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Over the past decade, optical tweezers (OT) have been increasingly used in neuroscience

for studies of molecules and neuronal dynamics, as well as for the study of model

organisms as a whole. Compared to other areas of biology, it has taken much longer

for OT to become an established tool in neuroscience. This is, in part, due to the

complexity of the brain and the inherent difficulties in trapping individual molecules or

manipulating cells located deep within biological tissue. Recent advances in OT, as well

as parallel developments in imaging and adaptive optics, have significantly extended

the capabilities of OT. In this review, we describe how OT became an established tool

in neuroscience and we elaborate on possible future directions for the field. Rather than

covering all applications of OT to neurons or related proteins andmolecules, we focus our

discussions on studies that provide crucial information to neuroscience, such as neuron

dynamics, growth, and communication, as these studies have revealed meaningful

information and provide direction for the field into the future.

Keywords: optical tweezers, light sculpting, neuroscience, neuronal dynamics, single molecules, brain

connectivity, neurons, brain development

1. INTRODUCTION

Since the late 1980s, optical tweezers (OT) have been extensively used for studying biological cells
and whole organisms (Ashkin and Dziedzic, 1987), the main reason being that OT allows the
physical manipulation of biological structures and environments in a non-invasive way using only
light. In addition, it is a highly flexible optical tool that can hold, displace, stretch, and spin a large
variety of complex-shaped objects and assembles. However, OT has taken a long time to prove its
usefulness in neuroscience, in part due to the complexity of the brain and the associated difficulties
with trapping or imaging objects within it.

In recent years, there have been great advances in OT and its combination with other modern
optical tools for manipulating complex objects, mechanically altering surfaces, and controlling
dynamics. Consequently, OT has become a remarkable technique for studying the physical
properties and intrinsic forces of neurons, their axonal navigation preferences and regeneration
processes, as well as some of the fundamental dynamics around their function. As new technologies
have emerged and been cleverly combined with OT, the precision and depth of OT manipulation
has increased, opening new avenues for neuroscience studies. This has enabled studies into the core
processes driving neuronal growth and function, and on the larger scale, the formation of networks
and complex information processing. As such, OT has been, and continues to be, a valuable tool
for exploring neuroscience.

In this review, we focus our attention on the application of OT in neuroscience: howOT answers
fundamental questions in neuroscience, the important findings that OT has delivered to the field,
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and where and how OT can further drive neuroscience
discoveries. In the next section (section 2), we provide a
description of optical tweezers with a focus on their flexibility
and large number of potential applications in physics and
biophysics. Rather than provide a detailed introduction to optical
tweezers, we direct our discussion toward aspects that make OT
particularly useful for neuroscience. In section 3, we cover recent
applications of optical tweezers in neuroscience that have already
provided crucial information on neuronal dynamics, growth,
and modes of communication. We are particularly mindful in
selecting and discussing studies that do not simply apply OT to
neurons (or their receptors and involved molecules), but provide
new meaningful information and direction for neuroscience.
In section 4, we discuss current trends in optical trapping for
neuroscience and where the field is heading. In recent years,
great effort has been directed toward improving the quality of
optical traps, extending the size range of particles and molecules
that can be optically confined, as well as toward achieving
trapping and manipulation deeper within tissue and turbid
media. Highlighting these advances, we discuss the new potential
capabilities of OT and its future in exploring neuroscience.

2. OPTICAL TWEEZERS

Optical tweezers (OT) can be used to apply precise and very
localized optical forces to microscopic particles. Using only
light, OT is able to influence the motion of objects in a non-
contact way, as well as inside optically transparent cells or
living organisms. Additionally, OT can be used to measure
mechanical properties of cells and their environments: by either
observing how a trapped particle behaves or observing the
light scattered by the trapped particle it is possible to measure
properties such as mechanical stiffness and viscoelacticity. As will
be shown in following sections, this makes OT especially useful
for studying neurons, as well as for holding and manipulating
objects that are difficult to manipulate using more conventional
means such as with mechanical tweezers or micro-pipettes. In
this section, we provide an overview of OT. The aim of this
overview is to introduce the basic concepts of optical tweezers
and simultaneously show some of the different optical tweezers
techniques that could be useful for experiments in neuroscience.
For a more complete coverage of the topic, we would like
to refer interested readers to relevant textbooks and recent
reviews that more thoroughly cover the theory behind optical
trapping (Ashkin, 2006; Jones et al., 2015; Pesce et al., 2015) and
its applications in biological (Choudhary et al., 2019; Favre-Bulle
et al., 2019) and non-biological (Muldoon et al., 2012; Li et al.,
2019) contexts.

Optical tweezers use light to trap and manipulate small
particles. The most common OT configuration involves using a
highly focused laser beam, usually in the visible to near-infrared
wavelength range (i.e., between 0.5 and 1µm). At the beam focus,
small particles can become trapped when the optical forces are

Abbreviations: OT, optical tweezers; FOT, fiber optical tweezers; SLM, spatial
light modulator; NCS-1, (protein) Neuronal calcium sensor 1; Sema3A, (protein)
Semaphorin 3A; Netrin-1, (protein) Netrin 1.

FIGURE 1 | Overview of forces in different optical trap configurations. (A) In

conventional single beam OT, a particle in a tightly focused Gaussian beam

acts like a small lens, focusing and deflecting the beam. The resulting force F

on the particle can be understood by considering the change in momentum

between the incoming beam (illustrated by arrows i) and the deflected beam

(arrows d). (B) Two weakly focused counter propagating beams are deflected

by a particle, resulting in a gradient force on the particle. (C) A diverging beam

from the end of an optical fiber reflects (arrows r) from a reflective particle,

resulting in a scattering force which pushes the particle. (D) Simulation of an

absorbing particle in a Gaussian beam; some light is reflected but most of the

light is absorbed, leading to a large absorption force.

large enough to overcome the other forces acting on them such
as Brownian motion or fluid drag. The main optical forces in OT
are: the scattering force, which arises from light reflecting off the
particle and acts to push the particle in the direction of the beam
propagation; the gradient force, which is related to the change in
optical field intensity and acts to pull (or push) the particle toward
(or away from) most intense regions of the laser light (depending
on the particle’s optical properties); and the absorption force,
which arises from light being absorbed by the particle and
typically behaves similarly to the scattering force but can also
lead to other interesting thermal effects. As illustrated by the
examples of optical trapping configurations shown in Figure 1,
these forces, their magnitude, and the dominant forces depend
on the properties of the OT system (including wavelength,
coherence, and beam shape) as well as the properties of the
particle (refractive index, size, absorption).

Optical trapping can be broadly split into three regimes
for trapped particles of sub-wavelength, wavelength, and
super-wavelength sizes; these approximately correspond to
manipulation at the molecular, cellular and whole organism
scales, respectively. The types of optical tweezers systems used
in these three regimes also varies greatly. Figure 2 shows several
examples of biological systems in these different size regimes
which can be studied with optical tweezers and examples of
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FIGURE 2 | Examples applications of Optical Tweezers. (a–c) Different optical trapping experiments for trapping sub-wavelength to super-wavelength sized objects:

(a) plasmonic bow-tie antenna (gold) illuminated by a weakly focused beam holding a sub-wavelength sized particle, (b) inverted microscope and microfluidic

chamber used for holographic (multi-beam) optical tweezers with a high numerical aperture condenser to collect the scattered light for direct optical force

measurement, (c) optical trapping an otolith (ear stone) inside a zebrafish. (d–f) Examples of molecular, cellular and large scale trapped objects and applications:

(d) molecular sized particles can be manipulated with auxiliary particles or specially designed plasmonic structures; (e) on a cellular scale, OT can be used to place

cells inside structures, manipulate parts of cells, or for indirect manipulation with probe particles; (f) at larger scales, OT can be used for manipulating structures inside

living organisms, such as an otolith inside a zebrafish (d–f) adapted/reproduced from: Favre-Bulle et al. (2019) (CC BY 4.0); Rodríguez (2019) (CC BY-NC-ND 3.0 CL);

Ehrlicher et al. (2002) Copyright 2002 National Academy of Sciences; Heidarsson et al. (2014) Copyright 2014 the authors; Pine and Chow (2009) Copyright 2008

IEEE, reprinted with permission; Pang and Gordon (2012) and Shoji et al. (2013) Copyright 2012, 2013 American Chemical Society; scale bars have been added to

show approximate scale).

the optical tweezers systems often used for these studies. For
trapping sub-wavelength sized particles it is often necessary to
use auxiliary particles or plasmonic structures to enhance the
forces acting on the particle, as depicted in Figures 2a,d. The
most commonly used designs closely resemble a regular optical
microscopy system with an objective, condenser, camera, and
illumination for imaging as well as a tightly focused laser beam
for optical trapping. Two examples of these systems are depicted
in Figures 2b,c. In these single beam systems, the dominant force
is typically the gradient force or, if the particle is very reflective,
the scattering force. Three dimensional trapping is achieved only

when the gradient force overcomes the scattering and absorption
forces. This is usually achieved by using a highly focused beam
in order to create a large intensity gradient around the beam
focus and often results in systems with a very small working
distance (Figure 2b). However, it is also possible to use lower
numerical apertures and objective with much longer working
distances (Figure 2b), either by only trapping in two dimensions
or using counter propagating beams, as depicted in Figure 1B.
With these systems, it is possible to manipulate particles in the
100 nm to 10 µm range with forces of the order of piconewtons
(pN, 10−12 N) as long as the particles are not too reflective or
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absorptive. High absorption is not desirable in biological systems
as it leads to substantial heating and subsequent destruction of
the system under study.

Trapping of reflective or absorbing particles tends to be
more difficult: the scattering and absorption forces tend to
dominate over the gradient force, pushing particles along the
beam propagation direction and out of the trap, as illustrated
in Figures 1C,D. For reflective particles it is common to use
counter-propagating traps (Figure 1B) or traps with multiple
beams coming from different directions to reduce the effect of
the scattering force (Zhao, 2017). Another approach is to use
structured light fields to reduce reflection in order to increase the
depth of the optical trap (Taylor et al., 2015). While absorption
related forces are regularly used for trapping non-biological
particles, such as for driving micro-machines (Villangca et al.,
2016) or for photophoretic trapping in air (Gong et al., 2016),
most biological studies involving OT avoid using absorption
related forces for direct manipulation of samples as the energy
absorbed can lead to unwanted thermal effects or damage to the
sample as mentioned above.

The most common way to reduce absorption is to choose
a laser wavelength in the near infrared (IR) region (commonly
used wavelengths include 980 and 1,064 nm) (Palima et al.,
2015). Svoboda and Block (1994) provide a discussion of general
considerations for studies involving biological specimens: the
authors suggest choosing wavelengths at the near-IR end of
the spectrum between 750 and 1,250 nm. IR and near IR
wavelengths (above 750 nm) tend to be a good choice for OT
in cell biology since they minimize light absorption by organic
molecules such as: proteins, nucleic acids, carbohydrates, and
lipids. However, above 1,250 nm light tends to be strongly
absorbed by water. Hence, near IR (750–1,250 nm) tends to be
a good tradeoff for OT with biological specimens; and from a
historical point of view, 980 and 1,064 nm wavelengths have been
popular due to their relatively low cost and good performance.
Due to the complexity of cells and biological materials, and
the various criteria for cell damage, it is difficult to provide
general statements about absorption or recommendations for
laser wavelength and intensity. When considering a particular
cell, it may be important to consider the different materials
in the cell, how they absorb light, and the appropriate criteria
for cell damage within the context of neuroscience. Accurate
determination of any effects of light radiation is crucial in all
experiments involving biological matter. Control experiments
are usually performed in addition to the experiments involving
OT, in order to discriminate between the effect of the light
from the probe manipulated by light. When the use of control
measurements is not appropriate, simply trying OT with a
particular sample and looking for obvious indications of heating
(such as increased thermal motion, cavitation, or burning) can
still provide useful information on the limits in wavelength and
intensity that the system can handle. Choosing an appropriate
wavelength that is not absorbed should be the first priority for
avoiding absorption related cell damage and heating; however, as
with reflective particles, using structured light fields or multiple
beams can be useful for achieving large optical forces with
lower beam powers, reducing the likelihood of cell damage.

By structuring the illumination, light can be distributed evenly
throughout a sample or structured to avoid certain regions of a
sample (Zhang and Milstein, 2019; Zhang et al., 2019).

Manipulating biological entities is often not possible with
single Gaussian beam optical tweezers. With structured light, it is
possible to create multiple beams or beams with different shapes
which enable optimal light matter interaction with biological
systems. Structured light fields can be created by modifying
the phase or intensity of the trapping beam or both. In single
beam OT, this is typically done by using optical elements such
as lenses, mirrors, or phase masks placed before the focusing
objective. One of the most configurable methods for modifying
the phase/intensity of the incident beam is a computer controlled
spatial light modulator (SLM) (Curtis et al., 2002). Using an
SLM, the phase and/or intensity of the incident beam can be
rapidly modified to create multiple traps or structured optical
fields for trapping and orientating particles (Bowman et al., 2014;
Lenton I. C. D. et al., 2020b). Figures 3B–J shows examples of
different beams that can be generated by modulating the incident
beam shown in Figure 3A, either by using an SLM or suitable
combinations of mirrors/lenses/masks. Using a combination of
relatively simple patterns (Figures 3B–D) a single beam can
be split into multiple traps (Figure 3E) that can be controlled
independently or used together to manipulate different parts of
a large particle or organism. The number of traps is primarily
limited by the available laser power and damage threshold for
the beam shaping components, but with modern lasers it is
possible to achieve 10 to 100 s of traps with either static or
time-averaged configurations. Beams carrying orbital angular
momentum (Figure 3I) or spin angular momentum can be used
to rotate particles (Simpson et al., 1997; Grier, 2003; Favre-Bulle
et al., 2019), and structured light fields can be used to orient or
stretch particles (Figures 3F–J) (Bezryadina et al., 2016; Lenton
I. C. D. et al., 2020a). If the devices used to generate these
patterns are fast enough, beams can be dynamically scanned
to create time averaged potentials or move particles around
(Supplementary Video 1, Figure 3K). By tracking the particle
position, OT can be implemented with feedback systems that
can be used to stabilize its motion within traps or create traps
with adjustable trap stiffness or multiple equilibria, as shown in
Supplementary Video 2 (Figure 3L).

Conventional OT requires focusing a laser beam down to
a tightly focused spot using a microscope objective. When the
particle is deep within a scattering medium, such as skin or
brain tissue, this can make focusing more difficult and limit the
application of conventional OT. One solution is to use adaptive
optics and other advances from imaging in order to be able to
focus light deep within a sample (Wang et al., 2015; Hofmeister
et al., 2020). Another alternative is to use non-conventional OT,
such as OT created at the end of optical fibers (fiber optical
tweezers, FOT) (Constable et al., 1993; Liu and Yu, 2017), as
illustrated in Figure 1C. While traditional OT systems are bulky,
FOTs offer the advantage of being miniaturized, self-sustaining
system, with optical traps created in 3D and calibrated in situ.
Using a regular single-mode optical fiber, FOT can be used
much like conventional single beam OT except the generated
beams are often not as tightly focused, and, as a consequence,

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 4 November 2020 | Volume 8 | Article 602797

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Lenton et al. Optical Tweezers Exploring Neuroscience

FIGURE 3 | Examples of different beams used in optical trapping. (A–J) Near-field intensity patterns and corresponding far-field phase patterns (insets) for various

static beams: (A) Gaussian beam, (B) a linear grating used to shift the beam in the radial direction, (C) a Fresnel lens used to shift the beam in the axial direction,

(D) combination of b and c to shift the beam in an arbitrary direction, (E) multiple OT created by combining gratings for each beam using the Prisms and Lenses

algorithm (Reicherter et al., 1999), (F) Annular beam, (G) Tug-of-war beam (Bezryadina et al., 2016), (H) Line shaped trap, (I) Beam carrying orbital angular

momentum, (J) Chiral beam using annular subzone vortex phase plate (Yang et al., 2018). (K) Still images from Supplementary Video 1 showing a particle (blue

circle) initially outside a moving OT, falling into the OT and then being dragged by the OT. Particle displacement track is shown in white. (L) Still images from

Supplementary Video 2 showing the distribution of positions (white dots and blue bars) of a particle (green dashed circle) in a counter-propagating OT using

feedback in the horizontal direction: the three panels show (from left to right) a trap with a high stiffness, a trap with a low stiffness and a trap with two equilibria, all

generated using the feedback system. Scale bars show 2 µm; particles in (K,L) are 0.4 µm radius spheres. Beams have been generated and simulated using

OTSLM (Lenton I. C. D. et al., 2020b) and the Optical Tweezers Toolbox (Lenton, 2020a), see supplemental code for more information.

the gradient forces are often much weaker. In order to achieve
stable trapping, FOT (Chiang et al., 2019) is often used in a
counter-propagating configuration (Bellini et al., 2010; Kreysing
et al., 2014). A combination of structured light fields and fibers,
including tapered fibers (Liu et al., 2006), fibers with coated or
etched tips (Rodrigues Ribeiro et al., 2017), and multi-mode
fibers combined with SLMs (Leite et al., 2017) can potentially lead
to better trapping deep within scattering media.

All the techniques described so far focus on manipulating
particles in the wavelength to super-wavelength range (&100
nm) which can often be manipulated directly using tightly
focused beams. The diffraction limit puts a restriction on the
minimum spot size achievable in conventional OT, this makes
manipulating sub-wavelength sized particles (∼1–100 nm) more
difficult. One solution is to use larger auxillary particles as
handles (Heidarsson et al., 2014; Soltani et al., 2014), for example,
Figure 2d illustrates how a single molecule can be manipulated
using OT by tethering the particle to two larger probe particles
using strands of DNA. Another approach is to use the fields
generated near the surface of plasmonic antennas or at the
surface of waveguides (Choudhary et al., 2019), as illustrated in

Figures 2a,d. Unlike conventional OT, the fields generated by
these structures can be highly localized with features smaller than
the diffraction limit in the surrounding medium, allowing the
trapping and study of individual molecules.

OT are capable of applying very precise piconewton scale
forces to small particles, which makes them extremely useful for
manipulation, such as for fast and precise placement of cells
inside plastic microstructures (Pine and Chow, 2009). Being
able to apply precise optical forces to particles also makes OT
a useful tool for precise measurement of forces: by applying a
known optical force to a particle, we can infer the non-optical
forces acting on the particle based on its behavior. This idea is
similar to atomic force microscopy (Neuman and Nagy, 2008)
and is referred to as optical force microscopy or photonic force
microscopy. Applications of optical force microscopy include
studies of object profiles down to low nm resolution (Friese et al.,
1999; Volpe et al., 2007; Pollard et al., 2010). Another example
of the usefulness of precise force measurement is for studies of
biological swimmers; for example, if we hold a swimming cell in
an optical trap and gradually lower the trap power until the cell
escapes, we can infer information about the swimming force from
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the optical force at the time the particle escaped (Nascimento
et al., 2008). The range of forces OT can be used to measure is
related to the range of forces that the OT can apply, i.e., OT can be
used to measure piconewton and femtonewton scale forces, such
as those encountered protein folding (Bustamante et al., 2020) or
cell motility (Arbore et al., 2019; Armstrong et al., 2020).

Methods for calculating optical forces can be approximately
grouped into two categories: inference based methods, which
often involve calculating the force as a function of position
in the trap using a particle of a known size; and direct force
measurement methods, which involve estimating the optical
force directly from the scattered light distribution (Fällman
et al., 2004; Farré and Montes-Usategui, 2010; Jun et al., 2014;
Thalhammer et al., 2015; Català et al., 2017; Bui et al., 2018).
While both methods need to be calibrated, when and how these
difference methods are calibrated can vary significantly. Unlike
position based force measurement, direct force measurement
requires collecting a significant amount of the total light
scattered by a trapped particle. When the particle is weakly
scattering, most of the light is forward scattered and the light
can be captured using a high numerical aperture condenser
(set-ups typically look similar to Figure 2b with a very short
working distance). Direct force measurement with more strongly
scattering particles requires more sophisticated optical set-ups.
In comparison, position or calibration based force detection
systems are relatively straightforward, requiring only a camera
to track the particle’s position. However, OTs are not always
linear, and position/interference based methods often need to be
calibrated for each individual particle in order to account for
variations between samples. Being able to measure forces and
hold particles makes OT an extremely useful tool for studying the
environment surrounding particles, for example, for measuring
temperature (Kashchuk et al., 2017) or viscoelasticity (Brau et al.,
2007; Gibson et al., 2017; Robertson-Anderson, 2018).

Conventional OT systems have become relatively routine
to set up (Pesce et al., 2015), and in many cases they
can be integrated into existing microscope systems (Candia
et al., 2013) or bought as complete kits from various optics
manufacturers (2020c; 2020d). As it is an optical technique,
it is relatively easy to combine OT with existing microscope
systems or other spectroscopy and imaging technologies such
as fluorescence, Raman, or phase contrast (Gong et al., 2018;
Kashekodi et al., 2018). For example, OT have been demonstrated
to be compatible with different electrophysiology and electrode
array systems which can be useful for stimulating or monitoring
neurons (an example of which is shown in see Figure 2e) (Pine
and Chow, 2009; Difato et al., 2011). On the other hand, due to
their small size the developments in plasmonic and waveguide
based tweezers (Soltani et al., 2014; Choudhary et al., 2019) offer
the potential for integration with lab on a chip systems or for use
in vivo. In the cases where the forces created by OT aren’t enough
to completely confine a specimen, OT have been combined
with other trapping technologies such as acoustics, magnetic
tweezers, microfluidics, and mechanical systems (Wuite et al.,
2000; Neuman and Nagy, 2008; Thalhammer et al., 2016;
Dholakia et al., 2020). OT share a lot of similarities with
other systems which use tightly focused beams, including laser

scissors (Greulich, 2007, 2017; Difato et al., 2011; Berns, 2020)
and two photon photopolymerization systems (Grier, 2003;
Chizari et al., 2019). By using either different wavelengths, pulsed
beams, or simply turning up the laser power, OT systems can be
adapted for cutting cells, performing microsurgery (Berns, 2020),
and fabricating microstructures for use as probes or OT operated
micro-machines (Chizari et al., 2019).

3. OT IN NEUROSCIENCE

As discussed in the previous section, OT has proved to be
an efficient tool for the optical manipulation and probing of
transparent objects on the micro- and nanometer scale. These
capabilities are particularly profitable for research in biology,
where minimal disturbance of biological systems is required
and the visualization and quantification of properties and
dynamics is highly valuable. Consequently, shortly after the
introduction of OT in biology by Ashkin and Dziedzic (1987),
the first manipulations of cell organelles and chromosomes
were performed (Berns et al., 1989), and quickly, OT became
widely used in biology. OT can now be efficiently applied to
cells (Zhang and Liu, 2008), organelles (Morshed et al., 2020), and
molecules studies (Svoboda et al., 1993; Fazal and Block, 2011;
Ritchie and Woodside, 2015). Comprehensive reviews on the
application and evolution of OT in biology can be found in the
literature (Molloy and Padgett, 2002; Berns and Greulich, 2007;
Ashok and Dholakia, 2012; Difato et al., 2013; Favre-Bulle et al.,
2019). In this section, we will focus our discussion on how OT
can be applied to neurons (Kandel et al., 2000) and what valuable
information has OT brought to neuroscience research.

Neurons have soma ranging typically between 10 and 30
µm in size, synapse buttons of few microns in diameter,
and membrane receptors around 5 nm in size (Figure 4a).
At these size scales, OT is an ideal tool both for direct
manipulation of whole neurons (Townes-Anderson et al., 1998;
Pine and Chow, 2009) or for indirectly probing synapses
and receptors using auxiliary particles (Rodríguez, 2019) or
plasmonics (Miyauchi et al., 2016).

3.1. On the Molecular Scale
A simplistic model of neuronal functioning would state
that neurons compute information through the transport of
neurotransmitters and ions flow. However, the large variety
of molecules that influence the dynamics of neurons, or the
processing of neural information, is overwhelming. On the
molecular scale, these complex interactions remain largely
mysterious, and OT has proved to be an excellent tool to
probe structural dynamics and reveal some of the fundamental
interactions for a large variety of molecules,including chains
of nucleic acids, neural secretory molecules, receptors, and
membrane proteins (Wang et al., 1997; Zahn and Seeger, 1998;
Winckler et al., 1999; Imanishi et al., 2006; Neuman and Nagy,
2008; D’Este et al., 2011; Choudhary et al., 2018; Sonar et al.,
2020). The key advantages of using OT for the study of molecules
is its remarkable time and spatial resolution. High time resolution
is particularly essential in single molecule force spectroscopy and
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FIGURE 4 | Neuronal growth and dynamics. (a) Fluorescent imaging of a neuron highlighting the macrostructure of the growth cone. Adapted from Muñoz-Lasso

et al. (2020) (CC BY 4.0). (b) Neurite guidance by Sema3A released from a micrometer sized liposome from Pinato et al. (2012) (CC BY-NC-SA 3.0) (c) Axonal growth

between pairs of cone, rod or bipolar cells, placed in proximity with OT: Left column shows cells immediately after OT manipulation, middle column shows interactions

and axonal growth (blue arrows) after 3 days in vitro, and right column after 7 days in vitro; from Clarke et al. (2008) (CC BY-NC-ND 3.0).

allows to solve molecule kinetics and molecule binding otherwise
impossible to study.

Molecular dynamics, such as folding or binding processes,
depend on the structural arrangement and symmetrical
disposition of atoms, or, on the larger scale, of sub-parts of
the molecule. Advanced developments in OT have shown that
atomic-scale resolution can be achieved, allowing the precise
determination of structural changes (Kellermayer et al., 1997;
Zhang et al., 2013; Bustamante et al., 2020; Sonar et al., 2020).
A common method to observe such dynamics is to attach the
molecule of interest to an optically trapped bead (or beads)
and apply variable tension to the molecule by varying the bead
position. The bead acts as a “handle” for exerting optically
controlled forces. The other end of the molecule is either
attached to a fixed substrate or a second bead held in a separate
optical trap. As the molecule unfolds or changes its structural
state under the tension applied on its end, the force curve of the
trapped bead abruptly changes in a typical saw-tooth manner.
The quantification of these force measurements can provide
information such as the number of amino acid or nucleotides
involved, the number of states, as well as the full energy profile
of the molecule structural arrangements, which includes the
free energy of each state and the energy barriers between states.
One remarkable example of using this technique is the study
by Brower-Toland et al. (2002), where they measured the
successive release of individual nucleosomes in folded DNA.
Interestingly, the analysis of the force detection revealed that
a nucleosome is released in three steps, each step involving
a partial unwrapping of the DNA. An example of using OT
to reveal molecular dynamics for neuroscience is the study
of the folding mechanisms of NCS-1, an important protein
for neurotransmitter release. In a study by Heidarsson et al.
(2013), they used OT and molecular dynamics to study the
precise folding mechanism of the human NCS-1. The results
revealed two intermediate folding structures of NCS-1 induced
by calcium binding, and an interdomain folding dependence,

presenting NCS-1 as a complex folding mechanism, compared
to structurally related proteins.

A commonly used method based on OT to study the role
and effects of different types of molecules on neurons is the
manipulation of coated particles with the molecule of interest
and its positioning to precise locations on neurons (Giannone
et al., 2003; D’Este et al., 2011). An interesting example is the
study of the regulation of secretory molecules in neurons. D’Este
et al. (2011) used OT to hold micron sized particles coated with
brain-derived neurotrophic factor (BDNF): a neurotransmitter
modulator involved in neuronal plasticity and a mediator of
activity-dependent dendrite branching. They have been able to
coat particles with the secretory molecule and place them at
specific sites on the dendrites of cultured hippocampal neurons
of rat. The results show a significant increase of induced calcium
signaling in the stimulated dendrite over on a long time period
(up to 40 min), as well as an influence on the development of
neurons. These results present OT as an appropriate method
for a long-term and localized stimulation of specific sub-cellular
neuronal compartments.

Another interesting study is the investigation of diffusion
barriers in the plasmamembrane. Nakada et al. (2003) usedOT to
directly drag single molecules and verify the presence of diffusion
barriers in the axonal initial segment membrane from newborn
rats. The results proved that a diffusion barrier does exist, and
that this barrier is formed in neurons 7–10 days after birth.

3.2. Communication Modalities of Neurons
Another extremely active area of biology is the study of
information transport and communication modalities between
cells. Similarly, in neuroscience, great efforts are put into
revealing the precise temporal and spatial dynamics of
communication pathways in neurons. Neurons have been
found to receive and transmit information through mechanical
(mechanotransduction), electrical (action potential), and
chemical (neurotransmitters) signals.
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In a neuron-neuron communication scenario, the
action potential within a neuron triggers the release of
neurotransmitters to the next neuron, which changes the
membrane potential of the receiving dendrites, building up
toward either creating or suppressing an action potential
within the receiving neuron. OT has been able to provide
significant information to the investigation of neurotransmitter
transport dynamics.

Studies in this area have focussed on the main actor in
neurotransmitter release: synaptic vesicles (van Niel et al.,
2018). These spherical membrane structures encapsulate
neurotransmitters within axon terminals and fuse with the
presynaptic membrane to release neurotransmitter into the
synaptic cleft, thus influencing the physiology of the postsynaptic
dendrite. The temporal and spatial dynamics of vesicle-cell
interactions remains unclear, however, in a recent study by
Prada et al. (2018b), they used OT to directly manipulate
single extracellular vesicles produced by glia cells to study
glia-to-neuron interaction. In particular, they looked at the
transfer of miR-146a-5p: a protein involved in inflammation
and immune function which play a significant role in dendritic
spine formation and synaptic stability. Using OT, they moved
the vesicles onto neurons and studied the effect of miR-146a-5p
on dendrites and synapse population. They showed evidence
that prolonged exposure to the inflammatory vesicles leads
to a significant decrease in dendritic spine density which is
also accompanied by a decrease in the density and strength of
excitatory synapses. Prada et al. (2018a) later showed, using the
same method, the first direct evidence of glia-derived vesicles
fusion with the neuron plasma membrane, and that this fusion
also occurs along neuronal processes. These important findings
help elucidate the complex pathways of communication that are
mediated by vesicles. However, further studies on in vivomodels
are necessary as they would allow the tracking of vesicles at the
different stages of the process: through their biogenesis, transit
routes and, finally, their delivery.

Neurons can also respond to mechanical stimuli by
converting them into biochemical signals in a process known
as mechanotransduction. This process is of fundamental
importance for cells as they need to constantly adapt to the
continuous reorganization and mechanical stress from the
extra-cellular matrix and microenvironment. The importance
of mechanical cues in controlling cell function has been
acknowledged only recently (Handorf et al., 2015), and
significant studies in the area still need to be undertaken in
order to reveal the interactions among different mechanobiology
pathways, which at the moment appear as complex entangled
processes (Martino et al., 2018).

Since OT can apply forces and mechanical stimuli on the
micro scale, it can be used to study mechanotransduction in
cells (Wang et al., 2005) including neurons. Falleroni et al.
(2018) have optically manipulated particles in oscillatory optical
trap and applied piconewton forces perpendicularly to the
cell membrane of mouse neuroblastoma NG108-15. Using this
method they produced oscillatory membrane indentations and
induced biochemical responses in the mouse nerve cells. They
showed that very low levels of mechanical stress (5–20 pN)

are sufficient to induce biochemical responses such as cellular
calcium transients, and that the stimulus strength and the
number of pulses affected the responses.

Using the same method, Bocchero et al. (2020) applied
piconewton forces to rod cells in frogs. Interestingly, they showed
that rods express channels that can be activated by direct
mechanical stimulation, and are thereforemechanosensitive. Past
studies have shown that rods, under strong illumination, expand,
or shrink in length by few micrometers (Hardie and Franze,
2012; Lu et al., 2018), which indicates the existence of mechanical
machinery within rod cells. Using OT, Bocchero et al. (2020) have
therefore confirmed this hypothesis.

We further discuss the method of indentation with OT
in section 3.4 on mechanical properties of neurons. We also
discuss potential studies on mechanotransduction network in the
outlook (section 5).

3.3. Growth and Dynamics of Neurons
Developmental neuroscientists have spent decades describing
how neurons attain their mature architectures and identify their
synaptic partners. Neurons have been shown to grow, extend
their axons over great lengths, and wire up to neighboring
neurons and sensory organs in order to create an extremely
intricate computational network.

One fundamental question is how growing axons steer
toward their targets. In order to study such complex processes,
experiments are typically performed in-vitro and on very young
neurons (1–7 DIV), when neurons are in the developing
stage. One method recently used is the delivery of molecules
encapsulated in liposomes, manipulated with OT, and directly
delivered to neurons (Leung and Romanowski, 2012; Amin
et al., 2016; Nguyen et al., 2019). This method allows precise
delivery (micro to nano scale) with an amazingly precise number
of molecules released locally. Pinato et al. (2012) used this
method to study the effects of axon guidance molecules, such
as Sema3A and Netrin-1, on the dynamics of the growth cone,
a highly motile structure that controls the steering of the growing
axon. They found that <5 Netrin-1 molecules initiate growth
attraction, while 200 Sema3A molecules are necessary for growth
repulsion (Figure 4b). This method allowed a highly precise
delivery of molecules in space and in time, and can be used for
the study of the effects and interaction of any molecules with
neurons, with the exception of membrane-permeable molecules.

OT has also been used to investigate themechanical properties
of neurons’ membranes. While neurons are not expected to
be mechanically active, as muscles or fibroblast cells are, they
have been found to be surprisingly osmotically and mechanically
resilient, undergoing dramatic shape and volume changes (Bray
et al., 1991; Wan et al., 1995). A tension hypothesis for surface
area regulation in cells is “When membrane tension goes
high locally, [surface area] is added locally from widespread,
mechanically accessible endomembrane reserves. When tension
goes low locally, excess [surface area] is retrieved locally” (Morris
and Homann, 2001). While some studies have relied on surface
deformation to support this hypothesis (Waugh et al., 1992;
Evans and Yeung, 1994), Dai et al. (1998) have used OT to
directly measure the tether force on a particle attached to the
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membrane surface mollusc neurons. As neurons were shrinking
and swelling over time, the changes in forces were measured
with OT and the membrane tension was calculated. The results
suggest that the variations in membrane bending stiffness during
cell swelling and shrinking was constant, however, the tether
forces dramatically increased with swelling and decreased with
shrinking (Dai et al., 1998), supporting the tension hypothesis for
surface area regulation.

In the Dai and Sheetz (1995) study, they used coated
spheres to probe the growth cone membrane in order to
determine the tether forces and membrane viscosity. The
results also demonstrated that actin cytoskeleton affects the
viscoelastic behavior of the membrane but also the force
required for membrane extension. These results shed new
light on our understanding and quantification of the neuronal
membrane mechanical properties. Similar studies using this
method followed, clarifying the tethering and growth processes
taking place (Li et al., 2002; Ermilov et al., 2004; Nussenzveig,
2018; Hochmuth et al., 2020; Soares et al., 2020).

Further probing of neuronal cytoskeleton physical
properties with OT includes the study of the dynamics and
the measurements of forces exerted by lamellipodia and
filopodia (Cojoc et al., 2007), cytoplasmic projections at the
extreme edges of the growth cone (Figures 4a,b), which probe
the rigidity and composition of the environment. Remarkably,
Amin et al. (2011) have used OT to identify the elementary events
of lamellipodia dynamics. Looking at the Brownian motion of
optically trapped beads attached to lamellipodial membrane,
they measured the distribution of the beads’ velocities, and
calculated the “jumping” times to be between 0.1 and 0.2 ms.
They also measured the frequencies and amplitudes of those
jumps and measured their changes in the presence of different
molecules. Another interesting example is a study by Cojoc
et al. (2007), where they placed a trapped bead against isolated
filopodia and lamellipodia and measured single filopodial forces
not exceeding 3 pN, and lamellipodial forces of at least 20
pN. These results proved that an isolated filopodium does not
have the capacity to alter the environment, which explains why
it changes its direction of growth when encountering large
objects. Lamellipodia on the other hand, can apply substantial
forces, and can move or lift large structures in order to grow
further in a chosen direction. While filopodia simply explore
their environment, lamellipodia can exert significant forces to
mechanically modify the environment and facilitate the growth
of axons.

It is worth noting that other methods to study neuronal
growth involve the direct guidance of growth with OT by
placing optical traps near a lamellipodium and optically pulling
it (Ehrlicher et al., 2002; Mohanty et al., 2005; Carnegie et al.,
2008; Graves et al., 2009). However, this approach may be
confounded by the effects of heating by the laser beams used
for OT; it is disputed whether the neuron’s guidance is due to
thermal effects rather than an optical force gradient (Stevenson
et al., 2006; Ebbesen and Bruus, 2012). While OT may apply
optical gradient forces on neuronal axons toward the trap focus,
the heat generated within the trap focus may also trigger a
biochemical signaling cascade due to the heating of the cell

membrane, which results in a chemical guidance of cell growth
(Henley and Poo, 2004).

A less direct method of neuronal guidance is the creation
of localized microfluidic flow using OT (Wu et al., 2011). By
changing the rotation direction and location of a trapped particle,
Wu et al. (2011) have been able to create a local flow around
the particle and consequently a shear force that influenced the
growth cone’s development, showing that the environmental
dynamics are influencing neuronal growth.

While neuronal growth can be influenced and guided by
physical or chemical factors, neurons have shown preferences
in their connectivities. Clarke et al. (2008) have optically
manipulated retinal neurons with OT, and have shown that cone
and rod cells have different target preferences. Using OT, they
isolated retinal cells and formed pairs of first order photoreceptor
cells (rods and cones) with second or third order neurons. By
analyzing the direction and amount of neuritic growth, they
found significant differences in cone and rod cells’ intrinsic
preferences (Figure 4c), which could help explain the natural
patterning of photoreceptors on the retinal layers.

3.4. Mechanical Properties of Neurons
Another essential research area in neuroscience is the
investigation of morphological development of the brain
and responses to injury. Recent studies suggest that
the mechanical properties of the brain deeply influence
neurodevelopment (Bayly et al., 2014; Budday et al., 2014), and
are correlated with developmental disorders such as lissencephaly
and polymicrogyria, where brain folding are abnormally reduced
or increased (Raybaud and Widjaja, 2011), brachycephaly and
plagiocephaly, where the brain has a flat or asymmetric shape
(Hutchison et al., 2004).

To understand the mechanisms that drive neurodevelopment
and cause neurological disorders, it is essential to understand
the biomechanics, or rheological differences between healthy
versus unhealthy brains, as well as differences within brain
regions. While indentation methods have been used to physically
deform brain slices in order to measure the physical response,
stiffness, and elasticity of specific areas of the brain (Budday
et al., 2015; Antonovaite et al., 2018), this method lacks
precision and the capability to perform measurements in
vivo. More precise and recent techniques such as atomic
force microscopy, micropipettes, optical tweezers, magnetic
tweezers, and uniaxial stretchers, have allowed great progress
into mechanotransduction pathways studies (Huang et al., 2004;
Chighizola et al., 2019) (Figure 5A). Amongst these methods, OT
offers the advantage of being non-invasive, applying comparively
large forces, being able to probe cells in a 3D scaffold
environment and precisely measuring forces in 3D space (Nawaz
et al., 2012; Capitanio and Pavone, 2013; Pontes et al., 2013;
Arbore et al., 2019; Li et al., 2020). Very recently, Dagro et al.
(2019) used optically trapped silica beads to deform cell surfaces
and measure their stiffness and elasticity. They successfully
measured the elastic properties, at both high and low strain rates,
of glial cells, opening a new avenue for the precise measurement
of the mechanical properties of brain tissue.
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FIGURE 5 | Measuring and modeling the mechanical properties of neurons. (A) Examples of force-application techniques used to probe the rheological properties of

cells or to apply well-defined external loads, reproduced from Mohammed et al. (2019) (CC BY 4.0). (B) Model of elastic networks and viscous dampers in the brain.

From Budday et al. (2020) (CC BY 4.0). (C) Storage (G′) and Loss modulus (G′′) measurements in different models (including human, monkey, calf, porcine, bovine).

From Forte et al. (2017) (CC BY 4.0).

In the case of traumatic brain injuries, the leading cause
of death and disability in children and young adults, there is
an increasing need for a better understanding of the process
of injury development in the brain, and the development of
effective protective measures. In recent years, an effort to
better understand traumatic brain injury dynamics has been
undertaken, involving computational models of the head and
brain. In particular, the measurement of the stiffness of the brain
tissue has been thoroughly investigated by measuring the storage
modulus (G′ or elastic portion of the modulus) and loss modulus
(G′′ or viscous portion of the modulus) of the brain using
mechanical techniques such as compression or shear quasi-static
methods (Chatelin et al., 2010; Budday et al., 2020). However,
the lack of accurate datasets and differences in brain mechanical
property measurements have complicated the development of
realistic models (Figures 5B,C). While we can explain these
value variations as being caused by tissue heterogeneity, brain
anisotropy, species differences, age variations, or differences in
experimental parameters, a new method for precisely measuring
brain biomechanics remains of great interest.

Magnetic Resonance Elastography (MRE) has been popular
because it is non-invasive, and allows measurements from a
living organism. However, this method lacks spatial resolution,
which results in poor measurement accuracy and high variance
for small regions of the brain (Johnson et al., 2016). A solution
for this spatial accuracy limitation is the use of FOTs, a method
which also has limited experimental variation. In a recent study
by Chiang et al. (2019), they have fabricated and optimized

FOTs for brain tissue mechanical stiffness measurements and
obtained three reliable data sets for white matter that agree with
published results. This newmethod should be considered actively
in this area.

3.5. Probing Sensory Structures and
Whole-Brain Networks
On the larger scale, we know that the brain constantly senses
stimuli, processes information, and makes predictions based on
the physical environment. Numerous studies in this area have
allowed great advances in the determination of the brain regions
involved in sensory perception and processing. However, the
full information processing network is currently a mystery and
therefore of great interest.

In particular, efforts have been made into the study of
mechanotransduction of neurons, which use specific organelles
(hair cells for instance) to detect a wide range of mechanical
forces and frequencies, and are the origin of crucial senses
such as hearing, touch, proprioception, and noxious mechanical
sensation. While indentation pipettes, pressure jets with a
pipette, or microfluidics, are used to pull and push cells to
provide local mechanical stimulation (McCarter et al., 1999;
Sánchez et al., 2007; Desmaële et al., 2011; Thompson et al.,
2016; Vanwalleghem et al., 2020), OT is, once again, highly
desirable as it has the advantage of a very precise probing,
provides simultaneous measurement of the applied force and
deformation (Mohammed et al., 2019), and, as mentioned before,
is totally contact free. In particular, past studies have used OT
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FIGURE 6 | Optical manipulation of mechano-receptors. (A) Top: Schematic of a mechanical wave (blue) traveling through zebrafish inner ear and vibrating sensory

organs (black arrows). Bottom: Schematic of OT manipulating selectively one sensory organ within the inner ear and producing a similar vibration to a mechanical

wave. Reproduced from Favre-Bulle et al. (2020) (CC BY-NC-ND 4.0). (B) Distribution of neurons involved in vestibular processing in larvae zebrafish brain. Left: Top

view of whole brain. Right: coronal view of specific sections of the brain, adapted from Favre-Bulle et al. (2018), Copyright 2018, with permission from Elsevier.

to stimulate mechanoreceptors (Li et al., 2002; Ermilov et al.,
2004; Rodríguez, 2019), revealing their response characteristics,
as well how their mechanical properties change in presence of
chemicals or variable electrical potentials. As an example, Li
et al. (2002) used optically trapped polystyrene beads tethered to
the membranes of outer hair cells to measure their mechanical
characteristics. They found the average force to and from a
plasma membrane tether at the lateral wall of the hair cell to be
large: 499± 152 pN; about 3.5 times greater than that at the basal
end of the cell: 142± 49 pN. These results are consistent with the
presence of a more extensive cytoskeleton supporting the plasma
membrane at the site of the lateral wall.

These studies, however, were done in vitro and did
not interrogate the full brain and network. In our recent
studies (Favre-Bulle et al., 2017, 2018, 2020; Taylor et al., 2018),
we have successfully applied forces to zebrafish otoliths: ear-
stones located in the inner ear. In particular, we have been able
to apply OT to each of the four otoliths of 6 days old zebrafish
embryo (Figure 6A), and study the behavior (tail bends and eyes
rolls) and brain activity in response to individual or multiple
otoliths optical manipulation in experiments up to 30 min in
length. This was performed by combining OT with bright field
imaging and Selective Planar Illumination Microscopy (SPIM).
Since the utricular otolith is known to be the main actor in
the detection of acceleration, we have applied OT to the utricle
otolith with different directions and magnitudes. Interestingly,

we have shown that the fish was compensating behaviorally for
the perceived, but non existing, body acceleration. By activating
only one ear with OT, a manipulation that is not possible with
natural sound, we have also shown that the neuronal network
of individual ears project to the contralateral ear, as previously
shown in different models, and that responsive neurons showed
responses profile dependent on OT configuration across whole
the brain (Figure 6B). The saccular otolith, on the other hand, is
known to be deeply involved in the detection of sound. We have
modified our OT system to allow higher frequencymanipulations
(10 Hz to 1 kHz) to produce Bio-Opto-Acoustic (BOA) stimuli
(Figure 6A). Using the BOA technique, we have shown that we
can displace all of the four ear-stones at a chosen frequency,
that stimulate the neurons responding to natural tones. We have
also revealed the integration and cooperation of the utricular
and saccular otoliths, which were previously described as having
separate biological functions, during hearing.

In other words, by combining OT with Selective Planar
Illumination Microscopy (SPIM), we have been able to simulate
acceleration and sound at variable frequencies, and therefore
replicate natural vestibular and auditory stimuli (Figure 6A
and Favre-Bulle et al., 2018, 2020). Since OTs offer high spatial
precision, we could manipulate single elements of the inner ear
and precisely map the neural networks that responded, providing
important information about the separate and shared circuits
involved in hearing and vestibular perception.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 11 November 2020 | Volume 8 | Article 602797

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Lenton et al. Optical Tweezers Exploring Neuroscience

4. HOW FAR COULD OT GO IN
NEUROSCIENCE?

OT, although only recently applied in neuroscience, has
already provided valuable insights into the functioning and
behavior of neurons on scales from whole organisms down
to single molecules. Despite these successes, there are still
several limitations preventing the broader use of OT in
neuroscience. Current limitations are largely related to their
use in vivo, which requires controlled and precise OT deep
in the turbid and dynamic medium of the brain. In this
section, we describe recent advances in optics and computation
that could be useful for designing the next generation of OT
neuroscience experiments.

4.1. Fiber Optical Tweezers (FOT)
Although FOT is not new (Constable et al., 1993), recent
advances could make FOT a promising candidate for optical
trapping deep within the brain. Much like a regular endoscope,
FOT can be used to perform in vivo measurements while
being minimally invasive. Unlike regular OT, FOT could be
used to trap particles deep within the brain or for precise
trapping near regions that could be damaged by regular
OT. Most FOTs have a low numerical aperture, making it
difficult to three-dimensionally trap a particle with a single
FOT. In the future, this limitation may be circumvented using
different types of fibers such as hollow core (Garbos et al.,
2011; Bykov et al., 2015; Peng et al., 2020), or graded index
fibers (Gong et al., 2013), and multimode fibers (Čižmár and
Dholakia, 2011), as well as fibers with lenses (Li et al., 2016),
plasmonic structures (Rodrigues Ribeiro et al., 2017), or photonic
lanterns (Velázquez-Benítez et al., 2018) in order to extend the
possible trapping configurations.

Recent advances in imaging through multimode
fibers (Vasquez-Lopez et al., 2018) and computational tools that
allow real-time beam shaping in multimode fibers (Plöschner
et al., 2014) could be used to trap particles or structures deep
within the brain (Čižmár and Dholakia, 2011). One of the
main hurdles to overcome with imaging and trapping using
multimode fibers is the sensitivity of the fiber to variations in
temperature, pressure, or deformation, which can adversely
affect the trapping or imaging quality. One alternative would
be to use a rigid structure, such as a cannula (Kim et al.,
2017), to reduce the sensitivity to environmental conditions,
although this approach would be more intrusive and reduce
the flexibility of the technique. Another alternative would be to
continuously calculate the fiber’s transfer matrix, which describes
light transmission through the fiber. This could be done by using
an approach similar to a guide star in adaptive optics: by placing
a nano-particle or another suitable structure at the tip of the
optical fiber, the experimenter gains a reference for calibrating
the structure of the output light (Gu et al., 2015).

4.2. Computational Modeling
Computational modeling is an important tool for designing
optical traps, understanding optical forces and torques,
and modeling the dynamics of objects. Advances in

computational power, availability of efficient and easy
to use computer codes, and advances in algorithms for
optimization and numerical modeling have all been beneficial to
OT development.

Open source repositories, such as GitHub, make it easy
to share and collaborate on computer codes for controlling
and simulating SLMs (Bowman et al., 2017; Lambert,
2017; Aakhte, 2018; Lenton, 2020b), simulating optical
tweezers (Herranen et al., 2020; Lenton, 2020a,c), and calculating
light scattering (Roundy, 2020; Yurkin, 2020). For example,
OTSLM (Lenton, 2020b; Lenton I. C. D. et al., 2020b) is
a collection of simple patterns, iterative algorithms, and
simulation methods for designing and modeling SLM patterns
with a focus on OT. While many of the phase or amplitude
patterns used to create structured light fields with SLMs in
OT can be implemented with simple parametric functions (see
Figure 3) or using iterative algorithms consisting of only a few
lines of code (e.g., the Gerchberg–Saxton algorithm), it can still be
very time consuming to search the literature for, and implement,
these different patterns. Further still, implementation of more
complex algorithms can be very difficult and time consuming,
even when code is provided as supplementary material to the
research papers describing the algorithm. The goal of OTSLM is
to provide a free and open source repository for algorithms and
patterns used in OT with examples, supporting documentation,
a somewhat consistent interface, and freely available source code
that anyone can use and contribute to.

While a major part of designing optical fields for OT
is concerned with light shaping, another important part is
calculating how a particle will orient itself in the optical field. This
typically involves calculating the optical forces/torques that act
on the particle and finding the equilibrium position/orientation.
The most popular methods for calculating optical forces/torques
in conventional OT are the T-matrix method (Nieminen
et al., 2007; Herranen et al., 2017; Lenton, 2020a), geometric
optics (Callegari et al., 2015), and for small weakly scattering
particles, the dipole approximation or other zero-scattering
approximations (Phillips et al., 2014). Recent advances
have focused on combining these tools with dynamics
simulations (Herranen et al., 2017; Lenton et al., 2018) and
methods for calculating the non-optical forces such as the
fluid dynamics or deformation of particles (Dao et al., 2003;
Tapp et al., 2014). Simulating particles near walls, at the tip
of optical fibers (i.e., FOT) or near plasmonic structures is
often more complicated, and tools such as finite difference time
domain (Yee, 1966; Benito et al., 2008; Lenton et al., 2017),
discrete dipole approximation (Oskooi et al., 2010; Loke et al.,
2011; Yurkin and Hoekstra, 2011), surface integral methods (Ji
et al., 2014), or commercial packages such as COMSOL (Zhang
et al., 2016; 2020a) and Lumerical (David et al., 2018; 2020b)
are often used. Recent developments in machine learning have
led to faster methods of simulating particles in OT (Lenton I.
C. D. et al., 2020c), and faster hybrid algorithms for optimizing
and simulating light scattering (Jiang et al., 2020). These
advances could be useful in designing optical potentials that
optimize certain OT properties such as trap stiffness and
particle orientation.
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4.3. Wavefront Shaping
While computational tools have enabled more intricate beams
and OT beam shapes, the problem remains of how to project
these traps deep within biological tissue. One of the main
limitations of conventional OT for trapping within biological
material is the nature of the biological matter itself. While
organelles and membranes define the structure and function
of cellular tissue, their irregularities and heterogeneities cause
light distortions, rapidly degrading the light used for trapping
or imaging. This makes it difficult to image or trap using
conventional OT when samples are more than a couple of
micrometers thick. For trapping of live cells and trapping in vivo,
the problem is made more complicated as the tissue continuously
evolves and changes. These are major problems both for imaging
and optical trapping, and correspondingly there are numerous
studies that explore different solutions (Park et al., 2018).
Most of the methods used to deal with these problems were
originally developed for imaging and then later applied to OT.
Techniques for imaging in low-order scattering environments,
such as C. elegans and zebrafish embryos, include optical
coherent tomography (Huang et al., 1991), two-photon (Denk
et al., 1990) and three-photon (Schrader et al., 1997; Rowlands
et al., 2016) microscopy, and adaptive optics (Booth Martin,
2007). In high-order scattering environments, such as
mice, wavefront shaping (Vellekoop and Mosk, 2007) and
guided star based methods (Horstmeyer et al., 2015), speckle
correlation (Bertolotti et al., 2012; Katz et al., 2014), scattering
matrix measurement (Popoff et al., 2010; Choi et al., 2011),
and various holographic techniques (Papadopoulos et al., 2016)
are used to precisely reconstruct an image. The problem of
generating a high-resolution image is very similar to creating a
tightly focused optical trap; as such, these methods have been
applied to OT (Dholakia and Čižmár, 2011; Zhong et al., 2017)
and later to neuroscience (Shoham, 2010; Yoon et al., 2020).

A recent method, called focus scanning holographic
aberration probing (F-sharp), has given promising results
for neuroscience. This method is minimally invasive. It is
based on holography and involves measuring the phase and
amplitude of the scattered electric-field point spread function
in order to determine the wavefront correction. Recent
results (Papadopoulos et al., 2020) show imaging of neuron
bodies, and partial axons, located 400 µm under a thinned skull
of 5-week-old mice. While this method has thus far been used to
improve imaging in mice, it should also improve capabilities in
imaging and optical manipulation in adult zebrafish and other
animals with similar sized brains.

Another difficult problem in wavefront shaping is optimizing
patterns that selectively illuminate certain areas while not
illuminating others. When trapping biological material or
combining OT with other imaging techniques, it may be
necessary to avoid illuminating certain regions of a sample to
avoid, for example, heating, photodamage, or photobleaching.
For conventional OT, one solution is to create beams using
an SLM and an appropriate iterative algorithm that optimizes
some function describing both regions where light should be and
regions that should remain dark. As mentioned earlier, advances
in faster simulations could be useful for optimizing with respect

to the optical trap properties in addition to optimizing for the
shape of the light field. These sorts of optimizations can be limited
by the models used for describing the environment surrounding
the particle. Another alternative is to use more localized optical
fields, such as plasmonic tweezers or FOT.

4.4. Force Measurement
As discussed in previous sections, OT is a valuable tool for
measuring the forces exerted by various cells and membranes,
for example Cojoc et al. (2007) and Dai and Sheetz (1995).
Force measurements with OT are useful for determining
other mechanical properties such as the mechanical stiffness
or viscoelasticity of various cells and their surrounding
environments. There are numerous methods for measuring the
force, most involving assumptions about the trap shape (such
as assuming a linear restoring force), calibrating using a known
force, or collecting a significant portion of the scattered light
in order to directly estimate the force from the scattering
distribution (Jun et al., 2014; Thalhammer et al., 2015; Bui
et al., 2018). When trapping and measuring particles deep
inside samples, it is not always possible to use the same force
measurement techniques: thicker samples can lead to larger
aberrations affecting the trap shape, it may not be possible
to generate a known force for calibration, and a significant
portion of the light may be absorbed or not be measurable. The
main solutions to these problems are related to the advances in
FOT, computational modeling and wavefront shaping that have
been previously discussed. For example, the effect of aberrations
(which can negatively affect how both the shape of the optical
potential and measurements of the scattering distribution) could
be reduced by reducing the distance between the particle and
the lens using FOT or using adaptive optics to compensate for
the distortion.

Another cognate advancement that has important
implications for force measurements is the recent advance
in algorithms and the application of machine learning to
particle tracking and recognition (Helgadottir et al., 2019;
Fränzl and Cichos, 2020; Rose et al., 2020). Packages such
as DeepTrack (Helgadottir et al., 2019, 2020) allow for fast
accurate tracking and classification of particle mixtures. Force
measurement techniques that involve measuring the position
of a particle in the optical trap can greatly benefit from these
improved algorithms for particle tracking. Although position
based force estimation often assumes a linear potential, it is
also possible to apply these same techniques when position and
force do not have a linear relationship. This usually involves
using the thermal motion of the particle to calibrate the optical
potential. Methods such as FORMA (García et al., 2018; García,
2019) enable estimation of both the conservative and non-
conservative parts of the optical potential. When the scenario
can be accurately modeled, it is sometimes possible to fit the
available experimental measurements to the model in order to
estimate the optical force. These kinds of computational models
require precise information about the particle properties and the
properties of the surrounding material as well as enough data
and fast enough simulations to be able to fit the experimental
measurements to the model. Recent studies have looked at
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different methods for fitting models to experimental data both
in the damped and underdamped regime (Brückner et al., 2020;
Frishman and Ronceray, 2020). The amount of information that
can be extracted from the Brownian motion of a particle was
recently considered by Frishman and Ronceray (2020).

For photonic force microscopy, one of the main limitations
is related to the properties of the optical probe and how easily it
can be trapped and orientated. The resolution of photonic force
microscopy is largely related to the size and shape of the probe:
large probes have low resolution due to the large contact area with
the sample but are less affected by thermal motion and are easier
to trap/detect; while small probes can achieve higher resolution
due to the smaller contact area but at a cost of a lower signal
to noise ratio from weaker trapping and larger effects of thermal
noise. One solution is to use large non-spherical probe particles
with very finite tips (similar to the tips used in atomic force
microscopy). Recently, Desgarceaux et al. (2020) demonstrated
that large numbers (∼ 107 probes per batch) of similar probes
which a diameter of almost 2 µm and a pointed tip of 35nm
can be fabricated and stably trapped, allowing high resolution
and low signal to noise measurement of the surface structure of
a infected red blood cell. This same approach could be applied
to scanning force measurements of cells and membranes in a
neurological context.

4.5. Molecular Studies With OT
Most current studies of molecules involved in brain function
involve using OT in vitro, either using probe particles attached
to molecules (Capitanio and Pavone, 2013), or plasmonic devices
for label-free OT (Huang and Yang, 2015; Choudhary et al.,
2019). For label based approaches, most advances will likely come
from advances in sensing and functionalization of biomolecules,
extending the range of molecules that can be trapped and sensed.
Trapping and sensing inside cells, or deep within the brain, can
be difficult for label based methods since it requires inserting
a suitable probe/label into the environment. Hollow core FOT
could be useful for delivering plasmonic particles for use as
probes (Garbos et al., 2011), the FOT could then be used for
subsequent trapping/sensing. Another solution is to use label-
free trapping and sensing using plasmonic OT in combination
with FOT (Ehtaiba and Gordon, 2018, 2019), in order to create
traps/sensors that could potentially be inserted deep into a
sample or integrated into a lab on a chip platform. Another
recent development is optical tweezers-in-tweezers, consisting of
a plasmonic OT held in place by a regular OT (Ghosh and Ghosh,
2019; Wills, 2019). This method could be useful for the precise
delivery of molecules to neurons, and be an alternative to the
method demonstrated by Pinato et al. (2011) who used micro
bubbles to deliver molecules to neurons.

5. OUTLOOK

Most of themethods and techniques discussed in this review have
been implemented in vitro for the study of small scale effects.
However, with currently emerging technologies, we can foresee
these studies moving in vivo with visualization of localized
stimulation effects on the large scale. Currently, Drosophila, C.

elegans, D. translucida, zebrafish, as well as hydra and brain
organoids (if we consider loose neuron systems), are models
where existing technologies have allowed whole brain imaging
with cellular resolution. Therefore, we can imagine studies where
the full neuronal network of senses is recorded while delivering
localized stimulation. An example of possible studies is the
determination of mechanotransduction systems networks, such
as touch. C. elegans have six touch receptor neurons scattered
around its body. We can imagine the manipulation with OT of
these touch receptor neurons, individually or in concert, and the
simultaneous imaging of the full neuronal network. Similarly,
we can imagine the manipulation with OT of hair cells around
a zebrafish embryo. These possible studies would allow great
advances in the determination of the network for touch and
flow sensing.

Another interesting area is the investigation of the brain-
gut axis. Very recently, Kaelberer et al. (2018) have found
enteroendocrine cells in mice that project into the vagal nerve,
thereby communicating with the central nervous system. While
the enteric nervous system was originally believed to transmit
information to the central nervous system via hormones, this
study revealed amore direct circuit for gut-brain signaling.While
the gut-brain relationship is an active area of research using more
traditional approaches (Ezra-Nevo et al., 2020; Spencer and Hu,
2020), we can imagine combining OT with wavefront shaping
to manipulate bacteria and nutrients in the digestive system or
the nerve cells lining the gut, and imaging the brain activity
simultaneously. These studies would allow the precise study of
bacteria-nutrients-enteroendocrine interactions, as well as their
repercussions on brain activity, brain states, and behavior.

OT has already been invaluable in neuroscience,
enabling various studies on neuronal growth, function, and
communication on a molecular, cellular, and whole organism
scale. Further still, the future is bright for OT in neuroscience. As
advances in optics, computation, and OT techniques gradually
make their way into neuroscience, we can expect OT to become
more prominent in the field, especially for in vivo studies in
larger models. The combination of OT and adapted wavefront
shaping will allow the achievement of OT deeper than ever in
biological organisms and will likely lead to in vivo studies in
adult zebrafish and mice. Advances in plasmonics are leading to
label-free trapping and sensing of a greater range of molecules.
Combined with FOT or tweezers-in-tweezers technologies, these
tools could lead to applications of optical trapping and sensing
deep within the brain, or very precise delivery of molecules and
proteins directly to parts of neurons.

One of the major advantages of OT is how easily it
can be combined with other techniques such as magnetic or
acoustic trapping techniques for applying larger scale forces, or
different imaging and microscopy techniques. Further advances
in plasmonics, fibers, and wavefront shaping will be important for
combining OT with other imaging or manipulation techniques,
such as for selectively illuminating certain regions of a sample or
to enable tweezers in locations where conventional OT systems
simply wouldn’t fit. OT continues to learn and borrow from
other fields, incorporating advances in adaptive optics and light
shaping techniques frommicroscopy and consequently achieving
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greater resolution, improved trapping, and greater accuracy. At
the same time, with advances in force measurement techniques
using computational models or with detectors that measure the
momentum distribution of the scattered light, we expect OT
measurements to become more precise and more flexible. As
the flexibility of OT and range of measurements that can be
performed with OT continues to advance, we can expect these
technologies to continue to be adapted for studying different
aspects of the brain and its function.
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Heckenberg, N. R., et al. (2007). Optical tweezers computational toolbox. J. Opt.
A 9, S196–S203. doi: 10.1088/1464-4258/9/8/S12

Nussenzveig, H. M. (2018). Cell membrane biophysics with optical tweezers. Eur.
Biophys. J. 47, 499–514. doi: 10.1007/s00249-017-1268-9

Oskooi, A. F., Roundy, D., Ibanescu, M., Bermel, P., Joannopoulos, J. D.,
and Johnson, S. G. (2010). Meep: a flexible free-software package for
electromagnetic simulations by the FDTD method. Comput. Phys. Commun.
181, 687–702. doi: 10.1016/j.cpc.2009.11.008

Palima, D., Aabo, T., Bañas, A., and Glückstad, J. (2015). “Cell handling,
sorting, and viability,” in Photonics (John Wiley & Sons, Ltd), 197–237.
doi: 10.1002/9781119011804.ch6

Pang, Y., and Gordon, R. (2012). Optical trapping of a single protein. Nano Lett.
12, 402–406. doi: 10.1021/nl203719v

Papadopoulos, I. N., Jouhanneau, J.-S., Poulet, J. F. A., and Judkewitz, B. (2016).
Scattering compensation by focus scanning holographic aberration probing
(F-SHARP). Nat. Photon. 11, 116–123. doi: 10.1038/nphoton.2016.252

Papadopoulos, I. N., Jouhanneau, J.-S., Takahashi, N., Kaplan, D., Larkum, M.,
Poulet, J., et al. (2020). Dynamic conjugate F-SHARP microscopy. Light Sci.
Appl. 9, 1–8. doi: 10.1038/s41377-020-00348-x

Park, J.-H., Yu, Z., Lee, K., Lai, P., and Park, Y. (2018). Perspective: wavefront
shaping techniques for controlling multiple light scattering in biological tissues:
toward in vivo applications. APL Photon. 3:100901. doi: 10.1063/1.5033917

Peng, L., Li, J., McLaughlin, R. A., Ebendorff-Heidepriem, H., and Warren-Smith,
S. C. (2020). Distributed optical fiber sensing of micron-scale particles. Sens.
Actuat. A 303:111762. doi: 10.1016/j.sna.2019.111762

Pesce, G., Volpe, G., Maragó, O. M., Jones, P. H., Gigan, S., Sasso, A., et al. (2015).
Step-by-step guide to the realization of advanced optical tweezers. J. Opt. Soc.
Am. B 32, B84–B98. doi: 10.1364/JOSAB.32.000B84

Phillips, D. B., Padgett, M. J., Hanna, S., Ho, Y.-L. D., Carberry, D. M., Miles, M.
J., et al. (2014). Shape-induced force fields in optical trapping. Nat. Photon. 8,
400–405. doi: 10.1038/nphoton.2014.74

Pinato, G., Cojoc, D., Lien, L. T., Ansuini, A., Ban, J., D’Este, E., et al. (2012). Less
than 5 Netrin-1 molecules initiate attraction but 200 Sema3A molecules are
necessary for repulsion. Sci. Rep. 2:675. doi: 10.1038/srep00675

Pinato, G., Raffaelli, T., D’Este, E., Tavano, F., and Cojoc, D. (2011). Optical
delivery of liposome encapsulated chemical stimuli to neuronal cells. J. Biomed.

Opt. 16:095001. doi: 10.1117/1.3616133
Pine, J., and Chow, G. (2009). Moving live dissociated neurons with

an optical tweezer. IEEE Trans. Biomed. Eng. 56, 1184–1188.
doi: 10.1109/TBME.2008.2005641

Plöschner, M., Straka, B., Dholakia, K., and Čižmár, T. (2014). GPU accelerated
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