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ABSTRACT
RNA-Seq is a recent and efficient technique that uses the capabilities of next-
generation sequencing technology for characterizing and quantifying transcriptomes.
One important task using gene-expression data is to identify a small subset of genes that
can be used to build diagnostic classifiers particularly for cancer diseases. Microarray
based classifiers are not directly applicable to RNA-Seq data due to its discrete nature.
Overdispersion is another problem that requires carefulmodeling ofmean and variance
relationship of the RNA-Seq data. In this study, we present voomDDA classifiers:
variance modeling at the observational level (voom) extensions of the nearest shrunken
centroids (NSC) and the diagonal discriminant classifiers. VoomNSC is one of these
classifiers and brings voom and NSC approaches together for the purpose of gene-
expression based classification. For this purpose, we propose weighted statistics and
put these weighted statistics into the NSC algorithm. The VoomNSC is a sparse
classifier that models the mean-variance relationship using the voom method and
incorporates voom’s precision weights into the NSC classifier via weighted statistics.
A comprehensive simulation study was designed and four real datasets are used for
performance assessment. The overall results indicate that voomNSC performs as the
sparsest classifier. It also provides the most accurate results together with power-
transformed Poisson linear discriminant analysis, rlog transformed support vector
machines and random forests algorithms. In addition to prediction purposes, the
voomNSC classifier can be used to identify the potential diagnostic biomarkers for
a condition of interest. Through this work, statistical learning methods proposed for
microarrays can be reused for RNA-Seq data. An interactive web application is freely
available at http://www.biosoft.hacettepe.edu.tr/voomDDA/.
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INTRODUCTION
In molecular biological studies, gene-expression profiling is among the most widely applied
genomics techniques to understand the role and the molecular mechanism of particular
genes in conditions of interest (Law et al., 2014). Recent high-throughput technologies
allow researchers to quantify the expression levels of thousands of genes simultaneously.
During the last two decades, microarray technology was very popular in gene expression
profiling.Due to severalmajor advantages, RNA-Seq technology replacedmicroarrays as the
technology of choice and become the de facto standard in gene-expression studies (Ritchie
et al., 2015).

Identifying the relevant genes across the conditions (e.g., tumor and non-tumor tissue
samples) is a common research interest in gene-expression studies. One major task is to de-
tect theminimal set of genes which gives themaximumpredictive performance for the diag-
nostic purpose of samples inmedicine. A particular interest is the cancer classification based
on the simultaneous monitoring of thousands of genes (Díaz-Uriarte & De Andrés, 2006).

For microarray studies, a great deal of machine learning algorithms have been proposed
and applied for gene-expression based classification. However, these algorithms cannot
be directly applied to RNA-Seq data, since the type of the data is entirely different. In
contrast to the continuous data format of microarrays, RNA-Seq data are summarized with
nonnegative and integer-valued counts, which are obtained from the number of mapped
sequencing reads to genomic regions of the species of interest.

For the classification purpose, there is still less advancements for RNA-Seq data until
recently. Witten (2011) proposed a Poisson linear discriminant analysis (PLDA) classifier,
which is an extension of Fisher’s linear discriminant analysis to high-dimensional count
data. PLDA shrinks the class differences to identify a subset of genes and applies a Poisson
log linearmodel for classification (Witten, 2011).Dong et al. (2015) extended this algorithm
to build a new classification method based on the negative binomial (NB) distribution.
The authors used a shrinkage method to predict the additional overdispersion parameter.
Another solution may be to transform the count data into the continuous format to bring
RNA-Seq data hierarchically closer to the microarray data and make use of the flexibility
of normal distribution.

Recently, variancemodeling at the observational level (voom)method has been proposed
to open access microarray based methods for RNA-Seq analysis (Law et al., 2014). The
voom method estimates the mean and the variance relationship from the log counts and
provides precision weights for downstream analysis. This method is integrated with the
limma (linear models for microarray and RNA-Seq data) method (Ritchie et al., 2015)
and showed the best performance as compared to count based methods in controlling
the type-I error rate, having the best power and lowest false discovery rate. The clear
advantages of voom over othermethods and its good integration with limma for differential
expression analysismay point to high predictive performance in classification and clustering
tasks. Despite these advantages, the voom method has only been used for differential-
expression studies. There are no studies in the literature that use the voom method for
classification purposes.
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In this paper, we introduce voomNSC sparse classifier, which brings two powerful
methods together for the classification of RNA-Seq data: voom and the nearest shrunken
centroids (NSC) algorithm (Tibshirani et al., 2002). For this purpose, we propose weighted
statistics and adapt the NSC algorithm with these weighted statistics. Basically, voomNSC
accepts either a normalized or non-normalized count data as input, applies voom method
to data, provides precision weights for each observation and ultimately, fits an adapted
NSC classifier by taking these weights into account. Thus, the main objective of proposing
this method is twofold:
1. to extend voom method for RNA-Seq classification studies;
2. to make NSC algorithm available for RNA-Seq technology.
We also made available the diagonal discriminant classifiers (Dudoit, Fridlyand &

Speed, 2002) to be able to work with RNA-Seq data. Two diagonal RNA-Seq discriminant
classifiers, voomDLDA and voomDQDA, will also be presented within the scope of this
study. All three classifiers will be referred as voomDDA classifiers throughout this paper.

We organized the rest of this study as follows. In the ‘Materials & Methods’ section,
we present the underlying theory of voomDDA classifiers and detail the experiments. In
the ‘Results’ section, we give the results of simulation and real dataset experiments. We
discuss and conclude our study in the ‘Discussion’ and ‘Conclusion’ sections. Extended
information about the methods background, experiments, results and software source
codes are available in Files S1–S4.

MATERIALS & METHODS
VoomDDA classifiers
In this section, we detail the methodology of voomDDA classifiers. We assume that the
input data is a p×n dimensional count data matrix, where p refers to the number of
features and n refers to the number of samples. Input data may consist of either xgi raw
or x ′gi normalized count values. Moreover, genes with zero or very low counts should
be filtered before starting the analysis. For simplicity, we will assume throughout this
section that the input data, X , is a p×n dimensional, filtered and non-normalized count
data matrix.

Calculation of log-cpm values and estimation of precision weights
Firstly, we get the voom estimates, i.e., log-counts and associated precision weights, as
described in Law et al. (2014). Let X.i be the library size for sample i. We start by calculating
the log-counts-per million (log-cpm) values using the Eq. (1):

zgi= log2

(
xgi+0.5
X.i+1

×106
)
. (1)

Small constant values 0.5 and 1 in the formula are used to avoid taking the logarithm of
zero and guaranteeing that 0<

(
xgi+0.5

)
/(X.i+1)< 1. To estimate the precision weights

wgi, we take advantage of the delta rule, linear models and lowess smoothing curves. We
assume a linear model between the expected size of the log-cpm values and the class
conditions as follows:

E
(
zgi
)
=µzgi = yTi βg . (2)
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In the formula, βg corresponds to a vector of regression coefficients to be estimated.
These coefficients are the log-fold-changes between class conditions (Law et al., 2014).
Matrix notation of this equation is as follows:

E
(
zg
)
=Dβg (3)

where D represents the design matrix with the rows yi and zg is a vector containing the
log-cpm values for g th gene. For each gene, we fit these models using ordinary least squares
method and obtain the fitted coefficient β̂g , the fitted log-cpm values, µ̂zgi = yTi β̂g , and the
standard deviations of residuals sg .

Let zg =
∑n

i=1µ̂zgi/n be the mean log-cpm value for g th gene, and X̃.n =(∏n
i=1(X.i+1)

)1/n be the geometric mean of the library sizes plus one. Using delta rule, we
obtain the mean log-counts x̃g as follows:

x̃g ≈ zg + log2
(
X̃.n
)
−6log2(10). (4)

Log counts are calculated from the fitted log-cpm values accordingly:

µ̂gi≈ µ̂zgi+ log2(X.i+1)−6log2(10). (5)

Now, we estimate the mean–variance relationship for each gene, using the mean log
counts x̃g and the square root of residual standard deviations s

1/2
g . A lowess curve (Cleveland,

1979) is fitted using the smoothing function g (.) as follows:

s1/2g = g
(
x̃g
)
. (6)

A piecewise linear function lo(.) is obtained from the fitted lowess curve by interpolating
the curve for the x̃g values in order. Finally, we obtain thewgi precision weights (i.e., inverse
variances of log-cpm values) as follows:

wgi= lo
(
µ̂gi
)−4
. (7)

The log-cpm values, zgi, and the associated precision weights, wgi, will be used in the
model building process of voomDDA classifiers.

Classification models based on diagonal weighted sample
covariance matrices
First of all, we assume that genes are independent of each other in building classification
rules. Let ik,...,ik+1−1 belong to class k, k ∈ 1,...,K , nk is the number of samples in class
k and we set iK+1 = n+1. Let zwgk =

(∑ik+1−1
i=ik wgizik

)
/
∑ik+1−1

i=ik wgi be the class-specific

weighted mean for kth class, zwg =

(∑K
k=1nkzwgk/n

)
be the overall weighted mean,

6̂wC=k = diag
(
s2w1k

,,...,s2wpk

)
be the diagonal weighted sample covariance matrices for kth

class and 6̂w= diag
(
s2w1
,,...,s2wp

)
be the weighted pooled covariance matrix. The diagonal

elements of these matrices are obtained from the class specific and the pooled weighted
variances respectively. The off-diagonal elements of these matrices are all set to zero. The
weighted pooled variance of g th gene can be calculated as follows:

s2wg
=

K∑
i=1

(nk−1)s2wgk
/(n−K ). (8)
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The weighted variance of g th gene in class k can be calculated as follows:

s2wgk
=

∑ik+1−1
i=ik wgi(∑ik+1−1

i=ik wgi

)2
−
∑ik+1−1

i=ik w2
gi

ik+1−1∑
i=ik

wgi
(
zgi−zwgk

)2
. (9)

Using these weighted statistics, we define voomDLDA and voomDQDA classifiers,
which are extensions of DLDA and DQDA classifiers for RNA-Seq data with the weighted
parameter estimates. voomDLDA assumes that the gene specific weighted variances
are equal across groups and uses the weighted pooled covariance matrix in modeling
class-conditional densities fk (x). On the other hand, voomDQDA uses separate covariance
matrices 6̂wC=k , which are obtained from class-specific weighted variance statistics.

Prediction of test observations for VoomDLDA and
VoomDQDA classifiers
Discriminant rules for voomDLDA and voomDQDA classifiers are given below:

δvoomDLDA
k (x∗)=−

p∑
g=1

(
zg∗−zwgk

)2
s2wg

+2log(π̂k) (10)

δ
voomDQDA
k (x∗)=−

p∑
g=1

(
zg∗−zwgk

)2
s2wgk

+2log(π̂k), (11)

where π̂k is the prior probability (e.g., class proportions) of class k.
A new test observation (x∗) will be assigned to one of the classes which maximizes the

δvoomDLDA
k (x∗) or δ

voomDQDA
k (x∗). An important point here is that the same parame-

ters should be used for both training and test sets to guarantee that both sets are on the same
scale and homoscedastic relative to each other. Thus, zg∗ should be obtained after normal-
izing and transforming x∗ based on the distributional parameters of the training dataset.

Suppose that the training dataset is normalized using the DESeq median ratio normal-
ization method. Then the size factor of a test observation, ŝ∗, will be calculated as follows:

m∗=mediang

{
xg∗(∏n

i=1xgi
)1/n

}
(12)

ŝ∗=
m∗

n+1
√∏

i∈1,...,nxgi
. (13)

If we use the trimmedmean ofM values (TMM) normalizationmethod, then a reference
sample which is selected in the training set, will be used for the normalization of the test set.
Let X.∗ be the library size for the test observation. Then, we calculate TMM normalization
factors as follows:

log2
(
TMM r

∗

)
=

∑p′
g=1$

r
g∗M

r
g∗∑p′

g=1$
r
g∗

(14)

whereM r
g∗=

log2(xg∗/X.∗)
log2(xgr/X.r)

and$ r
g∗=

X.∗−xg∗
X.∗xg∗

+
X.r−xgr
X.rxgr

; xg∗,xgr > 0.
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Figure 1 A flowchart of the steps of voomNSC algorithm.

In the voom transformation, log-cpm values for x∗ can be calculated as:

zg∗= log2

(
xg∗+0.5
X.∗+1

×106
)
. (15)

If a normalization (e.g., DESeq median ratio, TMM, etc.) is initially applied, then the
normalized values x ′g∗= xg∗/ŝ∗ is used instead of xg∗ in the formula.

Sparse VoomNSC classifier for RNA-Seq classification
The RNA-Seq data is high-dimensional just like the microarray data. Hence, one obtains
very complex models from voomDLDA and voomDQDA classifiers. Here, we present the
voomNSC algorithm to overcome this complexity and obtain simpler, more interpretable
models with reduced variance. voomNSC, which incorporates both log-cpm values and the
associated weights together into the estimation of model parameters by using the weighted
statistics, is an extension of Tibshirani et al.’s (2002, 2003) NSC algorithm. A flowchart
displaying the steps of the voomNSC algorithm is given in Fig. 1.
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Like the NSC algorithm, voomNSC aims to identify the most important gene subset for
class prediction. Briefly, the standardized class specific weighted gene expression means
are shrunken towards the standardized overall gene expression weighted means. The genes
shrunken to zero are eliminated and a voomDLDA classification model is built with the
remaining genes. Mean expressions are also called centroids. Let dwgk be the weighted
difference scores, between weighted centroids of kth class and overall weighted centroids:

dwgk =
zwgk −zwg

mk
(
swg + sw0

) (16)

wheremk =

√
1
nk
−

1
n is a standard error adjustment term and sw0 is a small positive constant

added to the denominator of Eq. (16) to ensure that the variance of the difference scores
is independent from the gene expression level. sw0 is calculated from the median value of
swg across genes.

These weighted difference scores can be considered as the voom extension of the ‘‘relative
differences’’ mentioned in Tusher, Tibshirani & Chu (2000). One can use these scores for
the purpose of differential expression analysis with the significance analysis of microarrays
(SAM) method. Eq. (16) can be rewritten as in Eq. (17):

zwgk = zwg +mk
(
swg + sw0

)
dwgk . (17)

Next, each dwgk is shrunken towards zero using the soft-thresholding shrinkage method.
This method is equivalent to lasso. Using soft-thresholding with a certain threshold
parameter λ, weighted shrunken differences can be obtained as follows:

d ′wgk
= sign

(
dwgk

)
max

(∣∣dwgk

∣∣−λ,0). (18)

After shrinking dwgk→ d ′wgk
, we update the weighted centroids as follows:

z ′wgk
= zwg +mk

(
swg + sw0

)
d ′wgk

. (19)

Increasing λ will lead to obtaining sparser models by eliminating most of the genes
from the class prediction. When d ′wgk

is zero for a particular gene g, among all classes, the
weighted centroids will be same across the classes. Hence, this gene will not contribute to
the class prediction.

Selection of the optimal threshold parameter (λ)
Selection of λ is very important on the model sparsity. Increasing λ will lead to
obtaining sparser models. However, the predictive performance of obtained models
might be decreased dramatically. Small values of λ, on the other hand, might increase
the accuracy of classifiers, yet it may increase the complexity of the models. Thus, it
is necessary to select λ that yields both accurate and sparse results. Figure 2 displays
the test set errors for a set of λ parameters for the cervical dataset (Witten et al.,
2010). It is clear that we obtain the minimum misclassification errors for the values
of λ= {0.561,0.654,0.748,1.028,1.121,1.215,1.308,1.402,1.495,1.588,1.682,1.775}.
Among these values, selecting the maximum one will give us the sparsest solution. For
this reason, we select the threshold to be 1.775 and obtain 96.5% accuracy by using only
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Figure 2 Selection of voomNSC threshold parameter for cervical data.

16 features. Moreover, one can also use cross-validation technique and select the sparsest
model that minimizes cross-validation error.

Prediction of test observations for voomNSC classifier
Test observations are normalized and transformed based on the training set parameters,
which was already explained in the previous sections. Again, a standardization is applied to
the zg∗, log-cpm values of test observations, by the training parameters swg +sw0 . We classify
a test observation to the class which maximizes the following discriminating function:

δvoomNSC
k (x∗)=−

1
2

p∑
g=1

(
zg∗−zwgk

)2(
swg + sw0

)2 + log(π̂k). (20)

Finally, posterior probabilities can be obtained:

p̂k (x∗)=
e−δk(x∗)∑K
l=1e−δl (x∗)

. (21)

Implementation of classifiers
To assess the performance of developed algorithms, we compared our results with several
classifiers. In this section, we cover selected classifiers in detail.

Firstly, we selected discrete RNA-Seq classifiers (i.e., PLDA andNBLDA) for comparison,
since they are the only algorithms proposed for RNA-Seq classification. We also applied
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the diagonal discriminant classifiers (i.e., DLDA and DQDA), after transforming the data
to make it more similar to microarrays. SVM (support vector machines) and RF (random
forests) algorithms are also considered due to their good performances in microarray based
classification studies. Implementation details of each algorithm, including voomDDA
classifiers are given in below:
PLDA1: The data are normalized using the DESeq median ratio method. Normalized count
values are taken as input to the PLDA algorithm. A five-fold cross validation is performed
to identify the optimal ρ tuning parameter. A grid search (number of searches: 30) is
applied and the sparsest model with the minimum misclassification error is selected to
optimize ρ. The PLDA is applied with the optimum ρ using PoiClaClu R package (Witten,
2013).
PLDA2: After normalization, a power transformation (X ′ij =

√
Xij+3/8) is applied to reduce

the effect of overdispersion and make genes have nearly constant variance. Normalized and
transformed expression values are used as the input data for the PLDA algorithm. Other
procedures are the same as with PLDA1.
NBLDA: DESeq median ratio method is used for normalization. A shrinkage method
is applied for estimation of the dispersion parameter as suggested by Yu, Huber & Vitek
(2013). The normalized count data are used as input for NBLDA algorithm. This algorithm
is applied in R software with the necessary codes available in (Dong et al., 2015).
NSC: The DESeq median ratio method is used for the data normalization and the rlog
transformation is applied to the normalized count data. The normalized and the trans-
formed expression values are used as the input data for NSC algorithm. The proportions
of class sample sizes are used as the class prior probabilities. A five-fold cross validation is
used to determine the optimal threshold value. The optimum threshold value is obtained
from the sparsest model with the minimum misclassification error after a grid search
(number of searches: 30). NSC is applied using the R package pamr (Hastie et al., 2014).
DLDA: The DESeq median ratio method is applied for the data normalization and the
rlog transformation is applied to the normalized count data. The normalized and the
transformed expression values are used as the input data for DLDA algorithm. The
proportions of class sample sizes are used as the class prior probabilities. Then the DLDA
is applied using the R package sfsmisc (Maechler, 2015).
DQDA: Same procedure is applied with DLDA algorithm (Maechler, 2015).
SVM: The DESeq median ratio method is used for the data normalization and the
rlog transformation is applied to the normalized count data. The normalized and the
transformed expression values are used as the input data for SVM algorithm. A five-fold
cross validation is performed and repeated three times, and a grid search (with tune length
of 10) is made to determine the optimal sigma and cost parameters. The radial basis
function is used to allow for nonlinear decision boundaries in the SVM. SVM is applied
using the R package caret (Kuhn, 2008).
RF : The applied procedure is similar to SVM. Here, the optimized parameter is the number
of variables randomly sampled as candidates at each split. Number of trees are set as 500.
RF is applied using the R package caret (Kuhn, 2008).
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voomNSC1: The DESeq median ratio normalization is applied to the data and the
normalized data is used as the input for the voomNSC classifier. The proportions of
class sample sizes are used as the class prior probabilities. To optimize the threshold value,
the sparsest model with the minimum misclassification error is selected. A grid search
(number of searches: 30) is applied to determine the optimal threshold value.
voomNSC2: The raw read counts are directly used as the input for the voomNSC algorithm.
All other procedures remain same with voomNSC1.
voomNSC3: The TMM method is applied to normalize the data. The normalized data is
used as the input for the voomNSC classifier. Other procedures are same with voomNSC1

and voomNSC2.
voomDLDA1: The DESeq median ratio normalization is applied to the data and the
normalized data is used as the input for voomDLDA classifier. The proportions of class
sample sizes are used as the class prior probabilities.
voomDLDA2: The raw count data are not normalized and directly used as the input for
voomDLDA classifier. Other procedures are same with voomDLDA1.
voomDLDA3: The TMM method is used for normalization. Other procedures are same
with voomDLDA1 and voomDLDA2.
voomDQDA1: The DESeq median ratio normalization is applied to the data and the
normalized data is used as the input for voomDQDA classifier. The proportions of class
sample sizes are used as the class prior probabilities.
voomDQDA2: The raw count data are not normalized and directly used as the input for
voomDQDA classifier. Other procedures are same with voomDQDA1.
voomDQDA3: The TMM method is performed for normalization. Other procedures are
same with voomDQDA1 and voomDQDA2.

Evaluation of voomDDA classifiers
To evaluate the performance of the developed algorithms, we performed a comprehensive
simulation study. Four real datasets were also used to illustrate the applicability of
voomDDA classifiers and assess their performance in real experiments. All experimental R
code is available in File S1.

Simulation study
We simulated data (p×n dimensional matrix) under 648 scenarios using negative binomial
distribution as follows:

xgi|yi= k∼NB
(
µgiegk,φg

)
g = 1,...,p; i= 1,...,n; k= 1,...,K (22)

where NB corresponds to negative binomial distribution, µgi corresponds to gg si,egk is
the differential expression probability for each of the p= 10,000 genes among classes,
and φg is the dispersion parameter. For a given yi= k, xgi has mean µgiegk and variance
µgiegk +

(
µgiegk

)2
φg . si is the size factor for each sample and simulated identically and

independently from si∼Unif (0.2,2.2). gg refers to the total number of counts per gene
and also simulated identically and independently from gg ∼ Exp(1/25). If a gene is not
differentially expressed between classes k, then egk is set to 1. Otherwise, log

(
egk
)
= z̃gk ,
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where the z̃gk ’s are identically and independently distributed from z̃gk ∼N
(
0,σ 2). σ is set

to 0.10 or 0.20 in simulations. Of the total p= 10,000 genes, 500, 1,000 and 2,000 genes
with maximum variances are selected. We added a small constant (ε= 1) to count values
of each simulated data to avoid taking the logs of zero in the following analysis.

The simulated datasets contain all possible combinations of:

• number of genes; p′= (500,1,000,2,000),
• number of biological samples; n= (40,60,80,100),
• number of classes; K = (2,3,4),
• probability of differential expression: egk = (1%,5%,10%),
• standard deviation parameter: σ = (0.1,0.2)
• dispersion parameter; (φg = 0.01: very slight, φg = 0.1: substantial; φg = 1, very high
overdispersion).

Simulation code for generating count data from NB distribution are adapted from the
CountDataSet function of the PoiClaClu R package (Witten, 2013) based on the simulation
details given above. Seed number is set to a constant of ‘10072013’ for random numbers
generation.

The following steps are applied in the exact order after count data are simulated. A flow
chart is provided for the reader to better understand the evaluation processes (File S1).
Data splitting: The data are randomly split into training and test sets with 70% and 30% of
the data, respectively. The feature data can be denoted as Xtr and Xts, where the class labels
can be denoted as ytr and yts.
Near-zero filtering: Since the genes with low counts can affect the further analysis (e.g.,
linear modeling inside voom transformation), genes having near zero variances in the
training set are filtered in this step. For this purpose, two criteria are used for filtering: (i)
the ratio of the most frequent value to the most frequent second value is higher than 19
(95/5); (ii) the number of unique values divided by the sample size is less than 10%. The
genes with near zero variance are filtered from the test set as well.
Variance filtering: Next, a second filtering is applied to keep only the informative genes in
the model. In the training set, 500, 1,000 and 2,000 genes with maximum variances are
selected and other genes are filtered from both training and test sets. In this step, count
data are normalized using the DESeq median ratio method and transformed using vst
transformation. The genes are sorted in decreasing order based on their variances. The
count values of the selected genes were fetched again for further analysis.
Normalization:After filtering steps, the datasets are normalized to adjust the sample specific
differences using the DESeq median ratio method or TMM method depending on the
selected classification method. Note that the size factors required for the normalization are
calculated from the unfiltered raw dataset. The datasets are not normalized for voomNSC3,
voomDLDA3 and voomDQDA3 classifiers. Since training and test sets should be in the
same scale and be homoscedastic relative to each other, the normalization of test datasets
is made based on the information obtained from the training datasets. Therefore, each test
sample should be independently normalized using the same parameters calculated from
the training set as described in the previous section.
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Transformation: After normalization, several transformations are applied to the data to
estimate the mean and the variance relationship of the data. Normalized count data
are converted into a continuous scale using this mean and variance relationship. Since
PLDA1 and NBLDA are count-based classifiers, the transformations are not applied
for these classifiers. VoomDDA classifiers use the voom method inside the algorithm
for transformation. A power transformation is applied for PLDA2 classifier. The rlog
transformation is performed for other classifiers, due to its capability of accounting for
variations in sequencing depth across samples (Love, Huber & Anders, 2015). Similar to the
normalization, the test sets are transformed based on the mean and variance relationship
(of genes or samples) of the training sets. Thus, we do not re-estimate the mean–variance
relationship in the sets. The same βg coefficients are used for both training and test sets.
Model fitting and parameter optimization: In order to avoid overfitting and underfitting,
we optimized the tuning parameters of classifiers before model fitting. A five-fold cross
validation is performed on the training set and the parameter that gives the minimum
misclassification error is identified as optimal. Same folds are used in all classifiers to
make the results comparable. In case of equal misclassification errors, the best parameter
is chosen based on its sparsity. Finally, classification models are fitted on Xtr and ytr with
the optimal tuning parameters.
Prediction and performance evaluation: The optimal model is obtained from training data
and new test samples are classified into one of the possible classes. The misclassification
error is calculated for each classifier. The number of genes used in each model is also saved
in order to assess sparsity.

Since we mimic the real datasets, sample sizes are set to be very small relative to the
number of genes. Thus, the misclassification errors may be highly variable depending
on the split of samples into training and test sets. To overcome this problem, all the
entire simulation procedure was repeated 50 times and the summaries are given in the
Results section.

Application to real RNA-sequencing datasets
Experimental datasets
Cervical dataset: The cervical dataset is a miRNA sequencing dataset obtained fromWitten
et al. (2010). The objective of this study was to both identify the novel miRNAs and to detect
the differentially expressed ones between normal and tumor cervical tissue samples. For this
purpose, the authors constructed 58 small RNA libraries, prepared from 29 cervical cancer
and 29 matched control tissues. After deep sequencing with Solexa/Illumina sequencing
platform, they obtained a total of 25 Mb and 17 Mb RNA sequences from the normal and
the cancer libraries respectively. Of these 29 tumor samples, 21 of them had a diagnosis
of squamous cell carcinoma, six of them had adenocarcinoma and two were unclassified.
In our analysis, we used the data that contains the sequence read counts of 714 miRNAs
belonging to 58 human cervical tissue samples, where 29 tumor and 29 non-tumor samples
are treated as two distinct classes for prediction.
Alzheimer dataset: This dataset is another miRNA dataset provided from Leidinger et
al. (2013). The authors aimed to discover potential miRNAs from blood in diagnosing
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Alzheimer and related neurological diseases. For this purpose, the authors obtained blood
samples from 48 Alzheimer patients that were evaluated after undergoing some tests,
including Alzheimer Disease Assessment Scale-cognitive subscale (ADAS-Cog), Wechsler
Memory Scale (WMS), and Mini-Mental State Exam (MMSE) and Clinical Dementia
Rating (CDR). A total of 22 age-matched control samples were obtained and all sample
libraries were sequenced using Illumina HiSeq2000 platform. After obtaining the raw read
counts, the authors filtered the miRNAs with less than 50 counts in each group. We used
the data, including 416 read counts of 70 samples, where 48 Alzheimer and 22 control
samples are considered as two separate classes for classification.
Renal cell cancer dataset: Renal cell cancer (RCC) dataset is an RNA-Seq dataset that
is obtained from The Cancer Genome Atlas (TCGA) (Saleem et al., 2013). TCGA is a
comprehensive community resource platform for researchers to explore, download, and
analyze datasets. We obtained the raw 20,531 known human RNA transcript counts
belonging to 1,020 RCC samples from this database (with options level 3, RNASeqV2
data). This RNA-Seq data has 606, 323 and 91 specimens from the kidney renal papillary
cell (KIRP), kidney renal clear cell (KIRC) and kidney chromophobe carcinomas (KICH),
respectively. These three classes are referred as themost common subtypes of RCC (account
for nearly 90%–95% of the total malignant kidney tumors in adults) and treated as three
separate classes in our analysis (Goyal et al., 2013).
Lung cancer dataset: Lung cancer is another RNA-Seq dataset provided from TCGA
platform. Same options as RCC data were used in the download process. The resulting
count file contains the read counts of 20,531 transcripts of 1,128 samples. The dataset has
two distinct classes including lung adenocarcinoma (LUAD) and lung squamous cell with
carcinoma (LUSC) with 576 and 552 class sizes, respectively. These two classes are used as
class labels in our analysis.

Batch effects of TCGA data sets including renal cell cancer and lung cancer types
were removed using the Combat function in the SVAseq package (Leek, 2014) prior to
classification.

Evaluation process
A similar procedure is followed with the simulation study. The data are randomly split
into two parts as training (70%) and test (30%) sets. Near zero filtering is applied to
all datasets except Alzheimer, since low counts were already filtered by the authors of
the study (Leidinger et al., 2013). Next, 2,000 transcripts with the highest variances are
selected in each of the renal cell cancer and lung datasets. Appropriate normalization,
transformation and model fitting processes are applied same with the simulation study.
In prediction step misclassification errors for Alzheimer and renal cell cancer datasets are
balanced due to the unbalanced class sizes.

We repeated the entire process 50 times, since cervical and Alzheimer datasets have
relatively small sample size. The test set errors may differ for different train/test splits. Seed
number is set between 1 to 50 in the analysis steps. In the results section, summary statistics
are given across these 50 repeats.

Zararsiz et al. (2017), PeerJ, DOI 10.7717/peerj.3890 13/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.3890


Evaluation criteria
To assess the performance of classifiers, we used three criteria: (i) sparsity, (ii) accuracy
and (iii) computational cost. We simply assessed the sparsity of each model by calculating
the sparsity which is the number of selected genes in each model, or relative sparsity, with
the ratio of the number of genes selected in each classification model over a total number
of genes. A model with the lower number of genes in the decision rule is considered as
the sparser model. We calculated misclassification errors as the accuracy measure of each
model in the test set. Due to the high-dimensionality of the RNA-Seq data, it is possible
to encounter the overfitting problem. This means a classification method may perfectly
classify the training set, but may not perform well in the test set. Since correctly predicting
the class labels of new observations is the major purpose in real life problems, we randomly
split each dataset into training and test sets. All model building processes are applied in the
training set and the performance assessment is performed on test sets. Misclassification
errors are calculated from predicted test observations. A model with less misclassification
error is considered as the more accurate model.

In case of unbalanced class sizes, misclassification error may lead to problems measuring
the actual accuracy. Here, we used the balanced misclassification error as evaluation
criterium: (1−

(
Sensitivity+Specificity

)
/2). For multiclass problems, performance metrics

are calculated by the one-versus-all method and by comparing each class label to the
remaining labels.

RESULTS
Simulation results
Misclassification errors and sparsity results for the simulation scenario K = 2, egk= 5%,
σ= 0.1 are given in Figs. 3 and 4. Entire simulation results for each scenario are given
in File S2. These figures differ with different combinations of the number of classes
(K ), the probability of differential expression (egk) and standard deviation (σ ). Odd
numbered figures give the accuracy results, while the even numbered figures give the
sparsity results. Note that the sparsity results are only given for sparse classifiers (i.e.,
NSC, PLDA1, PLDA2, voomNSC1, voomNSC2, voomNSC3). All figures are given in the
same format in the same matrix layout. Each figure displays the effect of sample size (n),
the number of genes (p′), dispersion parameter (φg ) on the accuracy and the sparsity
of classification models. Axis panels give the results for sample size, ordinate panels
give the results for dispersion parameter. Each panel demonstrates the error bars for
each classifier on classification performance. Classifiers are displayed in axes; evaluation
measures are displayed in ordinates in each panel. Each measure is in the range [0,1], where
lower values corresponding to more accurate or sparse models. Error bars are generated
from the arithmetic mean and 95% confidence level of each performance measure in
50 repeats. Black, red and green bars correspond to the results for 500, 1,000 and 2,000
genes, respectively.

As can be seen from the figures, an increase in the sample size leads to an increase in
the overall accuracies, unless the data are overdispersed. This relation is more distinct for
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Figure 3 Misclassification errors of classifiers for the simulation scenarioK = 2, egk = 5%, σ= 0.1.

very slightly overdispersed scenarios. However, this increase does not affect the amount
of sparsity. The number of genes has a considerable effect on both accuracy and sparsity.
Including more genes into classification models, mostly leads to more accurate results for
PLDA (PLDA1, PLDA2) and voomNSC (voomNSC1, voomNSC2, voomNSC3) classifiers,
unless the data are overdispersed. Increasing the number of genes, mostly provides less
accurate results for other classifiers. However, this relation may change in some scenarios
where the sample size and the standard deviation increased. VoomNSC andPLDA classifiers
mostly produce sparser results depending on the increase in the number of genes. This
situation is quite opposite for the NSC algorithm in most scenarios.

The change in dispersion parameter has a direct effect on both model accuracies and
sparsities. When the data become more spread, the amount of accuracy decreases in
all classifiers. In slightly overdispersed data, all classifiers, except NSC, produce sparser
results. NSC gives sparser solutions based on the increase in the differential expression
probability. The increase in this probability causes less sparse solutions for PLDAclassifier in
many scenarios.

Increasing the number of classes lead to a decrease in classification accuracies. This
relation particularly becomes apparent when the number of genes and the differential
expression probability increases as well. The decrease in the performance of PLDA2

and voomNSC classifiers is less than the other algorithms. An increase in the class
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Figure 4 Sparsities of classifiers for the simulation scenarioK = 2, egk = 5%, σ= 0.1.

numbers affects the sparsity of NSC classifier in a negative way, while does not affect the
other classifiers.

Nearly all classifiers demonstrate higher accuracy if the differential expression probability
increases. Only PLDA1 andNSC classifiers show less accurate performances in this situation
depending on the increase in the standard deviation. The increase in these differential
expression probabilities brings sparser model performances, mostly for NSC algorithm
in slightly overdispersed datasets. The increase in the standard deviation leads to more
accurate and sparser classification algorithms. This may be different for the NSC classifier
in slightly overdispersed datasets. This case results in sparser solutionsWhen we assess the
performances of classifiers relative to each other, PLDA2 and voomNSC classifiers are the
most accurate algorithms for slightly overdispersed datasets. PLDA1 may be considered as
the second best performer, RF as the third performer and NSC as the fourth performer
among all classifiers. In substantially overdispersed datasets, voomNSC classifiers are the
most accurate classifiers, mostly for the scenarios with a high number of genes. PLDA2 gives
compatible results with these classifiers. RF provides substantial results behind voomNSC
and PLDA2 classifiers. In highly overdispersed data, all methods generally give very poor
results. Considerable performances may be seen when the number of class decreases,
and the number of samples, differential expression probability, and the standard deviation
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increases. In such cases, again PLDA2 and voomNSC classifiers outperform other classifiers,
mostly for the scenarios with a large number of genes.

In slightly overdispersed datasets, all methods, except for the NSC algorithm, provide
very sparse results. Sparser results for NSC algorithm are obtained with the increase in
probability in differential expression and standard deviation. In datasets with substantial
overdispersion, voomNSC classifiers seem to show their ability, and produce sparser
models than the other classifiers, especially in scenarios with high number of genes. In
highly overdispersed datasets, voomNSC classifiers clearly build the sparsest models. In
this case, PLDA classifiers give less sparse solutions, while the NSC algorithm gives the
poorest results.

Nonsparse voomDDA classifiers gave compatible results with the rlog generalizations
of DLDA and DQDA classifiers. Dispersion has a significant effect on PLDA classifier and
PLDA2 classifier outperforms PLDA1 in both accuracy and sparsity in most scenario.

As an overall evaluation of the classifiers, we can say that PLDA2 and voomNSC
classifiers outperform other classifiers based on the accuracies. When we consider the
sparsity measure, voomNSC classifiers are the overall winner and provide the sparsest
solutions compared to the other methods. Finally, we note that the normalization does
not have a significant effect on the performance of the voomNSC algorithm, since all three
forms of this method performed very similarly.

Results for real datasets
Results for real datasets are given in Tables 1 and 2. Misclassification errors are given in
Table 1 and the amount of sparsities is given Table 2 for each classifier across 50 repetitions.

In cervical dataset, NBLDA, SVM and NSC algorithms gave the most accurate results
with 8.9%, 10.1% and 10.8% misclassification errors, respectively. NBLDA and SVM
algorithms use all miRNAs for prediction while NSC selected an average of 194 from all
features. The error rates for voomNSC and PLDA2 classifiers were between 11–12%. An
average of 290 miRNAs was selected for PLDA2 classifier, while this number was between
56.28 and 63.34 for voomNSC classifiers. Thus, voomNSC classifiers can be considered as
the best performers, since the average test errors were compatible with NBLDA, SVM and
NSC algorithms; however, they use substantially fewer miRNAs than the other classifiers.

In Alzheimer dataset, SVM and voomDQDA2 algorithms performed more accurately
than the other algorithms with 8.7% and 13.9% misclassification errors, respectively.
PLDA1 was the sparsest classifier with an average of 11 miRNAs. However, its test error
was 31.7%, which is much higher than for the other algorithms. Among the other sparse
classifiers, voomNSC3 and voomNSC1 fit the model with an average of 30 and 48 miRNAs,
respectively. Thus, SVMand voomNSC3 classifiers can be considered as the best performers.
For this dataset, SVM builds more accurate but also more complex models. On the other
hand, voomNSC3 classifier gives sparser, but less accurate results than the SVM algorithm.

In renal cell cancer dataset, SVM and RF are the most accurate classifiers with 6.5% and
7.7% misclassification errors, respectively. The PLDA1 classifier was the poorest algorithm
with 75.6% test set error. The performance of the voomNSC classifier was around 18–19%,
which is less accurate than other algorithms.Misclassification error rates for other classifiers
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Table 1 Misclassification errors of classifiers for real datasets.

Classifier Cervical Alzheimer Renal cell cancer Lung Cancer

DLDA 0.149(0.015) 0.197(0.012) 0.140(0.003) 0.098(0.002)
DQDA 0.140(0.012) 0.188(0.012) 0.135(0.003) 0.098(0.002)
NBLDA 0.089(0.010) 0.198(0.014) 0.139(0.003) 0.098(0.002)
NSC 0.108(0.011) 0.201(0.012) 0.140(0.003) 0.097(0.002)
PLDA1 0.287(0.029) 0.317(0.014) 0.756(0.044) 0.262(0.028)
PLDA2 0.111(0.011) 0.223(0.013) 0.143(0.003) 0.100(0.002)
RF 0.135(0.012) 0.204(0.013) 0.077(0.002) 0.062(0.002)
SVM 0.101(0.010) 0.087(0.010) 0.065(0.002) 0.052(0.002)
voomDLDA1 0.148(0.015) 0.210(0.012) 0.141(0.003) 0.097(0.002)
voomDLDA2 0.211(0.019) 0.228(0.015) 0.139(0.003) 0.097(0.002)
voomDLDA3 0.146(0.015) 0.203(0.012) 0.142(0.003) 0.097(0.002)
voomDQDA1 0.164(0.014) 0.181(0.012) 0.134(0.002) 0.097(0.002)
voomDQDA2 0.165(0.013) 0.139(0.010) 0.138(0.003) 0.098(0.002)
voomDQDA3 0.153(0.014) 0.170(0.011) 0.137(0.003) 0.095(0.002)
voomNSC1 0.119(0.013) 0.227(0.010) 0.181(0.002) 0.097(0.002)
voomNSC2 0.111(0.010) 0.226(0.018) 0.192(0.003) 0.097(0.002)
voomNSC3 0.112(0.012) 0.233(0.012) 0.184(0.002) 0.092(0.002)

Notes.
Values are misclassification errors, calculated from 50 repetitions and expressed as mean (standard error). Best performed
methods are indicated as bold in each column.

Table 2 Sparsities of classifiers for real datasets.

Classifier Cervical Alzheimer Renal cell cancer Lung cancer

NSC 194.18(27.40) 333.06(19.04) 1989.00(7.32) 1685.22(47.73)
PLDA1 290.44(40.01) 10.81(9.31) 606.82(112.40) 1339.90(112.54)
PLDA2 126.66(29.13) 228.97(22.53) 1640.47(81.59) 1060.84(70.93)
voomNSC1 56.28(10.94) 48.06(10.78) 178.26(8.18) 85.04(39.34)
voomNSC2 59.16(13.60) 140.32(20.22) 700.90(114.63) 122.44(33.22)
voomNSC3 63.34(13.94) 30.02(8.10) 208.22(42.35) 54.18(34.97)

Notes.
Values are the number of genes selected in each model, calculated from 50 repetitions and expressed as mean (standard error).
Best performed methods are indicated as bold in each column.

were between 13–15%. When we look at the sparsity results, NSC and PLDA2 classifiers
provided less sparse solutions, with an average of 1,989 and 1,649 genes, respectively.
PLDA1 and voomNSC2 obtained moderate sparsity results with an average of 607 and
701 genes, respectively. On the other hand, voomNSC1 and voomNSC3 gave the sparsest
results for this dataset. In this dataset, VoomNSC1 selected an average of 178 genes, while
voomNSC3 selected 202 genes. In the light of these results, we recommend using SVM and
RF classifiers to obtain more accurate results and recommend voomNSC1 and voomNSC3

for sparsest results.
In lung cancer dataset, SVM and RF methods are again the most accurate classifiers

with 5.2–6.2% test set errors, respectively. PLDA1 performed as the less accurate algorithm
with a 26.2% misclassification error. The performance of other classifiers was quite similar
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Table 3 Summary of voomNSCmodels and selected genes in real datasets.

Classifier Misclassification
error

Number of
features

Selected features

Cervical 2/58 14 miR-1, miR-10b*, miR-147b, miR-183*, miR-200a*, miR-204, miR-205, miR-21*, miR-
31*, miR-497*, miR-542-5p, miR-944, Candidate-5, Candidate-12-3p

Alzheimer 13/70 3 miR-367, miR-756, miR-1786
Renal cell cancer 87/1,020 87 SLC6A3, RHCG, CA9, ATP6V0A4, CLDN8, TMEM213, FOXI1, SLC4A1, PVALB, KLK1,

DMRT2, ATP6V0D2, PTGER3, HEPACAM2, CLCNKB, BSND, LCN2, PLA2G4F,
SLC17A3, ATP6V1G3, RHBG, SLC9A4, GCGR, CLCNKA, NR0B2, CFTR, SCEL,
ATP6V1B1, NDUFA4L2, FGF9, ENPP3, TMPRSS2, WBSCR17, HAPLN1, ACSM2A,
FLJ42875, C6orf223, SLC26A7, ACSM2B, LRP2, FBN3, CNTN6, UGT2A3, EPN3,
CALCA, SLC22A11, KLK4, STAP1, LOC389493, FOXI2, CLRN3, HS6ST3, HAVCR1,
PART1, EBF2, PCSK6, SLC28A1, SFTPB, OXGR1, CLNK, C16orf89, HSD11B2, TRIM50,
ACMSD, CXCL14, VWA5B1, KLK15, INPP5J, LRRTM1, SYT7, HGFAC, FAM184B,
C1orf186, KLK3, GPRC6A KBTBD12, HCN2, C9orf84, GCOM1, PCDH17, PDZK1IP1,
KRTAP5-8, ODAM, RGS5, CTNNA2, GGT1, KDR

Lung cancer 96/1,118 6 DSG3, CALML3, KRT5 , SERPINB13, DSC3, LASS3

and lies between 9.2% and 10.0%. NSC and PLDA classifiers gave substantially less sparse
solutions than voomNSC classifiers. The number of selected genes was approximately
1,685 genes for NSC, 1,340 and 1,061 genes for PLDA1 and PLDA2, between 54 and 122
genes for voomNSC classifiers.

A summary for the selected genes in each real dataset is given in Table 3.

Computational cost of classifiers
Along with the accuracy and sparsity results, we calculated the computational costs of
each classifier to see whether the developed algorithms are applicable to real datasets. We
used a workstation with the properties of Xeon E5-1650, 3.20 GHz CPU, 64GB memory
and 12 cores. Performance results are given in File S2. All classifiers seem to be practical
for cervical and Alzheimer miRNA datasets. These classifiers are able to fit models less
than 2.15 s, for both datasets. Both sample size and number of features are higher in
the renal cell and lung cancer datasets relative to the other data. This increase affects the
computational performance of classifiers, mostly for RF and SVM. In general, DLDA and
DQDA classifiers are the fastest among these classifiers. Moreover, the computational
performance of voomDDA classifiers is also considerable, which is between 0.16 and 5.07 s
in all datasets.

voomDDA web-tool
To provide the applicability of the developed approaches, a user-friendly web application
is developed with the shiny package of R. This tool is an interactive platform, which can
be accessed through http://www.biosoft.hacettepe.edu.tr/voomDDA/. All source codes are
available on GitHub (https://github.com/gokmenzararsiz/voomDDA) and in File S3. The
tool includes the sparse voomNSC, non-sparse voomDLDA and voomDQDA algorithms
accompanied with several interactive plots.

Users can upload either miRNA or mRNA based gene-expression data to identify the
diagnostic biomarkers and to predict the classes of test cases. Two example datasets are also
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Figure 5 Illustration of voomDDAweb-tool.

available in the web-tool for the implementation of the developed approaches (Fig. 5A).
After uploading the data, users can preprocess their data (i.e., filter and normalize), and
build a classification model either using voomNSC, voomDLDA or voomDQDA. After
selecting any of the three classifiers, a summary of the fitting process is displayed on the
screen. A confusion matrix and several statistical diagnostic measures are given to examine
the performances of classifiers (Fig. 5B). Based on the trained model, predictions and
the identified markers will be displayed in the main panel of the tool, if the test set is
uploaded by the user. Otherwise, voomDDA only displays the identified markers from the
sparse voomNSC classifier (Fig. 5C). Furthermore, users can carry out various downstream
analyses, i.e., heatmap plots, gene-network analysis and GO analysis, with the identified
markers (Fig. 5D, Fig. 5E, and Fig. 5F). More detailed information can be found on the
manual page of the web-tool.

DISCUSSION
Biomarker discovery and classification are crucial in medicine to assist physicians and
other health professionals in decision-making tasks, such as determining a diagnosis based
on patient data. With the use of the capabilities of next-generation sequencing technology,
detecting the most relevant genes (or exons, transcripts and isoforms) associated with a
condition of interestand developing a decision support system for clinical diagnosis will
enable physicians to make a more accurate diagnosis, develop and implement personalized,
patient centered therapeutic interventions and improve the life quality of patients by
better treatments.

In this study, we presented a sparse classifier voomNSC for classification of RNA- Seq
data. We successfully coupled the voom method and the NSC classifier together by using
weighted statistics, thus extended voom method for classification studies and made NSC
algorithm available for RNA-Seq data. We also proposed two non- sparse classifiers, which
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are the extensions of DLDA and DQDA algorithms for RNA-Seq classification. Law et
al. (2014) introduced the voom method for differential expression analysis and for gene
set testing. The authors stated that using precision weights with appropriate statistical
algorithms may increase the predictive power of classifiers. We now extended this method
to classification analysis and obtained very accurate and sparse algorithms.

We designed a comprehensive simulation study and also used four real miRNA and
mRNA sequencing datasets to assess the performance of developed approaches and
compare their performances with other classification algorithms. We obtained good results
in both simulated and real datasets. In particular, voomNSC is able to find small subset of
genes in an RNA-Seq data and provides fast, accurate and sparse solutions for RNA-Seq
classification.

We compared our results with both the count based RNA-Seq classifiers and the
microarray based classifiers after rlog transformation. To the best of our knowledge, count
based classifiers are the only developed approaches in the literature for RNA-Seq data
analysis. Using microarray based classifiers; we were able to see the effect of the voom
method in classification studies. We selected the rlog transformation for microarray based
classifiers, since it is good at accounting for the differences in library size. It also stabilizes
the variances more accurately than a simple logarithmic transformation. In the simulation
studies, the provided precision weights of voom method led to both more accurate and
sparse models than obtained with microarray based classifiers. PLDA2 gives compatible
results with voomNSC classifiers in terms of classification accuracy. However, voomNSC
provides sparser models, which is crucial for simpler, interpretable and low variance
models. In real datasets, the accuracy results of the classifiers were comparable with each
other. However, again the voomNSC classifiers provided the sparsest solutions.

Our approaches are mostly superior to PLDA, NBLDA, DLDA, DQDA, and NSC in
providing sparser and models with comparable accuracy. PLDA2 and voomNSC classifiers
give comparable results in model accuracy. We believe that this superiority originates
from the robustness of the voom methodology. This method empirically estimates the
mean–variance relationships from the datawhile both PLDA and NBLDA aim to specify
the exact probability distribution of counts instead. Precision weights allow us to make use
of the normal distribution, since its mathematical theory is more tractable than the count
distributions (Law et al., 2014). Precision weights also provide advantages such as working
with samples with different sequencing depths, or the possibility of down-weighting the
low-quality samples.

Dispersion has a direct effect on the PLDA classifier. The reason may be that the
PLDA algorithm uses a Poisson model which assumes that the mean and the variance are
equal. Nevertheless, applying a power transformation enhances its performance. Thus,
we recommend users to always use the PLDA classifier with power transformation, since
RNA-Seq data is mostly overdispersed, because of the presence of biological replicates in
most datasets. Overdispersion has a significant effect on this classifier and should be taken
into account before building models. The NBLDA classifier (Dong et al., 2015) converges to
the PLDA algorithm, when the dispersion parameter approximates to zero. This classifier
performed well for the overdispersed cervical datasets; however, it does not perform as well
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as the PLDA2 classifier or the voomNSC classifier in other scenarios. This may originate
from the absence of a sparsity option in this classifier.We leave sparse NBLDA classification
as a topic for further research.

In slightly overdispersed datasets, RF performs as well as the sparse classifiers. Moreover,
this classifier performed very well in lung and renal cell cancer datasets. One possible
explanation for this result may be the bootstrap property of this algorithm. As inmicroarray
classification, the SVM algorithm performed very accurately in real datasets. Mukherjee
et al. (1999) stated that this high accuracy may arise because of the strong mathematical
background of SVM algorithm. The idea here is that the margin overcomes the overfitting
problem and make SVM algorithm capable to work in high-dimensional settings. This is
also true for RNA-Seq datasets, since rlog transformation makes the RNA-Seq more similar
to microarray data.

When we increased the number of classes, the overall accuracy was decreased. This
may arise because of the decrease of assignment probability of a sample in this condition.
Moreover, we saw that the effect of sample size and number of genes on misclassification
errors is highly dependent on the dispersion parameter. Decreasing the number of genes and
samples leads to an increase in the misclassification error, unless the data are overdispersed.

Normalization had little impact on voomDDA classifiers in simulation results. However,
we observed that performing voomNSC algorithm without any normalization provides less
sparse results in Alzheimer, lung and renal cell cancer datasets. This may arise because of the
very large differences in library sizes (e.g., 2.6 to 100.6 million in Alzheimer dataset). In this
case, the DESeq median ratio or TMM methods can be applied before model building in
order to obtain sparser results. In other cases, all three voomNSC classifiers provided very
similar results in both model accuracy and sparsity. This result is consistent with Witten
(2011). Normalization may significantly affect the results in data with few features with
very high counts.

We also demonstrated the use of the voomNSC algorithm in diagnostic biomarker
discovery problems. In the cervical dataset, voomNSC identified 14 miRNAs as biomarkers
with misclassifying two out of 58 samples. Witten et al. (2010) applied NSC algorithm in
their paper and identified 41 miRNAs. A total of 9 miRNAs detected by the voomNSC
algorithm, including miR-200a*, miR-204, miR-205, miR- 1, miR-147b, miR-31*, miR-
944, miR-21*, and miR-10b* were identified to be common with the authors (Fig. 6).
Moreover, voomNSC also used Candidate-5, Candidate-12-3p, miR-183*, miR-497*, and
miR-542-5p in the prediction. Witten et al. (2010) misclassified four out of 58 samples.
Thus, our algorithm is superior to their procedure in both accuracy and sparsity for
classifying this dataset.

Leidinger et al. (2013) identified 12 miRNAs in classifying Alzheimer data and obtained
7% misclassification errors. In our study, we detected three miRNAs and obtained 18.6%
misclassification error rate. Any of the selected miRNAs were found to be common with
each other. Hence, voomNSC performed less accurate, however, sparser solutions than
their procedure.
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Figure 6 A Venn-diagram displaying the number of selected miRNAs.

CONCLUSION
We conclude that the PLDA algorithmwith power transformation and voomNSC classifiers
may be the sparse methods of choice, if one aims to obtain accurate models for RNA-Seq
classification. SVM and RF algorithms are the overall winners in nonsparse classifiers.
When sparsity is the measure of interest, voomNSC classifiers should be the preferred
methods. Along with its accurate and sparse performance, the voomNSC method is fast
and applicable to even very large RNA-Seq datasets. Besides the prediction purpose,
the voomNSC classifier can be used to identify the potential diagnostic biomarkers for a
condition of interest. In this way, a small subset of genes, which is relevant to distinguishing
the different classes, can be detected. These genes can then be investigated for further, such as
discovering additional genes which have interactions with these genes. We leave extending
this model with considering the known biomarkers as a follow-up research study.

We believe that this study may contribute to other studies in proposing the voom
extensions of powerful statistical learning classifiers including SVM, RF, etc. We also
recommend extending this approach for other types of statistical analysis methods such as
clustering analysis. These generalizations may allow users to analyze both microarray and
RNA-Seq data with similar workflows and provide comparable results. For the applicability
of the proposed approaches, we developed a user-friendly and easy-to-use web-based tool.
This tool can be accessed through http://www.biosoft.hacettepe.edu.tr/voomDDA/.
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List of abbreviations

voom Variance modeling at observational level
NSC Nearest shrunken centroids
RNA Ribonuclic acid
NGS Next-generation sequencing
PLDA Poisson linear discriminant analysis
NBLDA Negative binomial linear discriminant analysis
DE Differential expression
limma models for microarray and RNA-Seq data
DDA Diagonal discriminant analysis
DLDA Diagonal linear discriminant analysis
DQDA Diagonal quadratic discriminant analysis
log-cpm log counts per million
SAM significance analysis of microarrays
vst Variance stabilizing transformation
rlog Regularized logarithmic transformation
SVM Support vector machines
RF Random forests
miRNA micro-RNA
TMM Trimmed mean of M values
NB Negative binomial
ADAS-Cog Alzheimer Disease Assessment Scale-cognitive subscale
WMS Wechsler Memory Scale
MMSE Mini-Mental State Exam
CDR Clinical Dementia Rating
RCC Renal cell cancer
TCGA The Cancer Genome Atlas
KIRP Kidney renal papillary cell
KIRC Kidney renal clear cell
KICH Kidney chromophobe carcinomas
LUAD lung adenocarcinoma
LUSC lung squamous cell with carcinoma
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