - have indels within the emm type region that lead
to frame shift mutations and premature termination of
the translated M protein products (see Additional file 2).
Conceivably, loss of M protein via a frame shift may be a
strategy for immune escape that is largely restricted to pat-
tern A-C strains however, the number of events is too
small to draw conclusions.

In-frame indels are observed in 11 (10%) of the 105 emm
type alignments. Four and 7 pattern D and E emm type
alignments, respectively, each contain 1 allele having an
indel (see Additional file 2). Indels most likely arise via
slipped strand mispairing during DNA replication or
homologous recombination resulting in an unequal
crossover. Thus, epitope loss or gain mediated via small
indels may constitute a strategy used by a small propor-
tion of pattern D and E strains to alter antigenic structure
and evade a specific immune response.

Recombination involving emm type: STs associated with
multiple emm types

An important strategy for escape from a protective host
immune response directed towards M protein is the
recombinational replacement of an emm type following a
horizontal gene transfer (HGT) event, whereby the donor
and recipient strains differ in emm type. In general terms,
interstrain gene exchange is favored by close physical
proximity between the donor and recipient cells, which
may occur during a co-infection taking place at either the
throat or skin [6,37].

Table 3: Synonymous and nonsynonymous nucleotide substitutions within the emm type region (150 nt), based on Clustal W

alignments corresponding to each emm type

emm pattern No. of emm types (%) No. of isolates analyzed

Average no. of
nonsynonymous
substitutions per

Average no. of Average ratio of Ka to
synonymous substitutions Ks
per synonymous site (Ks)

nonsynonymous site (Ka)

A-C 18 (17) 137
D 40 (38) 155
E 44 (42) * 220
other? 3 8
All 105 (100) 520 %

0.02121 0.00431 4.92
0.00748 0.00488 1.53
0.00732 0.00581 1.26
0.02633 0.00721 3.65
0.01037 0.00526 1.96

# Represents average of values from alignments corresponding to each emm type

$ Sequence alignment of (partial) emm genes was performed for 520 of the 531 isolates.

* emmst206 is included with emm96 analysis since the large indel (54 nt) is at the extreme 5' end.

Alncludes two emm types associated with multiple emm patterns (emm54, emmst854; patterns A-C and D) and emm3/ (pattern uncertain).
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Of the 259 STs identified in the set of 582 isolates, 14 STs
were recovered in association with > 1 emm type; they are
referred to as emm-variable STs. Although the 14 emm-var-
iable STs account for only a small percentage of the total
STs (5.4%), > 20% of the emm types (N = 35) were found
in association with these few STs (Table 4). The emm pat-
tern D subset had the greatest number of emm-variable STs
(N =9), which collectively, were recovered in association
with 23 different emm types. Only 6.6% of the emm types
assigned to pattern E were present among emm-variable
STs. The number of recombinational replacements of emm
type per ST was at least 7- to 9-fold higher for the patterns
A-Cand D subsets (0.119 and 0.154, respectively) as com-
pared to pattern E strains (0.016) (Table 4). The data are
consistent with the idea that substitution with a com-
pletely new emm type may be an important adaptive strat-
egy for the specialist strains, and less critical for the
generalists.

Recombination involving emm type: emm types on
distant STs

The same emm type present on STs differing at > 5 house-
keeping alleles can arise from HGT of emm to a distant ST
or alternatively, by genetic changes in most housekeeping
loci in the absence of a corresponding shift in emm type
assignment. Recovery of emm types on STs of intermediate
genetic distances, or the lack thereof, can help to distin-
guish between horizontal movement of an emm type to a
distant ST versus genetic diversification at most house-
keeping loci.

The 105 emm types having > 2 isolates represented, and
together comprising a sample set of 531 isolates, were
examined for the distribution of emm type among differ-
ent STs (Figure 1A). Twenty-four emm types were exclu-
sively associated with a single ST. Another 17 emm types
were associated with multiple STs that were assigned to
the same clonal complex (CC), defined as sharing > 5 of
the 7 housekeeping alleles. Thus, for these 41 emm types,
there is no evidence for HGT of emm type to a distant
genetic background.

Table 4: Recombinational replacement of emm with a new emm type.

http://www.biomedcentral.com/1471-2180/8/59

In contrast to the above findings, 52 emm types were
found in association with distant STs and > 2 CCs (Figure
1A), whereby > 5 housekeeping allele differences are evi-
dent for all possible pair wise comparisons of the STs
assigned to different CCs. Distant STs are defined as those
differing at > 5 housekeeping alleles. Since intermediate
MLST genotypes could not be identified among organisms
sharing these 52 emm types, it is reasonably argued that
they likely arose via horizontal transfer of an emm type to
a distant ST in a single genetic step, rather than by diversi-
fication of an ST at > 5 housekeeping loci involving > 5
independent genetic steps.

Among the 52 emm types associated with distant STs, 63
HGT events to distant STs could be distinguished (Table
5). About half (51%) of the HGT events involved identical
emm alleles and therefore, may have occurred within the
relatively recent evolutionary past.

Only 12 emm types are associated with STs that were
assigned to 2 CCs that differ in as few as 3 or 4 housekeep-
ing alleles (i.e., STs of an intermediate genetic distance)
(Figure 1A). Therefore, the majority of emm types were
either restricted to a single CC (39%) or associated only
with distant STs (50%), with relatively few emm types fall-
ing into the intermediate category (11%). This finding is
further underscored by the distribution of the maximum
number of differences in the 7 housekeeping alleles
between STs sharing an emm type (Figure 1B). Thirty-six
(34%) of the emm types are associated with STs having 0
or 1 housekeeping gene difference, whereas 47 (45%)
emm types are associated with STs having 6 or 7 house-
keeping gene differences. Only 21% of the emm types lie
in between these two extremes, with 2, 3, 4 or 5 house-
keeping gene differences.

The horizontal transfer of an emm type to a distant ST was
compared for the 3 emm pattern-defined groups of iso-
lates (Table 5). Only 3 of the 18 pattern A-C emm types
(17%) were recovered in association with distant STs. In
contrast, 48 and 61% of the pattern D and E emm types,
respectively, displayed evidence for HGT. Eight emm types

emm pattern No, of isolates No. of STs No. of emm type- No. of emm No. of emm types No. of No. of
variable STs (%) types * associated with recombinational recombinational
emm type variable events events per locus
STs (%) per ST
A-C 156 42 3(7.1) 29 8 (27.6) 5 0.119
D 181 9l 9(9.9) 62 23 (37.1) 14 0.154
E 240 123 2 (1.6) 6l 4 (6.6) 2 0.016
All 577 256 14 152 35 21 0.096 average

* One ST scored as pattern D (ST3) and | ST scored as pattern E (ST150) contain isolates with rearranged emm region yielding a new emm type,
but could not be assigned a pattern; they are listed here with the pattern D and E groups, respectively. Other emm pattern-undefined isolates are
not included in chart.
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No. of emm-types represented
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50 +

40 -

30 -

20 ~

N I l

0 - T T T
Singleton One CC, Multiple CCs, Multiple CCs,
ST multiple STs STs differing at STs differing at
3-4 alleles > 5 alleles

No. of emm-types represented

30

25

20
HA-C

15

10

0 1 2 3 4 5 6 7

Maximum number of housekeeping allele differences

Figure |

Differences in the number of housekeeping alleles between isolates sharing an emm type. The y-axis shows the
numbers of emm types represented by are each category, as defined by the x-axis. (A), The minimum number of differences in
housekeeping alleles between isolates sharing an emm type are: zero (singleton STs), one or two (I CC with multiple STs),
three or four (multiple CCs with STs of intermediate distance), and five (multiple CCs whereby all STs are distant; represents
HGT). (B), Distribution of the maximum number of differences in housekeeping alleles between isolates sharing an emm type.
Clonal complex (CC) is defined by STs sharing at least 5 of 7 housekeeping alleles
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Table 5: emm types associated with distant STs.
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emm No. of emm No. of emm No. of HGT  Averageno.of Average no.of  Average no. of No. of HGT No. of emm
pattern types types involved events HGT events isolates countries events types
examined * in HGT involvingemm  per emm type sampled per sampled per involving the restricted to |
type emm type emm type same emm STor CC
allele

A-C 18 3 3 0.17 7.94 2.78 2 14
D 40 197 241 0.60 3.90 2.18 15 15
E 44 27 33 0.75 5.09 2.28 15 12
other 3 3 3 1.00 2.67 1.67 0 0
Total 105 52 63 n/a n/a n/a 32 41

* emm types examined are those whereby 2 or more isolates are present in the sample set (i.e., sample set of 531 isolates, excluding the 5| singletons).
A One emm type (emm93) may not be involved in HGT based on identification of an intermediate ST in another study [49]
Abbreviations: n/a, applicable; CC, clonal complex; HGT, horizontal gene transfer; ST, sequence type

- 4 each from the pattern D and E groups - were found in
association with > 3 distant STs of distinct CCs, indicative
of multiple HGT events involving these emm types. The
average mean number of HGT events per emm type is cal-
culated as 0.17, 0.60 and 0.75 for the pattern A-C, D and
E groups, respectively.

Using a 2 x 2 test for independence (Fisher's exact, 2-
tailed) with Table 5 data, the difference between the emm
pattern A-C and D strain groups in terms of the number of
emm types having undergone HGT, versus restriction to a
single ST or CC, is significant (p = 0.015). The difference
is highly significant between the emm pattern A-C and E
strain groups (p < 0.005), but not significant when pattern
D and E strains are compared.

The strikingly higher number of HGT events uncovered
for pattern D and E emm types is not likely a consequence
of sampling bias (Table 5). If there was sampling bias, it is
expected that more extensive sampling of a given emm
type would result in an increase in the number of HGT
events detected simply by chance. Yet, the mean average
number of isolates sampled per emm type was highest for
pattern A-C strains, the group which displayed the fewest
HGT events. The average number of countries sampled
per emm type was slightly higher for the pattern A-C group
as compared to the other subsets (Table 5) and therefore,
geographic distance does not appear to explain the higher
levels of HGT observed for the pattern D and E groups. For
emm types with no HGT detected, irrespective of emm pat-
tern group, an average of 2.25 (s.d., 1.24) countries were
sampled per emm type, whereas for emm types displaying
> 1 HGT event, a similar average of 2.38 (s.d., 0.796)
countries were sampled per emm type (data not shown).

The findings on HGT of emm indicate that recovery of the
same emm type on distant STs is most probable for isolates
belonging to the skin specialist (pattern D) and generalist
(pattern E) groups. Importantly, the data also show that
emm type can be a poor marker for clone (i.e., ST) or

clonal complex (CC). The higher prevalence of HGT of
emm type among the pattern D and E groups may be a
consequence of higher intrinsic recombination rates, dif-
ferent selection pressures and/or a combination of both
genetic change and selection effects.

Estimate of relative levels of recombination based on
housekeeping genes

Recovery of STs associated with multiple emm types was
highest for throat specialists (Table 4), whereas recovery
of emm types associated with multiple STs was highest for
generalists (Table 5). Estimates of the relative levels of
recombination among housekeeping genes for the emm
pattern-defined groups might help to discern between the
contribution of genetic change and the effects of selection.
The Ka to Ks ratios for each of the 7 housekeeping genes is
less than one (range, 0.033 to 0.493; data not shown),
and lower than the values obtained for emm type
sequences (Table 3).

eBURST is a clustering algorithm that has been widely
used to assess the mechanisms of genetic change within a
bacterial population, based on MLST of housekeeping
genes [38]. An estimate of the number of recombination
versus mutations events can be made based on the nature
of the nt differences between the mismatched allele of a
single locus variant (SLV) pair. In a previous report on S.
pyogenes, > 28 of the 48 SLVs were attributed to recombi-
nation in accordance with a count-based method that was
conservative for scoring recombination [23]. In this larger
strain sample set of 582 isolates, the same approach used
in the prior study was applied; 56 SLVs were detected by
eBURST, wherein > 33 genetic changes were estimated to
have arisen following recombination (Table 6).

The minimum number of recombination events per
housekeeping locus per ST was calculated as 0.007, 0.025
and 0.017 for emm pattern groups A-C, D and E, respec-
tively (Table 6). These findings are in agreement with the
general trend from previous estimates of recombination
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Table 6: Estimate for the minimum number of recombinational events involving housekeeping genes.

emm pattern No. of STs No. of recombinational events No. of loci No. of recombinational events per locus per ST
A-C 4?2 2 7 0.007
D 9l 16 7 0.025
E 123 15 7 0.017

based on the congruency of housekeeping gene tree topol-
ogies [22], whereby emm pattern A-C strains showed the
highest level of congruence and thereby, the lowest rela-
tive level of recombination, and emm pattern D strains
displayed the lowest level of congruence and highest
recombination [22]. Thus, based on the conservative esti-
mates derived from SLV pairs, the relative rate of intrinsic
recombination appears to be lower for the emm pattern-
defined throat specialist group.

Recombination involving emm type: Recovery of donors
and recipients

emm-variable STs represent new clones and their progeni-
tors (i.e., the recipient), whereas distant STs sharing an
emm type represent new clones and their donors. The
recovery of all 3 genotypes involved in the HGT event -
donor, recipient, and new clone - from the extant S. pyo-
genes population was evaluated, based on the findings
presented in Tables 3 and 4.

For the 8 pattern A-C emm types associated with 3 emm-
variable STs, it is expected that 5 of the 8 emm types will
have originated from donor strains; however, only 1
donor emm type (emm14) was recovered on a distant ST
(20%). In contrast, of the 4 pattern E emm types associated
with 2 emm-variable STs, potential donor strains were
recovered for both HGT events (100%). Among pattern D
strains, 23 emm types were recovered in association with 9
emm-variable STs (Table 4) and therefore, 14 donor emm
types are to be expected; 9 emm types (64% of the total
possible) were found on distant STs representing putative
donors (see Additional file 1).

The number of recipient STs recovered from the natural
population can also be evaluated for distant ST pairs that
share the same emm type. Only 3 distant ST pairs sharing
the same pattern A-C emm type were found among the col-
lection of 582 strains, and a potential recipient ST was
recovered for one of them (33%). A similar proportion
(38%) of recipient STs were recovered for the 24 HGT
events involving pattern D strains. In contrast, very few (2
of 33; 6%) recipient STs matching the pair of the pattern
E emm donor and new clone were found.

The findings show that the proportion of STs associated
with multiple emm types was highest for throat specialists,
whereas the proportion of emm types associated with dis-

tant STs was highest for generalists. Although some of the
numbers are quite small, the data reveal a trend whereby
relatively fewer genotypes corresponding to pattern A-C
donor and pattern E recipient strains were recovered by
sampling than were expected.

Discussion

S. pyogenes strains that are grouped according emm pattern
genotype share a predilection for causing infection at par-
ticular tissue sites (Table 1). Analysis of emm pattern-
defined strains for relationships between emm type and
housekeeping genes reveals that the throat infection spe-
cialist group is distinct from the skin infection specialists
and generalists in several key characteristics. This trend
provides support for the idea that strains which tend to
cause pharyngitis display different evolutionary dynam-
ics.

Despite the possibility of underestimating positive selec-
tion using Ka to Ks ratios, the average ratios of Ka to Ks >
1 observed for emm type sequences of each emm pattern
group provide evidence for positive diversifying selection.
A likely source of the selection pressure is host immunity,
whereby amino acid changes within the M type-specific
region lead to alterations in antigenic structure that allow
mutants to escape the protective immune response in at
least some hosts. An important mechanism underlying
protective immunity against S. pyogenes infection involves
M type-specific antibodies that mediate opsonization and
thereby, overcome the antiphagocytic property of M pro-
tein [1].

There is direct experimental evidence in support of amino
acid changes in the M type-specific region that allow for
immune escape [39-41]; this mechanism may even
explain the recent emergence of an important M3 type
clone. However, other findings that measure
opsonophagocytosis with hyperimmune rabbit sera
raised to the polypeptide product of one emm allele show
high levels of bactericidal activity for strains of numerous
emm alleles of the same emm type, arguing against the like-
lihood of immune escape mutants emerging in a vacci-
nated population [42]. Combined with the population
genetics findings of this report, there is support for the
notion that in a naturally infected human host popula-
tion, the immune selection pressures on emm type may be
somewhat lower in intensity and/or the immune response
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more variable in specificity, as compared to what can
potentially be achieved in a vaccinated population.

The average ratio of Ka to Ks is ~3- to 4-fold higher for the
emm pattern A-C group of emm types, suggesting that the
throat specialists may be subject to stronger positive selec-
tion pressures. Several experimental findings may help to
explain the lower Ka to Ks ratios observed for the skin spe-
cialists and generalists. A serological typing scheme based
on the serum opacity reaction was developed as an alter-
native to M serotyping in order to circumvent difficulties
encountered in determining the M type for many emm
pattern E strains [10,43,44]; perhaps emm pattern E strains
are more difficult to M type because of weaker immuno-
genicity and/or higher cross-reactivity. Hyperimmune rab-
bit antiserum raised to M type-specific antigens show that
more pattern A-C emm types consistently elicit antiserum
having a strong bactericidal effect, as compared to pattern
E emm types [45]. The M type-specific regions of most S.
pyogenes strains bind the complement regulator C4b-bind-
ing protein (C4BP). C4BP binding is achieved in the
absence of a shared amino acid sequence motif and even
though substitutions can introduce antigenic change
without altering C4BP binding activity [46], it is conceiv-
able that there are some functional constraints on
sequence variation. Of probable relevance is the finding
that most isolates lacking C4BP binding activity have emm
types characteristic of pattern A-C strains (egs., M types 1,
3,5,6,12,19, 24, 26, 30, 39) [23,46], suggestive of higher
levels of purifying (negative) selection on pattern D and E
emm types in order to maintain C4BP binding activity.

For emm variable STs, whereby ST is defined by 7 house-
keeping alleles, emm type can be regarded as an 8th locus,
wherein the related organisms are SLVs that arose via
recombinational replacement of emm. Throat specialists
appear to have the lowest level of recombination involv-
ing housekeeping genes, yet they display a relatively high
number of recombinational replacements of emm type per
ST. The observed imbalance in the relative levels of recom-
bination affecting housekeeping genes versus emm genes
supports the likely conclusion that pattern A-C emm types
are subject to stronger positive selection. Thus, for throat
specialists, immune escape mutants - arising by either
mutation or recombination - appear to have a strong
selective advantage, as compared to skin specialists and
generalists.

The disproportionately low recovery rate for pattern A-C
donor and pattern E recipient genotypes might be
explained by several factors, which include competition
between the new clone and the donor or recipient geno-
type as mediated through host or herd immunity [47]. For
eg., if a new pattern A-C clone has a higher transmission
rate than the donor genotype with which it shares an emm

http://www.biomedcentral.com/1471-2180/8/59

type, it may outcompete the donor by reducing the
number of susceptible (i.e., nonimmune) hosts available
to it. Likewise, if non-emm genes are critical for protective
immunity against pattern E strains, the new clone may
outcompete its progenitor if it has a higher transmission
rate. Conceivably, immune-mediated competition may
reduce the transmission success of the less fit organism to
the point that it becomes rare and much more difficult to
recover through sampling.

A previous study showed that many of the associations
between emm type and ST differed for isolates collected
from a remote Australian community, when compared to
strains recovered from the United States and Europe [32].
The present study includes representatives of most known
emm types, and demonstrates that emm type is a reasona-
bly good marker for ST or CC among the throat specialist
strains, but a rather poor marker for clone among skin
specialists and generalists. This finding underscores the
importance of multilocus typing methods for defining S.
pyogenes strains [33].

The strong positive selection pressures acting on emm
types of throat specialists are consistent with their role as
targets of strongly protective immunity. Thus, an M type-
based vaccine directed against pattern A-C strains is
expected to have high efficacy, provided that the avenues
for immune escape are blocked. This might be achieved by
including numerous emm types in the vaccine formula-
tion to help prevent the spread of new clones arising by
recombinational replacement of emm type, and by elicit-
ing a polyspecific immune response that protects against
the spectrum of emm allelic variants that arise by muta-
tion. Since only a small fraction of STs are associated with
multiple emm types, targeting non-emm gene products of
those STs, whereby the non-emm products elicit (partial)
protection, could provide a sound complementary strat-

egy.

The relatively weaker positive selection observed for emm
types of pattern D and E strains is consistent with the pos-
sibility that they may be less ideal candidates for an M
type-based vaccine. The pattern E generalists comprise
about half of all known emm types [23], and account for
~40 to 50% of isolates collected in population-based sur-
veys in many parts of the world (Table 1). An efficacious
vaccine targeting this highly prevalent group of S. pyogenes
organisms may require additional antigens in its formula-
tion.

Conclusion

This study provides a comprehensive population analysis
of strains representing nearly all emm types; for the major-
ity of emm types, multiple isolates recovered from distant
geographic locations were studied. The relationships
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between emm type and genetic background differ among
the 3 groups of emm pattern-defined genotypes which
roughly correspond to host tissue site preferences for
infection. Furthermore, the selection pressures acting on
emm appear to be strongest for the throat specialists. Since
a protective host immune response is probably a key fac-
tor driving positive selection, the findings provide impor-
tant new insights that may aid in vaccine design and
vaccination strategies.

Methods

Bacterial strains

Nearly all (493 of 495) isolates of S. pyogenes that were
previously described in [23] are also included in this
study. In an effort to expand the number of isolates shar-
ing an emm type with isolates of the previous data set, and
also having been recovered from a distant geographic
location, 89 bacterial isolates representing 65 different
emm types were added to the analysis, comprising the
complete sample set of 582 isolates (see Additional file 1).

emm based genotypes

emm type and emm allele were established by nucleotide
(nt) sequence determination of PCR amplicons [5]. emm
type is a character state whereby a unique emm type is
defined as sharing < 92% sequence identity over the first
90 bases encoding the deduced processed M protein of the
type reference strain, allowing for small indels [34]; emm
type strongly correlates with M protein serotype, as previ-
ously established by immunoreactivity with typing sera
[5,48]. emm allele assignments are based on the first 150
nt corresponding to the 5' end region encoding the
mature M protein molecule [34]; each allele has a unique
sequence, and is equivalent to "emm subtype." emm pat-
tern was ascertained by PCR-based mapping, or was
inferred based on emm type, as described [23].

MLST

Internal fragments of 7 housekeeping genes (gki, gtr, murl,
mutS, recP, xpt, yqiL) were amplified by PCR and the nt
sequence determined using primers and conditions
described previously [33]. For each locus, distinct allele
numbers were assigned to each unique sequence, generat-
ing a seven integer allelic profile for each isolate; isolates
with identical allelic profiles were assigned to the same ST.
A complete database of alleles, allele sequences and STs is
maintained on the internet [49]. A total of 38 new STs are
reported.

Computations

Simpson's diversity index (D) was calculated as described
[50]. The 150 nt emm type-specific sequence derived from
> 2 isolates assigned to the same emm type were aligned
using the Clustal W algorithm, implemented in Megalign
(DNASTAR, Lasergene, Inc.). The number of nonsynony-

http://www.biomedcentral.com/1471-2180/8/59

mous substitutions per nonsynonymous site (Ka) and the
number of synonymous substitutions per synonymous
site (Ks) were calculated for each Clustal W alignment,
using DnaSP version 4.10 [51]. The eBURST clustering
algorithm [38] for analyzing relationships between STs
was applied using software available at http://
eburst.mlst.net. Single locus variants (SLVs) were identi-
fied with a user-defined setting of 6 of 7 shared house-
keeping alleles. The method for estimating recombination
events was previously described [23].
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