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Abstract

The most widespread measures of human brain activity are the blood-oxygen-level depen-

dent (BOLD) signal and surface field potential. Prior studies report a variety of relationships

between these signals. To develop an understanding of how to interpret these signals and

the relationship between them, we developed a model of (a) neuronal population responses

and (b) transformations from neuronal responses into the functional magnetic resonance

imaging (fMRI) BOLD signal and electrocorticographic (ECoG) field potential. Rather than

seeking a transformation between the two measures directly, this approach interprets each

measure with respect to the underlying neuronal population responses. This model accounts

for the relationship between BOLD and ECoG data from human visual cortex in V1, V2, and

V3, with the model predictions and data matching in three ways: across stimuli, the BOLD

amplitude and ECoG broadband power were positively correlated, the BOLD amplitude and

alpha power (8–13 Hz) were negatively correlated, and the BOLD amplitude and narrowband

gamma power (30–80 Hz) were uncorrelated. The two measures provide complementary

information about human brain activity, and we infer that features of the field potential that are

uncorrelated with BOLD arise largely from changes in synchrony, rather than level, of neuro-

nal activity.

Author summary

There are several methods for measuring activity in the living human brain. Here, we

studied functional magnetic resonance imaging (fMRI), which depends on the vascular

response to neuronal activity, and surface field potentials, which measure electrical activ-

ity from many neurons. These two widely used measurements of human brain activity

often provide different and potentially conflicting results. We propose a quantitative

model for how these two measurements integrate activity from neuronal populations. The

fMRI signal is highly sensitive to the average level of local neuronal activity but not the
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degree of synchrony between neurons. In contrast, the field potential is most sensitive to

synchronous neuronal signals. Our model accounts for several observations seen in fMRI

and field potential data: some very large features of field potential recordings, such as

gamma oscillations, can occur with little to no associated fMRI signal. The model predicts

this because the gamma oscillations result more from increased neuronal synchrony than

increased neuronal activity. Other field potential signals, such as broadband changes,

which are likely driven by the level of neuronal activity rather than a change in synchrony,

are highly correlated with fMRI. The two measures thus provide complementary informa-

tion about human brain activity.

Introduction

Most measurements of activity in the living human brain arise from the responses of large

populations of neurons, spanning the millimeter scale of functional magnetic resonance imag-

ing (fMRI) and electrocorticography (ECoG) to the centimeter scale of electro- and magneto-

encephalography (EEG and MEG). Integrating results across methods is challenging because

the signals measured by these instruments differ in spatial and temporal sensitivity, as well as

in the manner by which they combine the underlying neuronal population activity [1–3]. Dif-

ferences in scale can be partially bridged by bringing the measurements into register. For

example, EEG and MEG sensor data can be projected to cortical sources subject to constraints

from simultaneously recorded fMRI data [4] or from independent fMRI localizers [5], and

ECoG electrodes can be aligned to a high-resolution anatomical MRI image [6] and compared

to the local fMRI signal.

Yet, even when electrophysiological and fMRI data are spatially registered, striking differ-

ences in the sensitivity to stimulus and task are often observed, indicating differences in how

neuronal responses contribute to the measured physiological signals. For example, the fMRI

blood-oxygen-level dependent (BOLD) signal and EEG evoked potentials differ in which brain

areas are most sensitive to visual motion (area MT+ with fMRI [7] versus V1 and V3A with

EEG [8]). Within the same visual area, fMRI and source-localized EEG evoked potentials can

show different effects of task in similar experimental paradigms, such as the effect of spatial

attention on the contrast response function (additive in fMRI [9], multiplicative in EEG [10]).

Even when the spatial scale of the two signals is approximately matched at acquisition, such as

ECoG electrodes and fMRI voxels (both at approximately 2 mm), systematically different pat-

terns of responses can be obtained, such as compressive spatial summation in fMRI versus

nearly linear summation in ECoG steady-state potentials (but not ECoG broadband signals)

[11]. Such fundamental functional differences cannot be explained by numerical measure-

ment-to-measurement transformations. Rather, these differences must reflect the fact that the

measurements are based on different aspects of the neural population response. To explain the

differences in measurement modalities requires a computational framework that derives each

of these signals from the neuronal responses.

One approach toward developing such a framework has been to measure the BOLD signal

and electrophysiological signals simultaneously, or separately but using the same stimulus and

task conditions, and to ask how features of the electrophysiological response compare to the

BOLD signal. This approach has revealed important patterns, yet after several decades of care-

ful study, some apparent discrepancies remain. A number of studies comparing band-limited

power in field potential recordings to the BOLD signal have shown that increases in power

between 30 Hz and 100 Hz (gamma band) are more highly correlated with BOLD amplitude
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than power changes in other bands [12–17]. Yet, power changes in this band do not fully account

for the BOLD signal: very large power changes can occur in the gamma band without a measur-

able BOLD signal change [18, 19], and power changes in lower frequency bands can be corre-

lated with the BOLD signal independently of power changes in the gamma band [20–23]. It

therefore cannot be the case that field potential power in the gamma band is a general predictor

of BOLD, even if the two measures are often correlated. Another source of disagreement is that

within the gamma band, some reports claim that BOLD is best predicted by synchronous (nar-

rowband) signals [13], and others claim that BOLD is best predicted by asynchronous (broad-

band) neural signals [11]. Moreover, in some cases, it has been reported that no feature of the

local field potential (LFP) predicts the intrinsic optical imaging signal (closely related to BOLD)

as accurately as multiunit spiking activity [24]. Consistent with this claim, a comparison of both

motion and contrast response functions measured with single units and with BOLD suggested a

tight coupling between BOLD and single-unit responses [25–27]. To our knowledge, there is

currently no single model linking the electrophysiological and BOLD signals that accounts for

the wide range of empirical results.

The numerous studies correlating features of electrophysiological signals with BOLD

provide constraints in interpreting the relationship between the two types of signals, yet the

approach has not led to a general, computational solution. We argue that one reason that cor-

relation studies have not led to computational solutions is that any particular feature of the

field potential could be caused by many possible neuronal population responses. For example,

a flat field potential (minimal signal) could arise because there is little activity in the local neu-

ronal population or it could arise from a pair of neuronal subpopulations responding vigor-

ously but in counterphase, resulting in cancellation in the field potential. The same field

potential in the two situations would be accompanied by different levels of metabolic demand

and presumably different levels of BOLD signal. Similarly, any particular BOLD measurement

could be due to many different patterns of neural activity. For example, stimulation of a neuro-

nal population that inhibits local spiking can cause an elevation in the BOLD signal [28], as

can stimulation of an excitatory population that increases the local spike rate [29]. In short,

there can be no single transfer function that predicts the BOLD signal from the field potential

because the field potential does not cause the BOLD signal; rather, the neuronal activity gives

rise to both the field potential and the BOLD signal.

We propose that many of the different claims pertaining to the relationship between BOLD

amplitude and features of the field potential can be accounted for by a modeling framework in

which BOLD and field potential measurements are predicted from simulated neuronal popula-

tion activity, rather than by predicting the BOLD signal directly from the field potential. In

this paper, we model fMRI and ECoG responses in two stages, one stage in which we simulate

activity in a population of neurons, and a second stage in which we model the transformation

from the population activity to the instrument measures. By design, the model employs a mini-

mal set of principles governing how the instruments pool neuronal activity, rather than a bio-

physically detailed description of neuronal and hemodynamic events. This approach enables

us to ask whether this minimal set of principles is sufficient to guide simulations of neuronal

population activity, such that the parameters of the simulations are fit to ECoG measurements

from human visual cortex, and the output of the simulations predicts fMRI BOLD responses

in the same regions for the same stimuli.

Results

We first present an analytic framework to capture basic principles of how the BOLD signal

and the field potential pool neuronal signals across a population (2.1). Using this framework,

Neural synchrony and BOLD
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we derive equations for the relationship between each instrument measure (BOLD and LFP)

and the underlying neuronal activity, as well as the relationship between the instrument mea-

sures. This section shows that synchrony is expected to have a large effect on the LFP signal

but not on the BOLD signal. The analytic framework provides a way to derive the instrument

measures from neuronal population activity, but it does not specify the neuronal population

activity itself. In the next section (2.2), we develop a method for simulating neuronal popula-

tion time series from a small number of parameterized inputs, and we show how the simulated

neuronal activity can be converted to (simulated) LFP and BOLD by applying the equations

derived in 2.1. Next, we fit parameters for simulating population neuronal activity using ECoG

data from human V1, V2, and V3 and compare the BOLD responses derived from these simu-

lations to measured BOLD responses from V1, V2, and V3 (2.3). Finally, we quantify the rela-

tionship between simulated BOLD and LFP, and between measured BOLD and ECoG, and

show that the same patterns hold for simulation and data (2.4).

2.1 Relationship between LFP and BOLD: Analytic framework

The fMRI BOLD signal and the LFP measure neuronal population activity in a fundamentally

different manner. The goal of this analytic framework is to capture these differences in simple

mathematical expressions and from these expressions, derive the relationship between the two

instrument measurements. We purposely omit a large number of biophysical details, such as

cell types, neuronal compartments, the dynamics of blood flow, and so forth, both for tractabil-

ity and in order to emphasize the basic principles of how different measures integrate neuronal

activity. In the sections that follow, we then show that, when coupled to simulated neural

responses, the model can account for many important patterns observed in fMRI and ECoG

data from human visual cortex.

For this analytic framework, we consider how a population of n neurons responds to a stim-

ulus or task during a brief epoch (time 0 to T), assumed to be on the order of a second. Each

neuron will produce a time-varying dendritic current, denoted as Ii(t) for the ith neuron,

resulting from the trans-membrane potential. We would like to know how these currents, I(t),
relate to the fMRI BOLD signal and to the LFP signal measured by an ECoG electrode.

We assume that the LFP arises primarily from dendritic membrane currents [2]. We ignore

output spikes. (Although spikes can influence the LFP [30], it is generally thought that the

influence is smaller than synaptic and dendritic currents [2], and including spikes would not

change the logic of our arguments.) For the ith neuron, the contribution to the LFP is then αi
× Ii(t). The constant αi depends on the distance and orientation of the neuron with respect to

the electrode, as well as the electrode’s impedance. For simplicity, we assume that each neuron

is equidistant from the electrode and has the same orientation, like pyramidal neurons perpen-

dicular to the cortical surface, and therefore its contribution to the electrode measurement is

scaled by the same constant, α. These neurons act together like a single, equivalent circuit, and

hence the LFP time series will sum the contribution from each neuron,

LFPðtÞ ¼ a �
Pn

i IiðtÞ ðEq 1Þ

Field potential recordings are often summarized as the power (or band-limited power) in

the time series [31]. Here we summarize the LFP response within a short time window as the

power in the signal summed over the time window T:

LFP power ¼ a �
R T

0
ð½
Pn

i IiðtÞ�
2
Þdt�

power of sum
ðEq 2Þ
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Importantly, Eq 2 is a linear/nonlinear (L/N) computation, since the LFP power is com-

puted by first summing the signals (L), and then computing the power (N).

The BOLD signal pools neural activity in a fundamentally different manner because it

depends on metabolic demand [e.g., for reviews, see 1, 32]. (Recent work on the neurobiology

of neurovascular coupling indicates that much of the BOLD signal is not caused directly by

changes in the level of metabolic products such as glucose, but rather by signaling molecules

that tend to correlate with metabolic demand [33]). For simplicity, we discuss the BOLD signal

throughout in terms of metabolic demand and return to this issue explicitly in the Discussion,

(3.6 The role of a simple model in understanding the relation between BOLD and LFP). The

metabolic demand of each neuron will increase if the cell depolarizes (excitation) or hyperpo-

larizes (inhibition) [28, 34, 35]. Hence, the metabolic demand of a neuron is a nonlinear func-

tion of its membrane potential: either a positive or negative change in voltage relative to rest-

ing potential causes a current, thereby resulting in a positive metabolic demand. There are

many possible nonlinear functions one could assume to summarize the metabolic demand

from the dendritic time series, such as the rectified signal (absolute value) or the power (squ-

ared signal). For tractability, we assume the metabolic demand of the ith neuron is propor-

tional to the power in the time-varying trans-membrane current integrated over time: βi ×
(POWER(Ii(t)) or bi �

R T
0
ðIiðtÞ

2
Þdt, with βi a scaling constant for the ith neuron. (Similar

results were obtained if we used the absolute value rather than the power). For the entire popu-

lation of n neurons, we then assume the BOLD signal will sum the metabolic demand of each

neuron. For simplicity, we use the same scaling constant for each neuron:

BOLD ¼ b �
Pn

i ð
R T

0
ðIiðtÞ

2
ÞdtÞ

sum of power
ðEq 3Þ

Importantly, Eq 3 is an N/L computation, since the power is computed first (N) and then

the signals are summed (L), opposite to the order of operations for the LFP in Eq 3 (Fig 1)

(personal communication from David J Heeger). In other words, we approximate the BOLD

signal as the sum of the power, and LFP as the power of the sum, of the separate neuronal time

series. The difference in the order of operations can have a profound effect on the predicted

signals, as in the simple example with two neurons depicted in Fig 1C and 1D. The BOLD sig-

nal pooled over the two neurons is the same whether the time series from the two neurons are

in phase or out of phase, whereas the LFP power is large when the time series are in phase and

small when they are out of phase.

These approximations allow us to make predictions about the relation between LFP and

BOLD. By theorem, we know that the power of the sum of several time series is exactly equal

to the sum of the power of each time series plus the sum of the cross-power between the differ-

ent time series (Eq 4):

R T
0
ð½
Pn

i XiðtÞ�
2
Þdt ¼

Pn
i ð
R T

0
ðXiðtÞ

2
ÞdtÞ þ

Pn
i6¼jð
R T

0
ðXiðtÞ � XjðtÞÞdtÞ

Power of sum Sum of power Sum of cross � power
ðEq 4Þ

Applying this theorem to Eqs 2 and 3 shows the relationship between our models of BOLD

and LFP power:

LFP power ¼ a
.

b
� BOLDþ a �

Pn
i6¼jð
R T

0
ðIiðtÞ � IjðtÞÞdtÞ ðEq 5Þ
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We can now see that the LFP power depends on two quantities, one of which is related to

the BOLD signal, and one of which is unrelated to the BOLD signal (Eq 5). The first quantity

summarizes the total level of neural activity (summed across neurons), and the second quan-

tity summarizes the relationship between neural time series (the cross-power, similar to

Fig 1. Pooling with different orders of operations can have a large effect on measured brain signals.

(A) The approach to directly correlate local field potential (LFP) and blood-oxygen-level dependent (BOLD)

data. (B) The current approach to relate the LFP and BOLD from the same neuronal population activity. (C) In

this illustration, the currents of two neurons (x1 and x2) has the shape of a sinusoid with noise, and the

sinusoid is in phase between the two neurons. In the simulated electrode measurement, the signals are

summed and the power is calculated (POWER[SUM] = 2.00). In the simulated measurement of metabolic

demand, the power of each of these neurons is first calculated and then summed across the neurons (SUM

[POWER] = 1.01). Here, the LFP and BOLD are both large. (D) In this illustration, the membrane currents of

two neurons (x1 and x2) are the same as in panel (C) except that the two time series are in counterphase.

Here, unlike (C), the LFP is nearly 0 and the BOLD signal is large (code to reproduce this figure can be found

on https://github.com/dorahermes/Paper_Hermes_2017_PLOSBiology function ns_script01_Fig1.m).

https://doi.org/10.1371/journal.pbio.2001461.g001
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covariance). If and when the second term tends to be large compared to the first, then the LFP

power will not be closely related to the BOLD signal.

One cannot deduce from first principles whether the first term in Eq 4 (summed power) or

the second term (summed cross-power) will dominate. However, the number of elements con-

tributing to the two terms is quite different: For n neurons, the first term has n numbers (the

power in each neuron’s time series), whereas the second term has nearly n2 numbers (all the

pairwise cross-powers). Hence, if there is any appreciable covariance, then the LFP power will

be dominated by the second term, and the correlation with BOLD will be weak (except in

cases where the cross-power and power are highly correlated).

To see how these equations translate to quantitative measures of BOLD and LFP, we con-

sider a small neuronal population whose time series conform to a multivariate Gaussian distri-

bution. We assume that each neuron’s time series has the same mean, m; the same variance, σ2;
and all of the pairwise correlations have the same value, ρ:

X � N ðm;SÞ

m ¼

m

⋮

m

0

B
B
B
@

1

C
C
C
A

S ¼

s2 ⋯ s2r

⋮ ⋱ ⋮

s2r ⋯ s2

2

6
6
6
4

3

7
7
7
5

ðEq 6Þ

X is the population time series, μ is the mean of each time series, and ∑ is the covariance

matrix. We can now rewrite the simulated BOLD signal (the sum of the power) and the LFP

(power of the sum) in terms of the parameters of the multivariate Gaussian (and arbitrary scal-

ing factors α, β),

BOLD ¼ b � ½n � ðm2 þ s2Þ�

LFP power ¼ a � ½n � ðm2 þ s2Þ þ ðn2 � nÞðm2 þ s2rÞ�
ðEq 7Þ

where n is the number of neurons. This enables us to visualize how the BOLD signal and the

LFP power depend on just three values: the variance, correlation, and mean in the neural time

series, rather than on all the individual time series (Fig 2). For these neuronal time series, the

LFP, modeled as the power of the sum of neuronal time series (panel A), is dominated by the

neuronal cross-power (panel C). The BOLD signal, modeled as the sum of the power in the

neuronal time series (panel B), makes little contribution to the LFP, except when the correla-

tion between neurons is low (ρ is close to 0); in this case, there is no cross-power, and BOLD

and LFP power are correlated.

2.2 Simulating the LFP and BOLD responses

In section 2.1, we proposed formulae to derive instrument measures from neuronal population

activity. Here, we ask how we might simulate neuronal activity with a small number of param-

eters. A low-dimensional characterization of the population activity is useful since we normally

do not have access to the time series of an entire population of neurons. Moreover, a low-

dimensional representation can lead to better understanding and generalization even when

high-dimensional data are available [36, 37]. After simulating the population activity, we then

Neural synchrony and BOLD
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use the analytic framework from section 2.1 to compute the BOLD and LFP signals. The

parameters for the simulations were fit to ECoG recordings from human V1, V2, and V3 [38].

Because there were recordings from multiple electrodes and multiple stimuli, we ran multiple

simulations fit to the different ECoG responses. We then used these simulations to predict the

BOLD signal and compared these predictions to the measured BOLD signal for the same sti-

muli and same cortical locations (but in different observers). The steps for simulating the neu-

ronal population data and the derived LFP and BOLD, and for comparing the simulations to

empirical data, are summarized in Table 1.

In the ECoG experiments, there were four grating stimuli of different spatial frequencies,

three noise patterns with different power spectra, and one blank stimulus (mean luminance).

For each of the 8 stimuli and each of 22 electrodes in V1, V2 and V3, we decomposed the mea-

sured ECoG responses into three spectral components: broadband, narrowband gamma, and

alpha (Fig 3). An important feature of this dataset is that the three components of the ECoG

responses showed different patterns across stimuli [38]: stimuli comprised of noise patterns

caused large broadband increases but little to no measureable narrowband gamma response,

whereas grating stimuli elicited both broadband increases and narrowband gamma increases.

Gratings and noise stimuli both resulted in decreases in alpha power compared to baseline

(also see S1 Fig). Had all three responses been tightly correlated with each other, it would not

be possible to infer how each relates separately to the BOLD signal.

2.2.1 Simulations of BOLD and LFP responses from neuronal population activity.

Cortical neurons receive a large number of inputs from diverse cell types. For our low-dimen-

sional parameterization of the population activity, we assumed that each neuron received a

mixture of three types of inputs (Fig 4A). These three inputs, following summation and leaky

Fig 2. The influence of time series parameters on the power of the sum, the sum of the power, and the cross-power. (A) LFP power, computed

as the power of the sum of 5 time series from a multivariate Gaussian distribution (Eq 6). The LFP power is shown as a function of the correlation (ρ),

variance (σ), and mean (μ) of the time series (Eq 7). (B) The same as A, except plotting the sum of the power rather than the power of the sum, in order

to model the BOLD signal. (C) The same as B but for cross-power. The power of the sum—Panel A—is the sum of the terms in Panels B & C. (Code to

reproduce this figure can be found on https://github.com/dorahermes/Paper_Hermes_2017_PLOSBiology function ns_script02_Fig2.m).

https://doi.org/10.1371/journal.pbio.2001461.g002
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integration, produce the three spectral components observed in the ECoG data. Input 1

approximated Poisson-like spike arrivals (C1, “Broadband”) and had a mean above 0 (excit-

atory). Input 2 was a high-frequency oscillation, peaked between 40 Hz and 60 Hz, coordinated

between neurons (C2, “Gamma”), with a mean of 0. Input 3 was a low-frequency signal peaked

between 8 Hz and 12 Hz that was inhibitory: i.e., the mean was below 0 (C3, “Alpha”).

For each simulated neuron i, the total input C on each trial is the sum of these three signals

(Fig 4B):

CiðtÞ ¼ C1

i ðtÞ þ C2

i ðtÞ þ C3

i ðtÞ ðEq 8Þ

We then passed the summed input in each neuron through a leaky integrator to produce

the time-varying dendritic current for that neuron (Ii, Fig 4C):

t �
dIi
.

dt
¼ � Ii tð Þ þ Ci tð Þ ðEq 9Þ

The membrane time constant τ reflects the time dependence of the trans-membrane cur-

rent [39, 40]. In total, we modeled a population of 200 neurons, each of which produced a

1-second time series on each trial. From the neuronal population simulations, we computed

the LFP and BOLD signals according to the equations above (section 2.1 “Relationship

between LFP and BOLD: Analytic framework”). In brief, the LFP was computed by summing

the trans-membrane current across neurons (Eq 1, Fig 4C), and the BOLD signal was com-

puted by summing the power across neurons (Eq 3, Fig 4D). The LFP was used as training

Table 1. A summary of analysis steps for simulations (MODEL) and comparison to data (DATA).

Analysis Figure

1. DATA: LFP spectral components. ECoG responses in visual cortex are

separated into the sum of three spectral components: broadband, narrowband

gamma, and narrowband alpha, yielding three numbers per electrode per

stimulus.

Fig 3

2. MODEL: Inputs. We propose three classes of signals, “C1,” “C2,” and “C3,” as

inputs to simulated individual neurons. These are like basis functions, as

responses to each stimulus will be modeled with different mixtures of C1, C2, and

C3 inputs (Step 5).

Fig 4A

3. MODEL: Neural activity. Neural responses to C1, C2, and C3 inputs are

simulated with a population of neurons with leaky integration.

Fig 4B and 4C

4. MODEL: LFP spectral components. The simulated neuronal activity in the

population is converted to simulated LFP. The LFP spectra arising from C1, C2,

and C3 inputs approximate the three LFP components observed in ECoG data

(step 1 above).

Fig 5

5. MODEL: Parameters. The model parameters are the levels of C1, C2, and C3

inputs. These are fit to the observed ECoG data for each stimulus and each

electrode. This results in three numbers per electrode per stimulus.

Fig 6

6. MODEL: Predictions. These model neural inputs are converted to simulated

neuronal activity and then to simulated BOLD responses.

Fig 4D;

Fig 7A and 7B (x-axis)

7. MODEL: Accuracy and DATA. These simulated BOLD responses are

compared with real, measured BOLD responses.

Fig 7A and 7B (y-axis);

Fig 7C

8. MODEL: LFP–BOLD relationship. The simulated BOLD responses are also fit

to simulated LFP responses with a regression model.

Fig 8C and 8D;

Fig 9C and 9D

9. DATA: LFP–BOLD relationship. Real measured BOLD responses are also fit to

measured ECoG LFP components using a regression model.

Fig 8A and 8B;

Fig 9A and 9B

BOLD, blood-oxygen-level dependent; ECoG, electrocorticographic; LFP, local field potential

https://doi.org/10.1371/journal.pbio.2001461.t001
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data (to fit the parameters of the inputs), and the BOLD signal was used as test data (to test the

accuracy of the model).

2.2.2 Simulation inputs produce three effects in the LFP power spectrum. Below, we

explain how the time series was generated for each of the three types of inputs and what kind

of effect a change in each input has on the power spectrum.

Broadband input (C1). Input C1 was Gaussian white noise with a small positive bias. The

Gaussian white noise approximates Poisson-distributed spike arrivals, each of which produces

a small positive or negative conductance change, corresponding to excitatory or inhibitory

postsynaptic potentials. The small positive bias reflects the assumption of more excitatory than

inhibitory synaptic currents, causing a net depolarization. Gaussian white noise was used

Fig 3. Decomposing electrocorticographic (ECoG) data into three summary components. (A) A schematic to show the summary

metrics derived from ECoG spectra: broadband power elevation (bb), narrowband gamma (ϒ), and alpha (α). Broadband was calculated by

the increase in a 1/fn signal, gamma was calculated by fitting a Gaussian on top of the 1/fn line, and alpha was calculated as the difference

from baseline in the alpha-frequency range. (B) Power spectrum for one example electrode during a blank stimulus (black), gratings (red),

and noise patterns (blue). (C) From the power spectrum, changes in broadband, gamma, and alpha were calculated. These values were

bootstrapped 100 times across trials. Error bars represent 68% confidence intervals. (code to download data and reproduce this figure can be

found on https://github.com/dorahermes/Paper_Hermes_2017_PLOSBiology function ns_script03_Fig3.m).

https://doi.org/10.1371/journal.pbio.2001461.g003
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Fig 4. Simulated local field potential (LFP) and blood-oxygen-level dependent (BOLD). (A) Three different inputs to each neuron were simulated: a

broadband, random input with a small positive offset (C1), an oscillatory input with a time scale of 40 Hz to 60 Hz (C2), and a negative input with a time

scale of 10 Hz (C3). (B) The 3 inputs (C1, C2, C3) were summed in each neuron to produce the total input to the neuron. (C) The total input was passed

through a leaky integrator to produce the dendritic dipole current (Ii). The LFP was simulated by summing the dendritic currents. (D) The BOLD signal

was simulated by taking the power of the dendritic current for each neuron and then summing across neurons. (Code to simulate data reproduce this

figure can be found on https://github.com/dorahermes/Paper_Hermes_2017_PLOSBiology function ns_script07D_Fig4.m).

https://doi.org/10.1371/journal.pbio.2001461.g004
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rather than Poisson-distributed synaptic inputs for computational efficiency, but the pattern

of results is similar for Poisson or Gaussian distributions. For the purposes of simulations, we

defined a high value of C1 as high variance in the Gaussian distribution and low values of C1 as

low variance. This mimics the effect of high versus low rates of spike arrivals. The time series

for the 200 neurons was generated from a distribution with 0 correlation for all pairs of neu-

rons. Because the variance differed across simulations, and the correlations were always 0, the

possible C1 values span a vertical slice of the plots in Fig 2 (ρ-axis = 0). This white noise input,

after passing through leaky integration, results in an output whose power spectral density

declines with temporal frequency. When this input increases (higher variance), the result is

a broadband elevation in power [40] (Fig 5A). Such broadband power elevations can be

observed in the LFP [41] as well as intracellular membrane potentials of single neurons in

awake macaque [42].

Gamma input (C2). Input C2 consisted of band pass noise (40 Hz to 60 Hz), with fixed

amplitude on all trials and with coherence across neurons that varied between trials. This

input approximates the signals giving rise to narrowband gamma oscillations. Across different

conditions, we varied the correlation between neurons of C2 rather than the amplitude for

individual neurons, which was fixed. This corresponds to a slice in the plots in Fig 2 such that

the variance axis is fixed at a nonzero value. The motivation for this comes from empirical

observations that large gamma oscillations in the LFP tend to reflect increased coherence

between neurons [43, 44]. This is opposite to the broadband input (C1), for which we varied

the amplitude (variance) in individual neurons across trials, rather than the synchrony

between neurons. Narrowband gamma oscillations with a peak between 30 Hz and 80 Hz can

be observed in the LFP [45, 46] as well as in the membrane potential of individual pyramidal

neurons [47]. When we increase the correlation of C2 in our simulations, the result is an

increase in the amplitude of the LFP in the gamma band (Fig 5B), much like narrowband

gamma signals observed in microelectrode recordings [48] and human ECoG [38].

Alpha input (C3). The alpha input consisted of inhibitory oscillations at approximately 10

Hz, with fixed correlation between neurons and varying amplitude across conditions. This cor-

responds to a slice in the plots in Fig 2 in which the ρ-axis is fixed at a nonzero value. The oscil-

lations were inhibitory, i.e., the mean was below 0 (compare C3 versus C1 and C2 in Fig 4).

Because C3 was inhibitory, it resulted in less depolarization (or hyperpolarization in extreme

cases), opposite the effect of C1, which resulted in depolarization. This input approximates the

signals giving rise to alpha oscillations (Fig 5C). Pyramidal neurons in visual cortex have been

hypothesized to receive periodic inhibition, with pulses arriving at approximately 10 Hz [49,

50]. Individual neurons in visual cortex can indeed show subthreshold membrane oscillations

at frequencies around 10 Hz [51].

2.3 Fitting the simulation parameters to ECoG responses and predicting

BOLD data

The simulations were structured to approximate the experimental design and the results of our

ECoG experiments. To match the design of our ECoG experiments, a simulated experiment

consisted of 240 trials, each of which were 1 second long (30 repeats of 8 conditions). The LFP

time series were transformed to power spectra, which were averaged across the 30 repeated tri-

als of the same condition. The simulation parameters—i.e., the level of the three inputs, C1, C2,

and C3—were fit to the measured ECoG summary metrics (broadband, gamma, and alpha) for

each of the 8 conditions for a particular electrode (Fig 6). To verify the validity of this proce-

dure, we asked whether the simulations using the fitted parameters produce simulated spectra,

which, when analyzed like the ECoG spectra, reproduce the original values of broadband,

Neural synchrony and BOLD
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gamma, and alpha. In other words, do we close the loop from measured spectral components

(broadband, gamma, and alpha) to inferred input parameters (C1, C2, C3) to simulated popula-

tion activity, to simulated spectral components (broadband, gamma and alpha)? The original

Fig 5. The effect of varying simulated neural inputs on output spectra. The effect of manipulating one of the three neural inputs used in the

simulations produced different effects in the spectral power of the local field potential (LFP) of 200 neurons. (A) For C1 (broadband), a high

amplitude results in a broadband power elevation, with no narrow peaks in the spectrum. (B) For C2 (gamma), a high correlation results in a

narrowband gamma power elevation, with no broadband elevation or change in alpha power. (C) For C3 (alpha), a high amplitude input results in a

narrowband power elevation in the alpha band, with no change in broadband power or narrowband gamma power. For each spectrum in each

plot, 10 simulated trials were run. The plotted spectra are averaged across the 10 trials and are computed from I(t), the time series after leaky

integration of the inputs. (Code to reproduce this figure can be found on https://github.com/dorahermes/Paper_Hermes_2017_PLOSBiology

function ns_script05_Fig5.m).

https://doi.org/10.1371/journal.pbio.2001461.g005

Fig 6. Parameter fits for simulations. (A) A function was fit between the C1 input and the simulated broadband

output (black line). Inverting this function allows us to take the measured electrocorticographic (ECoG) broadband

values (green arrows to dots colored by stimulus condition) and convert these into estimates of the C1 input levels

(orange arrows). Because the simulations contain noise, the predicted broadband need not match the measured

broadband exactly; however, the agreement is close, as shown in S9 Fig. The parameters for C2 and C3 were fit

similarly. (B) The C1, C2, and C3 parameters for the simulation of responses in a V2 electrode for 9 stimuli (8 contrast

patterns plus a blank condition). These parameter fits were made using the full ECoG dataset (for this electrode), so

there are no error bars on the input parameters. (Code to reproduce this figure can be found on https://github.com/

dorahermes/Paper_Hermes_2017_PLOSBiology function ns_script06B_Fig6.m).

https://doi.org/10.1371/journal.pbio.2001461.g006
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values are not reproduced exactly because the simulations are stochastic, but overall, the origi-

nal broadband, gamma, and alpha values are recovered with high accuracy (S9 Fig).

As described above, the fitting of the parameters for C1, C2, and C3 was constrained by the

assumptions that for C1, the correlation between neurons was 0 (and the amplitude was varied

for fitting); for C2, the amplitude was fixed at a nonzero value (and the correlation was varied

for fitting); and for C3, the correlation was fixed at a nonzero value (and the amplitude was var-

ied for fitting). Results from alternative models with different constraints show poorer fits and

are described briefly below and more extensively in S7 Fig.

Importantly, the parameter fits did not take into account the measured BOLD responses.

Hence the simulations provided a test: if the input parameters were chosen to produce outputs

that match the measured ECoG responses (training data), does the simulated BOLD signal

accurately predict the measured BOLD signal (test data)? We measured BOLD responses in

four healthy subjects to the same visual stimuli as used in ECoG (subjects are different from

the ECoG subjects) and extracted the signal from regions of interest in visual cortex matched

to the previously recorded ECoG electrode locations (S2 Fig and S3 Fig). For an example V1

site, the predicted BOLD signal accurately matched the measured BOLD signal, with 89% of

the variance in the measured BOLD signal explained by the prediction, as quantified by R2—

the coefficient of determination (Fig 7A). Across V1 sites, the predicted BOLD signal from the

simulations accounted for a median of 80% of the variance in the measured data (Fig 7C). For

an example V2 site, the predicted BOLD signal also matched the measured BOLD signal (R2 =

0.74, Fig 7B). Across V2/V3 sites the simulations explained a median of 40% of the variance in

the data. The explained variance in V2/V3 is substantial but lower than in V1. One likely rea-

son for the higher variance explained in V1 is that for the particular stimuli used in these

experiments (gratings and noise patterns), the BOLD response reliability was higher in V1. For

example, the median R2 computed by using half the BOLD data as a predictor for the other

half (split half by subjects) was 86% for V1 and 63% for V2/V3. Similarly, the stimulus-evoked

BOLD responses in V1 were larger than in V2 and V3, with more stimulus-related variance to

explain: a mean of 1.8% signal change in V1 versus 1.2% in V2 and 0.8% in V3 (S4 Fig). It is

possible that a stimulus set more tailored to extrastriate areas, such as textures or more natural-

istic scenes, would have evoked more reliable responses in extrastriate cortex.

For each of the 22 simulations, the three input parameters C1, C2, and C3 defining each of the

8 stimulus conditions were fit to produce the LFP data from the corresponding ECoG electrode.

By design, the C1 (broadband) and C3 (alpha) inputs were fit to ECoG data by varying the level

per neuron, whereas C2 was fit to data by varying the correlation across neurons. In principle, for

any of the three inputs, the ECoG data could have been fit by varying either the level per neuron

or correlation across neurons. For completeness, we tested all 8 combinations of models (S7 Fig).

The most accurate model, quantified as the R2 between the measured BOLD and the simulated

BOLD (median across the sites in V1 or in V2/V3), was the simulation type used in the main text,

in which C1 and C3 varied in the level per neuron and C2 varied in the correlation across neurons.

Models in which the broadband correlation rather than level was used to fit the ECoG broadband

power were much less accurate. The models in which the gamma LFP power was fit by modulat-

ing the level rather than the correlation in the simulated population caused a small drop in R2.

2.4 Relation between ECoG and BOLD in simulation and data

The previous analysis showed that when simulations were fit to ECoG data, the simulated

BOLD response predicted the measured BOLD response. Here, we used regression analyses to

assess how the simulated LFP predicted the simulated BOLD response and how the measured

LFP predicted the measured BOLD response.

Neural synchrony and BOLD
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2.4.1 Examples of the relation between the BOLD amplitude and LFP features. We

first consider an example V1 site (Fig 8A: same site plotted in Fig 7A). The BOLD amplitude

for the different stimuli was accurately predicted by the broadband response (R2 = 0.85) but

not by the narrowband gamma or alpha power (R2 = −0.06, R2 = −0.07, respectively). Hence,

in V1, only broadband power was a good predictor of BOLD amplitude (indicated by the black

outlines in Fig 8). Because there were only 8 data points to fit in each of the 3 correlations, we

used cross-validation to avoid overfitting: linear regression was used to fit the BOLD signal to

the ECoG measure in separate halves of the data, and the R2 was computed from the left out

half of each dataset.

A different pattern was found in the V2/V3 data. For an example V2 site (Fig 8B: same site

plotted in Fig 7B), the broadband power did not predict the BOLD signal as accurately as it

did for the V1 site (R2 = 0.31), whereas the alpha power predicted the BOLD signal more accu-

rately than it did for the V1 site (R2 = 0.59). Gamma power did not predict the BOLD signal,

similar to the V1 data.

For the simulation fit to the ECoG data from the example V1 electrode, the relation between

the BOLD signal and the LFP (Fig 8C) was similar to the measured V1 data: the LFP broad-

band response predicted the BOLD signal (R2 = 0.89), whereas the power of narrowband

gamma oscillations and alpha oscillations did not (R2 = 0.01). In this simulation, similar to the

data, the LFP broadband response was the only good predictor of the BOLD signal. Hence, the

data and the simulation match in that they both show that some features of the LFP are good

predictors of BOLD (broadband), and some are poor predictors (alpha and gamma).

For the simulation fit to the ECoG data from the example V2 electrode, the relation between

the BOLD signal and the LFP (Fig 8D) was similar to the measured V2 data. First, the broad-

band LFP was again a good predictor of the BOLD signal, and gamma power was again a poor

Fig 7. Accuracy of predicted blood-oxygen-level dependent (BOLD) signals from simulated neuronal activity. (A)

Simulated BOLD (x-axis) versus measured BOLD (y-axis) for a V1 site. Each color corresponds to one stimulus condition

(red dots, grating patterns; blue dots, noise patterns; black dot, uniform stimulus, or blank). Error bars indicate 68%

confidence intervals, bootstrapped 100 times over 30 trials per stimulus for simulation and over repeated scans for BOLD

data. (B) The same as A but for a V2 site. (C) The accuracy of BOLD predictions for all V1 and V2/V3 sites. Each site is

indicated by a yellow dot. The orange lines show the medians and the red boxes the 0.25 and 0.75 quantiles. The thin,

gray, solid lines show the BOLD data-to-data reliability, and the gray dashed lines show the accuracy when the BOLD data

and trial conditions are shuffled in the training dataset. Accuracy is quantified as the coefficient of determination after

subtracting the mean from the data and the predictions, and dividing each variable by its vector length. Because the

simulations were fit to electrocorticographic (ECoG) data and tested on BOLD data, the predictions are cross-validated,

and the coefficient of determination spans (−1,1]. A value of −1 is expected when the data and predictions are unrelated

and have equal variance, as in the case of the shuffled control analysis. (Code to reproduce this figure can be found on

https://github.com/dorahermes/Paper_Hermes_2017_PLOSBiology function ns_script07.m).

https://doi.org/10.1371/journal.pbio.2001461.g007
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predictor. Second, the power of alpha oscillations had a strong negative correlation with

BOLD (R2 = 0.73).

In the simulations, the correlation between broadband and BOLD is higher for V1 than for

V2, and the correlation between alpha and BOLD is higher for V2 than for V1. These differ-

ences were not due to a difference in the types of inputs (C1, C2, C3), nor to the way BOLD or

LFP was derived from the population activity—the simulation algorithm and the analysis code

were identical for all simulations. The difference arises only from the different parameters—

that is, there were different mixtures of C1, C2, and C3 for the V1 and the V2 simulations. This

highlights the fact that the identical mechanism converting neural activity to BOLD (“neuro-

vascular coupling”), modeled here as power in the time series summed across neurons (Eq 3),

can produce very different correlations between BOLD and features of the LFP, depending on

the neural activity.

2.4.2 The relation between the BOLD amplitude and LFP features across sites. In the

example V1 site and the corresponding simulation, the BOLD signal was well predicted by

Fig 8. The accuracy of predicted blood-oxygen-level dependent (BOLD) signals from electrocorticographic (ECoG) components. The correlation

between ECoG and BOLD was calculated for a V1 site and a V2 site. The locations of one sample electrode in V1 and one in V2 are indicated by the enlarged

white discs on the cortical surface for subject 1. (A) In a foveal V1 site, the broadband ECoG amplitude accurately predicted the BOLD signal (left). Error bars

show 68% confidence intervals across bootstraps. Narrowband gamma power (center) and alpha power (right) were uncorrelated with BOLD. (B) In a V2 site,

the broadband ECoG was weakly correlated with BOLD (left). Narrowband gamma did not predict BOLD (middle). Alpha was negatively correlated with

BOLD (right). Scatter plots for all other V1 and V2/V3 sites are shown in S5 Fig. (C-D) The same as A and B but for simulated neuronal population data fit to

the V1 and V2 ECoG data. For all panels: data points are the bootstrapped median across 30 trials per stimulus (ECoG) and across scans (BOLD). The trend

lines are least square fits to the 8 data points plotted. The R2 values are the coefficient of determination computed by cross-validation, with a regression fit to

half the data and evaluated on the other half. The black outlines indicate the regressions that show reliable predictors of the BOLD signal—broadband in V1,

broadband and alpha in V2/V3. (Code to download data and reproduce this figure can be found on https://github.com/dorahermes/Paper_Hermes_2017_

PLOSBiology function ns_script09A_Fig8AB_Fig9AB.m and function ns_script07B_Fig7AB_Fig8CD.m).

https://doi.org/10.1371/journal.pbio.2001461.g008
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broadband increases (Fig 8B and 8D). In the example V2 site and the corresponding simula-

tion, the BOLD signal was predicted by both broadband increases and alpha decreases (Fig 8C

and 8E). By explicitly modeling both the population response and the population-to-instru-

ment transformations, we see that a difference in the relation between instrument measures

(BOLD and ECoG) can arise from a difference in the population response, without a difference

in neurovascular coupling. We now ask (1) whether these effects are consistent across the mea-

sured V1 and V2/V3 sites and (2) how a multiple regression model using broadband, gamma,

and alpha as predictors fits the BOLD response for both data and simulation.

As we argued in the Introduction, we believe there is no single, general transfer function that

can predict the BOLD signal from the LFP. Yet a regression model linking the two measures

can be a useful way to summarize the results of a particular experiment/simulation and to com-

pare results between different experiments/simulations. Here, we fit several regression models

to each simulation and to the data (Fig 9). The regression models predicted the simulated or

measured BOLD response from either a single LFP component (broadband power, gamma

power, or alpha power) or from combinations of LFP components (each of the pairwise combi-

nations, and the three components together). These regression models were fit separately for

each of the 9 sites in V1 and each of the 13 sites in V2/V3 and for the 22 corresponding simula-

tions. The accuracy of each model was assessed by the variance explained in the cross-validated

data (R2, the coefficient of determination). With a cross-validation procedure, there is no advan-

tage in accuracy for models with more free parameters, and accuracy is reduced rather than

increased by overfitting. The cross-validated R2 was compared to the R2 in a null distribution,

derived from shuffling the assignment between data and stimulus conditions.

Data. The single-parameter regression models across V1 electrodes (Fig 9A) show the

same pattern as the single electrode examples in Fig 8: broadband alone was a good predictor

of BOLD (median cross-validated R2 = 0.70 across 9 sites), while gamma and alpha alone were

not (gamma R2 = 0.04, alpha R2 = 0.04). Across all regression models, the observed BOLD sig-

nal was best predicted by a combination of broadband and alpha changes with an R2 = 0.78,

close to the data-to-data reliability (R2 = 0.82). Adding gamma as a predictor to either the

broadband-only model (model 2 versus model 1) or to the combined broadband and alpha

model (model 7 versus model 5) did not increase model accuracy, confirming that the gamma

amplitude was not predictive of the BOLD signal.

The single-parameter regression models across V2/V3 sites (Fig 9B) show that alpha power

predicted the BOLD signal (R2 = 0.32, with a negative Beta value), whereas broadband alone

was only slightly more accurate than a control, shuffled model, and gamma alone had no pre-

dictive power. As in V1, the BOLD response was best explained by a regression model combin-

ing broadband and alpha (R2 = 0.39; see also S6 Fig) or a model using all three predictors (R2 =

0.42). Overall, compared to V1, the BOLD signal in V2/V3 was less accurately predicted by the

regression models based on the electrophysiological measurements. As with the case of pre-

dicting BOLD from simulated neuronal activity, predicting BOLD from ECoG measures is

limited by the reliability of the stimulus-evoked BOLD signal, which was lower for V2/V3 than

for V1 (0.59 versus 0.82 R2).

Simulations. For the simulations, we expect broadband power to positively predict the

BOLD signal and alpha power to negatively predict the BOLD signal because of the construc-

tion of the simulations: broadband and alpha power elevations were achieved by increasing the

variance per neuron, rather than correlations between neurons; the converse was true for

gamma. Nonetheless, solving the regression models can be informative because, as seen in Fig

8, simulations with the identical input types and the identical analysis can lead to different pat-

terns, depending on the parameters (weights) in the simulations. Moreover, the regression
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Fig 9. Explained variance in the blood-oxygen-level dependent (BOLD) functional magnetic resonance imaging (fMRI) signal in the

simulations and in data. (A) Variance in the measured BOLD signal explained by broadband, gamma, and alpha changes in the electrocorticographic
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analyses of the simulated data can be compared against the regression analyses of the measured

data.

The results from the regression model on simulated V1 LFP and BOLD (Fig 9C) were quali-

tatively similar to the V1 data: broadband alone was a good predictor of BOLD (median cross-

validated R2 = 0.70 across 9 simulations), while gamma and alpha alone were not (median R2 =

0.04 for both predictors). For simulations fit to V2/V3 ECoG data (Fig 9D), alpha alone pre-

dicted the BOLD signal with moderate accuracy (median R2 = 0.32).

Similar to the data, the BOLD response in the simulations fit to V1 and V2/V3 was well

explained by a regression model combining broadband and alpha (R2 = 0.78, R2 = 0.39, Fig 9C

and 9D). The regression coefficients for these models were positive for broadband and nega-

tive for alpha. A model that incorporated all three LFP measures—broadband, alpha, and

gamma—explained little to no additional variance for either simulation, confirming our earlier

observation that narrowband gamma power was not correlated with BOLD amplitude in sim-

ulated data. The generally higher variance explained in V1 than in V2/V3 again matches the

higher BOLD reliability in V1 for these experiments.

Across simulations and datasets, a general pattern emerges. The broadband signal was posi-

tively predictive of BOLD, and alpha power was negatively predictive of BOLD. Narrowband

gamma had no consistent relation with BOLD. While the relationships between broadband

and BOLD and between alpha power and BOLD were consistent in terms of sign (the former

positive, the latter negative), the level was not always the same. As we noted in the example

sites shown in Fig 8, and the summary across sites in Fig 9, the broadband power was more

strongly predictive of BOLD in V1, and alpha power was more strongly predictive in V2/V3.

An examination of responses to the different stimulus types clarifies the difference between V1

and V2/V3 in these data. Specifically, the BOLD response in V2/V3 to noise patterns was

underpredicted by the broadband response alone (S5 Fig). In V2/V3, alpha decreased more

for the noise patterns, and this alpha decrease accounted for the BOLD change unexplained by

broadband (S1 Fig). This helps to explain why a model that includes broadband and alpha is

much more accurate for V2/V3 than a model that includes only broadband. In contrast, for

V1, the BOLD response was well predicted by broadband power in most sites, with little sys-

tematic prediction failures and little room for increased model accuracy when adding predic-

tors such as alpha power.

2.4.3 Correlation between BOLD and LFP across all frequencies. In the previous sec-

tion, we modeled the BOLD responses as a linear function of three components derived from

the LFP. These features—broadband power, narrowband gamma power, and narrowband

alpha power—are summary metrics of the power spectrum. We also tested how the power at

each frequency in the ECoG data and in the simulated LFP correlated with the BOLD response

(measured and simulated, Fig 10).

Data. We calculated ECoG power for each frequency from 1 Hz to 200 Hz and correlated

the power changes from baseline with BOLD changes from baseline. In V1, ECoG responses

across all frequencies except the alpha band were positively correlated with the BOLD response

(ECoG) data. The colored box plots show the variance explained by each of the 7 model types: black bar = median, upper and lower boxes = quartiles,

and error bars = data range excluding outliers (outliers plotted as red plusses). The R2 was cross-validated (split between subjects for BOLD and stimulus

repetitions for ECoG) to ensure that the R2 can be compared between models with different numbers of explanatory variables. Gray dashed lines indicate

the noise floor (R2 when shuffling the BOLD labels in the training data), and the solid gray lines indicate the data-to-data reliability for the BOLD signal.

Bottom: the regression coefficients show whether the broadband, gamma, and alpha signals were positive or negative predictors of the BOLD signal. A

red * in the lower plot indicates whether regression coefficients differed significantly from 0 by a bootstrap test (p < 0.05). (B) The same as A but for the 13

V2/V3 electrodes. (C) The same as A but for the 9 simulations fitted to V1 data. The R2 was cross-validated (split between even and odd stimulus

repetitions). D) Same as C, except for the 13 simulations fitted to the V2/V3 data. (Code to download data and reproduce this figure can be found on

https://github.com/dorahermes/Paper_Hermes_2017_PLOSBiology).

https://doi.org/10.1371/journal.pbio.2001461.g009
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(Fig 10), which is consistent with the regression analyses of the summary metrics, showing

that broadband ECoG power was the best predictor of the BOLD signal.

The pattern of correlation between ECoG power and BOLD in V2/V3 was similar to that

found in V1, although the overall level of correlation was lower (Fig 10). There were positive

correlations between ECoG and BOLD extending across most frequencies that were weaker

than in V1, and there was a negative correlation for most sites in the alpha band.

Simulation. The correlation between simulated BOLD and ECoG power in V1 was qualita-

tively similar to that found in the data. In simulations fit to V1 ECoG data, the LFP correlated

well with the BOLD signal across all frequencies except those in the alpha band (8 Hz to 15

Hz) and below, and those in the gamma band (40 Hz to 60Hz).

In simulations fit to V2/V3 ECoG data, the pattern was similar, except that the correlation

was negative in the alpha band rather than 0, and weaker but still positive in the rest of the

spectrum. These patterns match the summary metrics of alpha, gamma, and broadband shown

in Fig 9.

Fig 10. The correlation between blood-oxygen-level dependent (BOLD) and local field potential (LFP) as a

function of frequency. (A) The correlation between electrocorticographic (ECoG) and BOLD for the V1 data shows a

positive correlation between ECoG and BOLD for a broad range of frequencies, except those including the alpha

changes. Gray lines represent the 9 individual V1 electrodes, the black line is the average, and the red line corresponds

to the example sites shown also in Fig 7. (B) In the V2/V3 data, there was a strong negative correlation between ECoG

and BOLD in the alpha range around 10 Hz and a positive correlation between ECoG and BOLD for a broad range of

frequencies. Gray lines represent the 13 individual V2/V3 electrodes, the black line is the average, and the red line

corresponds to the example electrode shown also in Fig 7. Note that neither the V1 electrodes nor the V2/V3

electrodes show a peak at the gamma frequency. (C) The correlation between LFP and BOLD for simulations fit to V1

shows that there is a positive correlation across most frequencies, except those including the alpha and gamma

changes. (D) The correlation between LFP and BOLD for the simulations fit to V2/V3 shows that there is a strong

negative correlation around 10 Hz and a positive correlation across a broad range of frequencies. (Code to download

data and reproduce this figure can be found on https://github.com/dorahermes/Paper_Hermes_2017_PLOSBiology

function ns_script10_Fig10.m).

https://doi.org/10.1371/journal.pbio.2001461.g010
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Site to site differences. There were some differences between V1 sites. For example, in two

sites, the correlation across frequencies dipped in the gamma band (30–80Hz), similar to simu-

lated data. These are also the two sites that showed the largest amplitude gamma responses

(sites 8 and 9 in S5 Fig). In other words, when cortical sites showed large gamma signals, these

signals were uncorrelated with BOLD. The fact that in 7 V1 sites there was a positive correla-

tion between BOLD and LFP power spanning 30 Hz to 80 Hz might seem inconsistent with

our earlier observation that narrowband gamma power was not predictive of the BOLD signal

in V1 sites (Fig 8 and Fig 9). However, in this analysis, the narrowband and broadband power

are not modeled separately, and the positive correlation between power at 30 Hz to 80 Hz in

Fig 10 thus likely suggests that broadband power extends into this band, since broadband

changes can extend across all frequencies [11, 40]. Therefore, if there is little to no narrowband

response, we would expect a positive correlation between BOLD and ECoG throughout all

frequencies.

There were some site-to-site differences in the correlation between alpha and BOLD. For

example, some sites showed a positive correlation with BOLD in the alpha range, and others

showed a negative correlation (Fig 10A and 10B). These site-to-site differences depend on the

range of responses evoked by stimuli. For example, for electrodes in which stimuli evoked a

large range of power changes in the alpha band, alpha was more strongly correlated with

BOLD. Similarly, for electrodes in which stimuli evoked a large range of broadband responses,

broadband was more highly correlated with BOLD (S8 Fig). This pattern did not hold for nar-

rowband gamma power changes.

Discussion

This study investigated the relationship between electrophysiological and BOLD measure-

ments in human visual cortex. Our modeling framework decomposed the signals into two

stages, a first stage in which we simulated the neuronal population responses (dendritic time

series), and a second stage in which we modeled the transfer of the neuronal time series to the

BOLD signal and the field potential. This approach differs from the direct comparison of

electrophysiological signals and BOLD. The explicit separation into stages clarified both a sim-

ilarity and a difference between the BOLD amplitude and the field potential power: the two

can be approximated as the same operations on the neuronal population activity, but applied

in a different order. Specifically, within a brief window, we modeled the BOLD amplitude as

the sum of the power in the neuronal time series and the field potential as the power of the

sum of the neuronal time series. Because the order of operations differs, the two signals differ,

and each is blind to particular distinctions in the neuronal activity. For example, the BOLD

signal (according to our model) does not distinguish between synchronous and asynchronous

neural signals with the same total level of activity. In contrast, the field potential does not dis-

tinguish counterphase responses from no response. Even if one knew the exact mechanism of

neurovascular coupling and the precise antenna function of an electrode, one still could not

predict the relationship between the BOLD signal and the field potential without specifying

the neuronal population activity that caused both. Hence, the relationship between the two

types of signals is not fixed but rather depends on the structure of the underlying responses of

the neuronal population.

Although we do not have access to the complete set of individual neuronal responses in any

of our experiments in visual cortex, we approximated the responses by specifying the type of sig-

nals common to visual cortex. We therefore limited the space of neuronal population responses

by modeling the activity as arising from three types of signals, enabling us to compute the com-

plete set of field potentials and BOLD responses to a variety of conditions. Finally, we compared
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the simulated patterns of BOLD and field potential responses to the actual responses we

observed in data from human subjects. These patterns are discussed and interpreted below.

3.1 Changes in broadband power predict BOLD

Many studies have reported correlations between BOLD and power in the gamma band LFP

(30–130 Hz) (review for human studies: [52]). Yet, changes in gamma band power do not

reflect a single biological mechanism. For example, several recent studies have emphasized

that LFP power changes in the gamma band reflect multiple distinct neural sources, including

narrowband oscillations and broadband power shifts, with very different stimulus selectivity

and biological origins [38, 53, 54].

Broadband changes have been proposed to reflect, approximately, the total level of Poisson-

distributed spiking (or spike arrivals) in a local patch of cortex [40]. In contrast, the narrow-

band gamma response is caused by neural activity with a high level of cell-to-cell synchrony

[55] and likely depends on specialized circuitry [56]. While the two responses are sometimes

distinguished as “high gamma” (referring to broadband signals) and “low gamma” (referring

to oscillatory signals), this distinction is not general. Broadband signals can extend into low

frequencies [11, 57] so that the two signals can overlap in frequency bands. Hence, separating

gamma band field potentials into an oscillatory component and a broadband (nonoscillatory)

component is not reliably accomplished by binning the signals into two temporal frequency

bands, one low and one high, but rather requires a model-based analysis, such as fitting the

spectrum as the sum of a baseline power law (to capture the broadband component) and a log-

Gaussian bump (to capture the oscillatory component) [38].

There is strong experimental support for the idea that increases in broadband LFP power

primarily reflect increases in asynchronous neural activity rather than increases in coherence.

First, experiments have shown that broadband power is correlated with multiunit spiking activ-

ity [54, 58]. Second, unlike the case of narrowband gamma LFP, changes in broadband LFP are

not accompanied by changes in broadband spike-field coupling (Figure 1A-B in [43]). The pos-

sibility that neuronal synchrony sometimes affects broadband signals cannot be ruled out, for

example, as shown in cases of pharmacological manipulations in nonhuman primates [59]. In

such cases, there would not be a simple relationship between broadband power and BOLD.

The prior literature has not shown definitively whether broadband LFP, narrowband

gamma, or both predict the BOLD signal. The first study that directly compared simulta-

neously recorded BOLD and electrophysiology showed that both LFP power in the gamma fre-

quency range (40–130 Hz) and multiunit spiking activity (MUA) predicted the BOLD signal

[16] and further, that when the LFP power diverged from MUA, the gamma band LFP pre-

dicted the BOLD signal more accurately than did spiking. This study however did not sepa-

rately test whether a narrowband (oscillatory) or a broadband (nonoscillatory) component of

the LFP better predicted the BOLD response.

Other studies, too, have shown a variety of patterns when correlating LFP power changes in

the gamma band with BOLD. Some reported that BOLD amplitude correlates with narrow-

band gamma activity [13], while others showed that BOLD correlates with broadband changes

[11], and many did not distinguish narrowband from broadband power in the gamma band

[60]. Simultaneous recordings of hemodynamic and neuronal activity in macaque V1 showed

that BOLD signals from intrinsic optical images can occur in the absence of gamma band LFP

changes [61] and that, in some circumstances, multiunit activity predicts the BOLD signal

more accurately than gamma band LFP [24, 62].

Here, we separately quantified the broadband power (spanning at least 50–150 Hz) and nar-

rowband gamma power. We found that the amplitude of broadband changes accurately
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predicted the BOLD signal in V1. The empirical results and the models help resolve the ques-

tion of why “high gamma” has been shown to correlate with BOLD, and “low gamma” some-

times does not [24]. The likely reason is unrelated to the difference in frequency range, nor to

the size of the spectral perturbation in the LFP. In fact, the elevation in broadband power is rel-

atively small (2- or 3-fold) compared to the elevation in power often observed in narrowband

gamma oscillations (10x or more)[38]. Instead, “high gamma” is predictive of the BOLD signal

in many cases not because of the specific frequency range, but because this signal captures the

level of asynchronous neuronal response; this signal happens to be most clearly visible in the

high-frequency range (>100 Hz) in which it is not masked by rhythmic lower-frequency

responses. Hence, the distinction in predicting the BOLD response is not about “high” versus

“low” gamma but rather synchronous versus asynchronous responses, and the broadband sig-

nal, sometimes labeled high gamma, maps onto the first term on the right-hand side of Eq 4,

the portion of the field potential measurement that sums the energy demand of each neuron.

Our model fits and data support this view. When we captured the stimulus-related broad-

band response by simulating a change in broadband coherence across neurons rather than a

change in the level of response in each neuron, our predicted BOLD response was highly inac-

curate (S7 Fig).

3.2 Changes in narrowband gamma power do not predict BOLD

In contrast, we propose that “low gamma” often does not predict the BOLD response because

“low gamma” reflects narrowband oscillatory processes, which largely arise from a change in

neuronal synchrony across the population rather than a change in the response level per neu-

ron. This corresponds to the second term in the right-hand side of Eq 4, the portion of the

field potential measurement that reflects the cross-power arising from currents in different

neurons, which in our model, is independent of the signals giving rise to the BOLD signal.

Our results and model do not argue that narrowband gamma oscillations will never be pre-

dictive of the BOLD signal. If, in a particular experiment, narrowband gamma oscillations were

to covary with broadband increases, we would expect both signals to correlate with BOLD. This

might occur in an experiment with gratings of different contrast; with increasing contrast, nar-

rowband gamma responses, broadband responses, and BOLD responses all increase [21, 63],

and all three measures would correlate across stimuli. In such an experiment, if narrowband

gamma oscillations had a higher signal-to-noise ratio than the broadband response, then the

oscillatory signal would likely show a higher correlation with BOLD. In contrast, when the

choice of stimulus or task can independently modulate broadband power and gamma oscilla-

tions so that the two LFP measures are not correlated, as in the experiments presented here and

previously [38], then gamma oscillations will not strongly correlate with BOLD.

Our simulation and empirical results are consistent with studies that varied chromatic con-

trast and spatial frequency while measuring MEG and BOLD. These studies found that BOLD

and narrowband gamma activity did not match in stimulus specificity [18, 19]. It is likely that

these stimulus manipulations, like ours, independently modulated narrowband gamma power

and broadband power, although the studies did not quantify broadband fields, which are more

challenging to measure with MEG than with ECoG [64]. We speculate that broadband fields

spanning the gamma range would have shown a higher correlation with BOLD.

3.3 Neuronal synchrony and the BOLD signal

In our model, the LFP measures are highly sensitive to neuronal synchrony, whereas BOLD is

not. In our simulations, increases in neuronal synchrony drove narrowband gamma oscilla-

tions in the field potential. There are other cases of population activity with a high degree of
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neuronal synchrony. One example is the steady-state evoked potential associated with a peri-

odic stimulus [65, 66]. Previous studies have described discrepancies between evoked poten-

tials and the BOLD signal, such as in the case of spatial summation [11], directional motion

selectivity [7, 8] and spatial attention [9, 10]. Our modeling framework suggests that the neural

sources generating the steady-state potential (synchronous neural activity) are likely to be only

weakly related to the BOLD signal (depending largely on asynchronous signals), as these

sources will primarily affect the second term on the right-hand side of Eq 4 (cross-power).

This does not imply that the two measures are always or even usually discrepant; the BOLD

signal and steady-state potentials are likely to correlate any time that the steady state signals

correlate with other measures of neural activity. When measures do dissociate, we do not con-

clude that one measure is more accurate; instead, the measures offer complementary views of

the population activity, emphasizing the degree of synchrony or the average level of the

response. An intriguing question is how each of the two signals contributes to perception and

behavior [67].

Neural synchrony can also emerge without being time-locked to the stimulus, often called

“induced synchrony” or “induced oscillations” [68]. In our simulation, we assumed that nar-

rowband gamma LFP changes were induced by increases in synchrony between neurons and

not by changes in the level of gamma power within the individual neurons. In contrast, we

assumed that broadband LFP increases were induced by increased broadband activity in indi-

vidual neurons and not by increased broadband coherence between neurons. (In Eq 4, a

change in the left-hand side, LFP power in the gamma band, can be produced by a change in

either the first or second term on the right). This explains why, in our simulation, the broad-

band power was correlated with BOLD, whereas the LFP gamma power was not, findings that

were also confirmed by the data. Were our assumptions justified?

In principle, an increase in narrowband gamma power in the LFP could arise because the

neurons synchronize in the gamma band or because ongoing gamma oscillations within each

neuron increase in amplitude, independent of coordination between neurons. There is strong

experimental support for the former. Experiments that measure both intracellular membrane

potential from single neurons and the extracellular LFP show that when there is an increase in

narrowband LFP gamma power, the gamma power from individual neurons becomes more

coherent with the LFP [47]. Moreover, the coherence between local spiking and the LFP also

increases in the gamma band when LFP gamma power increases [43]. These results are consis-

tent with our assumption that a significant part of the increase in gamma LFP power arises

from a change in population coherence. To our knowledge, it is not certain whether there is

also some increase in the level of gamma signals within individual neurons when the narrow-

band gamma band LFP power changes. However, since we can attribute a large part of the

change in gamma LFP to a change in coherence, we infer that we can only attribute, at most, a

small part of the change in gamma LFP to the level of gamma power within neurons.

In our simulation, we made two simple but extreme assumptions. First, we assumed that

gamma oscillations occur with no change in the total level of neural activity, and hence no

change in metabolic demand or BOLD. Second, we assumed that broadband responses occur

with no change in neural synchrony. While these assumptions are likely incorrect at the limit,

the simulations nonetheless captured the pattern of ECoG and fMRI results obtained in our

datasets. Alternative models in which the broadband response was caused by a change in syn-

chrony were much less accurate (S7 Fig). Models in which gamma responses were caused by a

change in level were only slightly less accurate and cannot be ruled out entirely (S7 Fig). How-

ever, the regression models fit to our data (Fig 9) show that the power of narrowband gamma

oscillations does not predict the BOLD response. Hence the most parsimonious explanation is

that these responses in the LFP are caused in large part by changes in synchrony.
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3.4 Mean offsets and the BOLD signal

Both our measurements and our simulations showed that broadband electrophysiological

responses were related to, but did not fully account for, the BOLD signal. This was especially

evident in Simulation 2 and extrastriate data (V2/V3). In these cases, the amplitude of low-fre-

quency oscillations (8–15 Hz) was negatively correlated with the BOLD signal, independent of

broadband signals. Numerous previous studies have reported that low-frequency oscillations

are anticorrelated with BOLD, including measurements in motor, visual, and language areas

[20–22, 69–71]. This result may appear to conflict with the prior discussion, since we argued

that oscillations (to the degree that they reflect neuronal synchrony) should have little to no

effect on metabolic demand or the BOLD signal. It is therefore important to ask why low-fre-

quency oscillations sometimes correlate with the BOLD signal, both in data and in simulation.

One explanation is that alpha oscillations, or a mechanism that generates the oscillations,

affect the BOLD signal indirectly by inhibiting cortical activity. According to this explanation,

an increase in alpha power results in a decrease in local spiking activity, in turn reducing meta-

bolic demand and the BOLD signal [72]. Alpha oscillations may indeed co-occur with reduced

cortical excitation [73]. However, if this coupling between alpha power and spiking was the

only explanation for the relationship between alpha power and BOLD, then a more direct mea-

sure of neuronal excitation, such as broadband or multiunit activity, would adequately predict

the BOLD signal; alpha power would negatively correlate with the BOLD signal but would pro-

vide no additional predictive power. Our data and model do not support this explanation, as

we find that for most cortical sites, the most accurate predictor of the BOLD signal is a com-

bined model including both the amplitude of alpha oscillations and broadband power.

We therefore propose that in addition to the indirect effect of modulating cortical excitabil-

ity, alpha oscillations are also accompanied by a mean shift in membrane potential, making it

less depolarized (i.e., closer to the equilibrium potential), and this shift reduces metabolic

demand. Indirect evidence for a mean shift comes from MEG and ECoG studies [49, 50, 74],

which refer to alpha oscillations as being asymmetrical (i.e., they are not centered at 0—there

is a mean shift). This can be explained by a simple process: if alpha oscillations reflect periodic

inhibitory pulses, then on average, they will cause a hyperpolarization (or less depolarization).

If the neuron was slightly depolarized before the inhibitory alpha pulses, then the pulses would

push the neuron toward equilibrium and hence a lower-energy state. In this view, large alpha

oscillations reflect larger inhibitory pulses, reducing depolarization. We suggest that this

reduced depolarization affects metabolic demand in two ways: by reducing spiking (as dis-

cussed above) and by maintaining a less-depolarized state, reducing metabolic demand. In our

model, the contribution to the BOLD signal from each neuron is the power in the time series

(Eq 3), and the mean contributes to power. The idea that a mean shift in the membrane poten-

tial affects metabolic demand (in addition to altering excitability) is consistent with the obser-

vation that slowly changing currents (<0.5 Hz) correlate with BOLD fluctuations [12, 75].

Moreover, if alpha oscillations are associated with a mean shift in membrane potential, this

would explain why cortical excitability depends on the phase of the alpha cycle: at one phase,

the membrane potential is more depolarized, and hence cortex is more excitable, and in the

opposite phase, cortex is more hyperpolarized and hence less excitable. This is consistent with

the observations that the threshold for eliciting a phosphene with TMS changes with alpha

phase [76, 77] and that the alpha phase at the time of stimulus presentation influences the size

of the BOLD response in visual cortex [78].

Inhibition takes two neurons—one to inhibit and one to be inhibited. In our simulations,

the alpha oscillations (C3) were associated with inhibitory fluctuations in the membrane poten-

tial (mean below 0), which in turn was associated with decreases in BOLD. It is important to
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note that these fluctuations are meant to capture the effect of local inhibition on the postsynap-

tic neurons (the neurons being inhibited). The inhibitory neurons themselves are presynaptic,

and the action of inhibiting other neurons is presumably an active process that consumes

energy. Therefore, inhibition is expected to increase energy demand in some neurons (the pre-

synaptic neurons) and decrease energy demand in other neurons (postsynaptic neurons). We

did not model the inhibitory neurons explicitly; however, the neural activity associated with

active inhibition would be expected to contribute to the measured broadband signal in the

ECoG data and is implicitly included in the broadband inputs in our simulations (C1). More

complex models (see paragraph 3.6) in which the circuitry of excitatory and inhibitory neu-

rons is explicitly represented (such as [63, 79, 80]) may provide insight into how the balance

between excitation and inhibition influences the field potential and the BOLD signal.

3.5 A single modeling framework accounts for patterns of LFP/BOLD

correlations across sites

We found that the relationship between the BOLD signal and features of the ECoG data differed

across cortical areas. For example, broadband changes in ECoG responses explained more vari-

ance in the BOLD data in V1 than in V2/V3. Conversely, low-frequency power decreases (alpha,

8–13 Hz) explained more variance in the BOLD signal in V2/V3 than in V1. In the absence of a

model, we might have interpreted the results as evidence that neurovascular coupling differs

across sites. Many previous studies have reported differences in the relation between LFP and

BOLD as a function of site or condition, for example, between cortical and subcortical locations

[81], across cortical regions [82, 83], between cortical layers [84], and as a function of medication

[85]. Here, we showed that a difference in the relationship between LFP and BOLD need not

arise because of a difference in neurovascular coupling. In our results, Simulations 1 and 2, like

V1 compared to extrastriate areas, showed differences in the relationship between LFP and

BOLD, yet we used the identical model of neurovascular coupling in all simulations. The system-

atic differences in the two simulations arose because of differences in the neuronal population

activity, not because of differences in neurovascular coupling. While our results do not exclude

the possibility of differences in neurovascular coupling across locations or states, they do caution

against interpreting differences in the relationship between field potentials and BOLD as evidence

for a difference in neurovascular coupling, since they show that a single model can account for a

variety of patterns. More generally, the V1 versus V2/V3 discrepancies bolster the argument that

one cannot predict the exact relationship between BOLD and field potentials without also specify-

ing the neuronal population activity.

3.6 The role of a simple model in understanding the relation between

BOLD and LFP

A complete description of the biophysical processes giving rise to the BOLD signal and the field

potential is far beyond the scope of this paper and is likely premature given the enormous com-

plexity in the nervous system, the vascular system, and the coupling mechanisms between them.

Instead, the purpose of our modeling framework was to first begin with a general principle,

namely that BOLD and field potentials sum neural activity according to a different sequence of

operations; second, to instantiate this principle in simple mathematical rules; third, to combine

these rules with a minimal model of neural population activity; and finally, to ask to what extent

such a model can account for the patterns in our data.

Our model omits many biophysical components, such as compartmentalized neurons, mul-

tiple cell types and vessel types, neurotransmitters, the dynamics of blood flow, and so on;

hence, it is not a detailed simulation of the nervous system or vascular system. We modeled
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the BOLD signal as a function of dendritic currents summed across neurons within an imaging

region. The logic motivating this is straightforward. Neuronal activity consumes a large

amount of energy, and this energy demand is dominated by the cost of restoring the mem-

brane potential following ionic flows from synaptic potentials and action potentials [86, 87].

As a result, the increased energy demand from neuronal responses is related to the dendritic

currents. Neurovascular coupling is the process of increasing blood flow to meet this energetic

demand; a failure of the hemodynamic response such as stroke can cause neuronal and glial

cell death, highlighting the importance of the relationship between blood supply regulation

and neuronal activity [33].

We modeled the hemodynamic response as being proportional to the energy demand from

dendritic currents. This model was proposed as a computational summary of the approximate

relationship between the BOLD signal and neuronal activity, not as a hypothesis about a causal

mechanism. Recent work suggests that energy consumption per se (e.g., the change in the cere-

bral metabolic rate of oxygen consumption) is not the triggering mechanism for the increased

blood flow, rather neurotransmitters and other molecules associated with synaptic events are

part of a complex cascade that causes vasodilation and changes in blood flow [33, 88, 89]. The

exact biological mechanism responsible for neurovascular coupling is an area of highly active,

ongoing research [35]. The key assumptions in the model—that the BOLD signal is correlated

with changes in membrane potential and that the order of operations differs for the BOLD sig-

nal and the LFP—makes accurate predictions for our dataset. A separate and important

research question is how closely the biophysical mechanisms match this computational-level

description, and what these mechanisms are.

The simplicity of the model has benefits. It facilitates an understanding derived from basic

principles, similar to the advantages in building computational, rather than biophysical, mod-

els of neural responses [90–93]. Both types of models and empirical studies are valuable. Here,

we emphasize that even with a highly simplified model of the BOLD signal, the field potential,

and neuronal population activity, we are able to reconcile a wide range of findings in a compli-

cated and technical literature. The model accounts for differences in how broadband field

potentials and gamma oscillations relate to the BOLD signal. It can explain differences between

cortical areas in the relationship between field potentials and BOLD. The model also provides

an explanation for why the amplitude of alpha rhythms is negatively correlated with BOLD,

even after accounting for the relationship between broadband signals and BOLD.

We note that drastic simplifications are the norm in many fields of neuroscience, such as

receptive field modeling of visual neurons; most such models omit fixational eye movements,

optical properties of the eye, retinal and cortical circuitry, etc., instead modeling responses as a

few simple mathematical computations of the stimulus (filtering, thresholding, and normaliza-

tion) [94]. These highly simplified models will certainly fail under some conditions [95], yet

they have proven to be of immense value to the field [93], in part due to their simplicity and in

part because the alternative in which the responses of visual neurons are computed from a

complete, neurobiologically realistic model of the nervous system simply does not exist.

3.7 Reproducible computations

To test competing computational theories about the relation between the visual input, the LFP,

and the BOLD response, it is essential to make sample data and code available for others [38,

53]. Following standard practices of reproducible research [96–98], the Matlab code of the

simulation and sample data and code to reproduce the Figs in this manuscript can be down-

loaded at https://github.com/dorahermes/Paper_Hermes_2017_PLOSBiology.
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3.8 Conclusions

To understand how the electrophysiology and BOLD responses are related, it is necessary to

specify both the manner in which population activity transfers to the two signals and the neu-

ronal population activity itself. The former shows that the covariance between neuronal time

series has a large influence on the field potential and not the BOLD signal. Based on our simu-

lations and empirical results, we made several inferences about the neuronal population

responses mediating the BOLD signal and the LFP: that narrowband gamma oscillations in

visual cortex likely arise more from synchronization of neural responses than a change in level

of the neural response and hence have a large influence on the field potential and little influ-

ence on the BOLD signal, that responses that are asynchronous across neurons manifest in

broadband field potentials and an elevated BOLD signal, and that low-frequency oscillations

observed in field potentials are likely accompanied by a widespread hyperpolarization, which

in turn reduces metabolic demand and the BOLD signal. Our model-based approach brings us

a step closer to a general solution to the question of how neural activity relates to the BOLD

signal.

Materials and methods

4.1 Ethics statement

Informed, written consent was obtained from all subjects. The fMRI protocols were approved

by the New York University IRB and ECoG protocols were approved by the Stanford Univer-

sity IRB, according to the principles expressed in the Declaration of Helsinki.

4.2 Simulated neuronal time series

Simulations were computed for a population of 200 neurons. Each simulation trial was 1 sec-

ond long with millisecond sampling. The time series for each neuron was derived by summing

three inputs, each 1 second long, followed by leaky integration with a time scale of 10 millisec-

onds to simulate temporal integration in the dendrite (Fig 4). Each simulation was fit to ECoG

data from one electrode and consisted of 240 trials, 8 repeats of 30 stimulus conditions. A con-

dition in the simulation was defined by the parameter settings for the three inputs (Fig 4): C1

(broadband), C2 (gamma), and C3 (alpha). Variations in these three inputs resulted in power

changes in the broadband, gamma, and alpha LFP. The inputs were fit to data such that the

simulated LFP power changes matched the ECoG data power changes for a particular elec-

trode and stimulus.

4.2.1 C1—Broadband input. The first input was a series of random numbers drawn from

a normal distribution, with no temporal dependencies and no dependencies between neurons.

Motivation. This input approximates spike arrivals with a Poisson distribution at a fixed

rate for a given 1-second trial. A random normal distribution was used rather than a Poisson

distribution for computational efficiency. (The pattern of results is the same for either distribu-

tion.) The input has a flat (white) power spectrum up to the sampling limit of 500 Hz. When

coupled with leaky temporal integration (described in a subsequent section), this input results

in a power spectrum that is approximately proportional to 1=f 2 (brown noise). Several groups

have proposed that the approximately 1=f n power spectra observed in field potentials arises

from white noise (or Poisson noise) input to individual neurons, coupled to one or more low-

pass filters [40, 99, 100]. Previously proposed sources of filters include an exponentially decay-

ing current response in the synapse following each spike arrival [99], leaky temporal integra-

tion in the dendrite [40], and frequency dependent propagation in the extracellular tissue

[101], the last of which has since been shown to be unlikely [102]. Regardless of the source of
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the low-pass filtering, the general proposal makes an interesting prediction, namely that a

spectrally broadband increase in field potential power in response to a stimulus is likely to

indicate an increase in the rate of spike arrivals following that stimulus [40]. This hypothesis

has empirical support, based on correlations between spike rates (single-unit and multiunit)

and broadband field potentials [54, 58] and the fact that a 1=f n baseline spectrum, as well as

stimulus-dependent broadband power increases, can be observed in intracellular (single neu-

ron) membrane potentials in awake macaque visual cortex [42]. This hypothesis is the logic

behind our choice to model both the baseline 1=f n spectrum and stimulus-dependent broad-

band modulations as arising from spectrally flat inputs followed by low-pass filtering within

individual neurons. For computational tractability, we explicitly modeled only one of the low-

pass filters—leaky integration in the dendrites. We assumed that spectrally broadband signals

reflect uncorrelated activity. First, we have shown that the broadband ECoG signal is asyn-

chronous with respect to a visual stimulus and hence uncorrelated from trial to trial [11].

Here, we extrapolate that within a trial, the contribution to the broadband signal is asynchro-

nous from neuron to neuron. One reason to assume so is based on a physiological model: the

broadband signal has been hypothesized to arise from the leaky integration of Poisson-distrib-

uted spike arrivals [40]. Even if the spike rate is correlated between neurons, the spike timing

within a trial is likely to have low correlations between neurons.

Parameters. For each simulation, the Gaussian distribution defining C1 always had a mean,

μ = 0.25. The slightly positive mean ensured that in the baseline state, the membrane potential

was slightly positive, such that a suppressive signal (described in the section C3) could bring

the potential closer to 0, hence reducing the metabolic demand. For the 8 conditions in each

simulation, the baseline standard deviation of the distribution was set at σ = 0.3. A larger σ
results in a larger broadband signal and can be thought of as reflecting a higher Poisson rate of

spike arrivals. The σ for each condition was calibrated such that the resulting changes in broad-

band power for each of the 8 stimulus conditions matched the changes in broadband power in

the ECoG data (Fig 6, see S9 Fig).

4.2.2 C2—Narrowband oscillations in the gamma band. The second input was band-

passed filtered white noise. The white noise was drawn from a distribution with 0 mean and

fixed standard deviation on all trials and for all neurons and subsequently band-pass filtered.

Unlike C1, there were dependencies (coherence) between neurons. The level of coherence var-

ied across the 8 trial types in each simulation.

Motivation. This input approximates a circuit producing narrowband gamma oscillations

in the field potential. Parvalbumin positive interneurons project to pyramidal neurons and can

produce fluctuations in the membrane potential of the pyramidal neurons in gamma frequen-

cies from 30–80 Hz [47]. The narrowband rise in gamma power associated with certain stimuli

or tasks appears to reflect an increase in synchrony between neurons in this band [103]. There-

fore, unlike C1, which varied in level but not coherence as a function of condition, C2 varied in

coherence but not level as a function of condition.

Parameters. For all trials and all conditions, the white noise samples were drawn from a

normal distribution with μ = 0 and σ = 0.2. The covariance of the distributions could range

between 0 and 1 (using Matlab’s mvnrnd function). The white noise inputs were filtered

between 50 Hz and 60 Hz prior to temporal integration in the dendrite: inputs were first zero-

padded, then filtered with a 10th order Butterworth filter in forward and reverse direction.

(Fig 4). The covariance for each simulation was calibrated such that the resulting changes in

narrowband gamma power for each of the 8 stimulus conditions matched the changes in nar-

rowband gamma power in the ECoG data.
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4.2.3 C3—Narrowband oscillations in the alpha band. The third input was band-passed

filtered white noise, with an added asymmetry such that increased power decreased the mean

amplitude. The coherence was the same for all trials and all neurons; the amplitude of the

pulses varied by condition.

Motivation. Oscillations in the alpha band (8–15 Hz) are widely observed in visual cortex,

with higher amplitudes associated with low sensory stimulation (e.g., eyes closed or zero con-

trast) or a low-level attention. One model of alpha oscillations is that pyramidal neurons in

visual cortex receive pulses of inhibition (hyperpolarizing inputs) spaced on the order of 100

milliseconds, generated indirectly by thalamic-cortical loops [49, 50]. According to this view,

less active states are associated with larger inhibitory pulses, resulting in a time-averaged

hyperpolarization, compared to more active states with smaller inhibitory pulses. The inhibi-

tion is pulsed rather than continuous so that the reduced cortical responsiveness is dependent

on the phase of the alpha cycle (most reduced following each inhibitory pulse). Individual neu-

rons in visual cortex can indeed show membrane oscillations at frequencies around 10 Hz

[51], indicating that it is reasonable to model the alpha oscillation measured in the population

as arising from oscillations in individual neurons, rather than arising only from band-limited

coherence between neurons.

Parameters. For all trials and all conditions, the white noise samples were drawn from a

normal distribution with μ = 0 and σ = 1. The covariance of the distributions was fixed at .75

(using Matlab’s mvnrnd function). The white noise inputs were filtered between 9 Hz and 12

Hz prior to temporal integration in the dendrite: inputs were first zero-padded, then filtered

with a 10th order Butterworth filter in forward and reverse direction. The envelope was calcu-

lated by a Hilbert transform and added to the signal, and the signal was multiplied by −1, such

that increases in power reduced the mean amplitude. The signal was then multiplied by a fac-

tor c3, which was calibrated such that the resulting changes in narrowband alpha power for

each of the 8 stimulus conditions matched the changes in narrowband alpha power in the

ECoG data.

4.2.4 Fitting the LFP power changes to the ECoG power changes. Changing inputs in

C1, C2, and C3 results in a change in LFP power in broadband, gamma, and alpha, respectively.

In order to fit the simulated LFP power changes to the ECoG power changes we quantified the

input to LFP output relation, such that a certain change in simulated LFP power could be pre-

dicted by change in the input amplitude. Different functions described the relation between

the input and LFP. The relation between broadband input and LFP broadband was described

as

LFPbroadband ¼ a � log
10

bþ C1

b
ðEq 10Þ

Since gamma and alpha were dependent on broadband amplitude (an increase in broad-

band noise masks the relative contribution of narrowband oscillations), the following function

described the relation between input and gamma and alpha LFP:

LFPgamma ¼ a � 10
� LFPbroadband

m � log
10

bþ C2

b
þ c � LFPbroadband

� �

þ d ðEq 11Þ

LFPalpha ¼ a � 10
� LFPbroadband

m � log
10

bþ C3

b
þ c � LFPbroadband

� �

þ d ðEq 12Þ

Parameters a, b, c, d, and m were estimated by a separate calibration procedure in which

C1, C2, and C3 were systematically varied and LFP broadband, gamma, and alpha were
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calculated. S9 Fig shows that using this procedure the simulated LFP power changes match the

ECoG power changes well.

4.3 Stimuli and task

Stimuli for ECoG experiments were reported previously [38]. In brief, for one subject, the sti-

muli came from 8 classes of patterns (30 exemplars per class, 20x20˚), including high contrast

vertical gratings (0.16, 0.33, 0.65, or 1.3 cycles per degree square wave) noise patterns (spectral

power distributions of k/f 4, k/f 2, and k/f 0), and a blank screen at mean luminance (S2 Fig).

For the second ECoG subject, there were the same 8 classes as well as two other stimulus clas-

ses–a high contrast white noise pattern and a plaid at 0.65 cpd. The fMRI subjects had the

same 10 stimulus classes as the second ECoG subject.

4.3.1 ECoG task. ECoG data were re-analyzed from a previous report [38]. We briefly

summarize that experiment here. Subjects viewed static images of gratings and noise patterns

for 500 ms each, with 500 ms of zero-contrast (mean luminance) between successive stimuli.

Order of presentation was randomized (S2 Fig). There were a total of 210 contrast stimuli,

shown once each in a single, continuous experiment (and 210 interstimulus blanks). Stimuli

were shown on a 15-inch MacBook Pro laptop using Psychtoolbox (http://psychtoolbox.org/).

The laptop was placed 60 cm from the subject’s eyes at chest level. Screen resolution was

1280x800 pixels (33x21 cm). Coordinates of the population Receptive Fields (pRF) were

obtained from a prior study [11].

4.3.2 fMRI task. The fMRI experiment was a block design, with 12-second stimulus

blocks alternating with 12-s blank periods (mean luminance). During the stimulus blocks,

images were presented at the same rate as the ECoG experiment: 500 ms duration alternating

with 500 ms of zero-contrast (mean luminance) between images (S2 Fig). All stimuli from

each block came from one of the 7 stimulus classes. The exemplars within the block were all

different. Subjects participated in 8 scans of 9 blocks each, and block order was randomized

using Latin squares. Two of the fMRI subjects (S2 and S3) additionally participated in an iden-

tical experiment using lower contrast images, resulting in similar findings. fMRI subjects par-

ticipated in two pRF runs to identify retinotopy maps. Stimuli for the pRF experiments

consisted of a bar (width = 3 deg) that swept across the visual field in 8 directions: the four car-

dinal directions and the four diagonals. The bar contained a drifting checkerboard with 100%

contrast. Images were projected on a screen in the rear of the magnet bore using an LCD pro-

jector (LC-XG250, Eiki) with a resolution of 1024x768 (60 Hz refresh rate) and subtending

approximately 32x24 visual degrees (32.4x24.3 cm). Subjects viewed the screen with a mirror

mounted to the RF coil. The viewing distance was approximately 58 cm.

4.4 ECoG procedure

ECoG data were measured from two subjects who were implanted with subdural electrodes

(2.3 mm diameter, AdTech Medical Instrument Corp) for clinical purposes at Stanford Hospi-

tal. Informed, written consent was obtained from all subjects. ECoG protocols were approved

by the Stanford University IRB. In 22 electrodes in V1 V2 and V3, broadband and narrowband

gamma responses were quantified as before [38], and alpha power changes were calculated.

4.4.1 ECoG recording. ECoG data were recorded at 3052/1528 Hz (ECoG subject 1/

ECoG subject 2) from 118/96 electrodes through a 128-channel Tucker Davis Technologies

recording system (http://www.tdt.com). Electrodes were localized on a postoperative com-

puter tomography (CT) scan that was co-registered with a pre-operative MRI, and locations

were corrected for the brain shift [6]. Electrodes that showed large artifacts or epileptic activity

(as determined by the patient’s neurologist) were excluded from analysis (7/35 electrodes were
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excluded in subject 1/subject 2). Off-line, data were re-referenced to the common average,

low-pass filtered and resampled at 1000Hz for computational purposes using the Matlab

resample function. Line noise was removed at 60, 120 and 180 Hz using a 3rd order Butter-

worth filter.

4.4.2 ECoG analyses. Broadband and narrowband gamma responses were quantified as

before [38]. We calculated power spectra and separated ECoG responses into broadband and

narrowband gamma band spectral power increases. To control for the influence of evoked activ-

ity on the spectrum, event related potentials (ERPs) were calculated per condition and the condi-

tion specific ERP was regressed from each trial. This procedure makes sure that the broadband

increase is not due to a sharp edge in the ERP; the same pattern of results is obtained if this step

is omitted. For each condition, the average power spectral density was calculated every 1 Hz by

Welch’s method [104] from 0–500 ms after stimulus onset (and 0–500 ms after stimulus offset

for the baseline) and a 250 ms Hann window to attenuate edge effects. ECoG power spectra are

known to obey a power law and to capture broadband and narrowband gamma increases sepa-

rately the following function was fitted to the average log spectrum from 35 to 200Hz (leaving

out 60Hz line noise and harmonics) from each condition (Fig 3):

PðxÞ ¼ ðbbroadband � nxÞþbnarrowbandGðxjm;sÞ

In which,

x ¼ log10ðfrequencyÞ

G xjm; sð Þ ¼ e
� ðx� mÞ2

2s2

with 10σ = 1.1 Hz and 35 Hz< 10μ< 80 Hz.

The slope of the log-log spectral power function (n) was fixed for each electrode by fitting it

based on the average power spectrum of the baseline. For cross-validation, trials were split into

even and odd repeats, and broadband and gamma changes were calculated for each. Confi-

dence intervals were calculated by a bootstrap procedure. For each condition C with Nc trials,

Nc trials were drawn randomly with replacement and power spectra were averaged. The

parameters β were fitted on the average log power spectrum from these bootstrapped trials.

This was repeated 100 times, resulting in two sets of distributions of broadband and gamma

weights for even and odd trials.

Alpha response amplitude was calculated as follows. Alpha changes are best visible after the

initial onset transient and ERP, and we used the power from 250–500 ms to calculate the alpha

decreases for each stimulus. Alpha amplitude was calculated by averaging the log-power

between 8 and 13 Hz.

4.4.3 Electrode selection. Electrodes for analysis were selected on the basis of three crite-

ria. First, the pRF was located within V1, V2, and V3. Second, the explained variance in a pRF

experiment was>15% [11]. Third, the center of the pRF was within the extent of the stimulus

(<12 deg) and on the contralateral visual field. Because ECoG subject 2 did not have pRF data,

only anatomical estimates of V1, V2, and V3 were used [105]. These criteria yielded 22 elec-

trodes (19 from ECoG S1, 3 from ECoG S2).

4.5 fMRI procedure

fMRI data was measured from four subjects (three female, ages 22–42) with normal or cor-

rected-to-normal vision at the Center for Brain Imaging at NYU. Informed, written consent

was obtained from all subjects. The fMRI protocols were approved by the New York University
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IRB. fMRI data were preprocessed and analyzed using custom software (http://vistalab.

stanford.edu/software). Disc regions of interest (ROIs) (radius = 2 mm) were defined in fMRI

subjects to match the position of the electrodes in ECoG subjects using a combination of anat-

omy, pRF centers, and visual field maps. The similarity between the ROI position and elec-

trode position was compared via visual inspection of anatomical images and pRF centers (S3

Fig).

4.5.1 fMRI recording. Anatomical MRI and fMRI data were collected at the Center for

Brain Imaging at NYU on a Siemens Allegra 3T head-only scanner with a Nova Medical trans-

mit/receive coil (NMG11) and a Nova Medical phased array, 8-channel receive surface coil

(NMSC072).

Two to three T1-weighted whole-brain anatomical scans (MPRAGE sequence) were

obtained for each subject (voxel size: 1x1x1 mm, TR: 2500 ms; TE: 3.93 ms, flip angle: 8 deg).

Functional images were collected using gradient echo, echo-planar imaging (voxel size: 2x2x2

mm, 24 slices, TR: 1500 ms, TE: 30 ms, flip angle: 72 deg). Images were corrected for B0 field

inhomogeneity during offline image reconstruction using a separate field map measurement

made halfway through the scan session. Slice prescription was set approximately perpendicular

to the calcarine sulcus, covering the occipital lobe. In addition, a T1-weighted inplane was col-

lected with the same slice prescription to align functional images to the high-resolution ana-

tomical images.

4.5.2 fMRI analysis. Preprocessing. Anatomical images were coregistered and segmented

into gray/white matter voxels using FreeSurfer autosegmentation algorithm (surfer.nmr.mgh.

harvard.edu). A 3D mesh of the cortical surface was inflated for ease of visualization. Func-

tional data were preprocessed and analyzed using custom software (http://vistalab.stanford.

edu/software). Data were slice-time corrected to adjust for differences in acquisition time

among slices in the 1.5-second frame. Data were motion corrected for both between- and

within-scan motion. Finally, data were high-pass filtered for low-frequency drift [106] by mul-

tiple moving average smoothing (2 iterations, 40 seconds). Data were then converted to per-

cent signal change by dividing each voxel’s signal by its mean signal. The first 4 frames of each

run (6 seconds) were discarded to allow longitudinal magnetization and the hemodynamic

response to reach steady state.

Analysis. Noise was removed from the fMRI data using GLMdenoise, a variant of the stan-

dard GLM commonly used in fMRI analysis [107]. In brief, GLMdenoise derives noise regres-

sors for each subject by performing principle components analysis on noise voxels that are

unrelated to the task. The optimal number of noise regressors is selected based on improve-

ment in cross-validated R2. The final model is fitted to each voxel’s time series and boot-

strapped 100 times over 8 runs. Here, the predictors in the GLM were the 9 image categories

(4 gratings, 4 noise patterns, 1 plaid) and a blank period (a randomly assigned blank block).

Voxel bootstraps were averaged across voxels within a ROI. The resulting 100 bootstraps per

ROI were vector-length normalized and averaged across subjects. The beta estimate for each

condition is taken as the median averaged bootstrap and the standard error as one-half the

68% confidence interval.

pRF model. The pRF runs were analyzed by fitting a 2D Gaussian to each voxel, modeling

its pRF [108]. The pRF is defined by center location (x,y coordinates) and spread (sigma). The

resulting maps were used to define retinotopic areas V1, V2, and V3 as in [109].

4.6 Predicting fMRI signals directly from ECoG models

The relationship between fMRI and ECoG signals was analyzed using a linear regression

model. The cross-validated coefficient of determination (R2) was used as a metric for model
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accuracy, and the regression coefficients were used to test whether ECoG predictors (broad-

band, gamma, and alpha) had a positive or negative relation with BOLD.

The relationship between fMRI and ECoG signals was analyzed using a linear regression

model:

y ¼ Xbþ cþ ε

where y is a vector of fMRI amplitudes (beta estimates), with n entries for the n different sti-

muli; X is a matrix of ECoG responses, n by 1, 2, or 3, where the columns correspond to one or

more of broadband, gamma, and alpha estimates; b are the 1, 2, or 3 beta weights for the broad-

band, gamma, and alpha estimates; c is a constant (the y-intercept); and ε is the residual error

term. The model was fitted separately for each cortical site (electrode/ROI pair) and for differ-

ent combinations of predictors—broadband alone, gamma alone, alpha alone, each pairwise

combination, and all three predictors together.

The n stimuli in the regressions included the contrast patterns and the blank stimulus.

Inclusion of the blank stimulus is important for capturing the sign of the mean response. For

example, if all contrast patterns induced a BOLD response of a particular level (say, +1) and

induced ECoG responses of a particular level (say, –1) and we did not include the blank stimu-

lus in the regression, then after subtracting the mean from each measure, all beta estimates

would be approximately 0. This would mask a systematic relationship between ECoG and

BOLD measures (in this example, an anticorrelation) arising from viewing stimuli with con-

trast compared to viewing a blank screen.

Models were evaluated by split-half cross-validation. First, the regression model yi = Xibi +

ci + ε was fit using half of the fMRI subjects (1 and 2) and half of the ECoG stimulus repetitions

(even repetitions). To cross-validate this model, the beta values (bi) were then applied to the

left out half of the ECoG data (odd stimulus repetitions) to predict the left out half of the fMRI

data (fMRI subjects 3 and 4). The same procedure was applied by reversing the training and

testing data. This resulted in two testing datasets with BOLD responses predicted from ECoG

for each stimulus condition (Xibi + ci) and an actual measured BOLD value. For each cortical

site, the coefficient of determination (see below) was calculated between the concatenated pre-

dictions and BOLD data values of the two test sets. All R2 values reported in the results are

cross-validated in this manner. The same pattern of results was achieved if instead of cross-val-

idation, we solved the models on the complete datasets and computed the R2 adjusted for the

number of regressors.

To test whether different ECoG predictors (broadband, narrowband, alpha) had a pos-

itive or negative relation with BOLD, we tested whether the regression coefficient was

significantly larger or smaller than 0. The regression coefficient was considered to be sig-

nificantly different from 0 using a bootstrap statistic: for each model, the median of the

beta values across sites was calculated after resampling 10,000 times. If <2.5% of the

resampled statistics were smaller than zero, the beta values were considered significantly

positive, and similarly, if <2.5% of the resampled statistics were greater than 0, the beta

values were considered significantly negative.

4.7 Model accuracy

All model predictions were quantified using the coefficient of determination on cross-vali-

dated predictions. For predicting BOLD data from simulations of population neuronal activity

(Fig 7, S7 Fig), the predicted BOLD has arbitrary units. In these cases, the observed BOLD and

the predicted BOLD were both normalized by subtracting the mean and then dividing by the

vector length. When predicting BOLD responses from features of the LFP data (broadband,
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gamma, and alpha) by regression, the predicted BOLD data were in the same units as the mea-

sured BOLD, and no normalizing or rescaling was done.

To quantify the accuracy of the models, we calculated the cross-validated coefficient of

determination, R2:

R2 ¼ 1 �
SSresiduals
SSdata

SSresiduals ¼
X

i

ðyi � fiÞ
2

SSdata ¼
X

i

ðyi � yÞ
2

where y are the data values and f are the prediction values. Because the model fits are cross-val-

idated, it is possible for the model errors (residuals) to be larger than the data values, hence R2

can be lower than 0, and spans (−1,1]. In the case in which the model predictions and the

data are unrelated and each are normally distributed with equal variance, R2 will tend to –1.

Supporting information

S1 Fig. Alpha changes explain additional variance in the blood-oxygen-level dependent

(BOLD) response. A) Time/frequency spectrograms for the pink noise pattern and the grating

in an exemplary V2 electrode show that power in the low frequencies decreased more for the

pink noise pattern (left) than for the grating (right). B) Top: the correlation between broad-

band and BOLD shows that the broadband response underpredicts the BOLD response for the

noise patterns (blue dots). Red and pink dots represent the gratings. This pattern is visible in

most V2/V3 electrodes (S5 Fig) Bottom: taking into account the alpha decreases in the regres-

sion model explains the variance in the BOLD response that was not explained by the broad-

band changes. The R2 represents the cross-validated coefficient of determination.

(TIF)

S2 Fig. Electrocorticographic (ECoG) and functional magnetic resonance imaging (fMRI)

measurements. A) ECoG and fMRI responses were measured to 8 different stationary stimuli.

In all experiments, subjects were instructed to fixate on a dot at the center of the screen that alter-

nated between red and green, changing colors at random times. Subjects pressed a button when

the fixation dot changed color. ECoG Subject 2 did not make manual responses because these

responses were found to interfere with visual fixation. B) ECoG responses were measured in an

event-related design, in which stimuli were presented every 1000 milliseconds. Stimuli were pre-

sented for 500 milliseconds followed by a blank screen. C) Stimuli were presented in blocks of 12

seconds during fMRI, followed by 12 seconds of blank. D) Example ECoG power spectrum for

one electrode. ECoG data showed broadband increases (>100 Hz) compared to baseline, nar-

rowband gamma increases around 40 HZ, and a decrease in alpha power around 10 Hz. E) The

blood-oxygen-level dependent (BOLD) response increased in different levels for the different sti-

muli averaged across subjects. When averaging the BOLD signal across subjects, the percent sig-

nal change per subject was vector-length normalized, BOLD normalizedi ¼
BOLD changei

NORM

�
, for

condition i, in whichNORM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iBOLD changei
2

p
Þ. To then reestimate the percent signal

change across subjects, the averaged vector-length–normalized values were multiplied by the

average norm.

(TIF)
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S3 Fig. Region of interest (ROI) selection. A) Channels in electrocorticographic (ECoG) S1

selected for further analysis. These channels were located within V1 (red), V2 (blue), or V3

(green), had significant broadband or gamma response to any stimuli, and had population

Receptive Fields (pRF) variance explained >0.15. V1 sites 8 and 9 are indicated, since these

had the largest gamma responses. B) Electrode ROIs in functional magnetic resonance imag-

ing (fMRI) S1. Disc ROIs (radius = 2 mm) were defined to have similar anatomical and retino-

topic position as the ECoG Channels. C) The pRF centers for fMRI ROIs (filled circles) were

chosen to be close to those for ECoG electrodes (open circles). Because the pRF centers mea-

sured with fMRI do not completely cover the visual field map, the locations can differ slightly.

(TIF)

S4 Fig. Broadband, gamma, and alpha changes in V1, V2, and V3. (A) For each electrocorti-

cographic (ECoG) electrode, for each stimulus condition, the broadband change was calcu-

lated. The average log10 power from the inter stimulus baseline period was subtracted. The

mean change from the baseline was then averaged across the 8–10 stimuli. (B and C) The

same as A) shown for gamma and alpha. (D) For each ECoG electrode, for each stimulus con-

dition, the blood-oxygen-level dependent (BOLD) percent signal change was calculated. The

mean change from the baseline was then averaged across the stimuli.

(TIF)

S5 Fig. Correlation between blood-oxygen-level dependent (BOLD) and electrocortico-

graphic (ECoG) broadband, gamma, and alpha for all electrodes. Correlation between

BOLD and ECoG in V1 and V2/V3. The R2 is cross-validated: beta values are calculated from

half the ECoG trials and half the functional magnetic resonance imaging (fMRI) subjects, and

the regression model is tested on the other half of the trials and subjects.

(TIF)

S6 Fig. Blood-oxygen-level dependent (BOLD) predicted by electrocorticographic (ECoG)

broadband and alpha for all electrodes. This plot shows the predicted BOLD (x-axis) versus

measured BOLD (y-axis) for the 9 V1 sites (top) and 13 V2/V3 sites (bottom), based on a linear

regression of the broadband and alpha components of the ECoG signals. The coefficient of

determination, R2, was cross-validated.

(TIF)

S7 Fig. Accuracy of blood-oxygen-level dependent (BOLD) predictions from simulated neu-

ronal activity. This plot shows the predicted BOLD (x-axis) versus measured BOLD (y-axis) for

the 9 V1 sites (top) and 13 V2/V3 sites (bottom). Each color corresponds to one site. The cross-

validated coefficient of determination (R2) was computed separately for each of the 9 sites and

then averaged. The different subplots are models solved with different constraints. In the main

text of the paper, model parameters were fit with three constraints: (1) the C1 (broadband) time

series had a fixed, nonzero level (but could vary in correlation between neurons), (2) the C2

(gamma) time series had a fixed, nonzero level (but could vary in correlation), and (3) the C3

time series had a fixed, nonzero correlation (but could vary in level). The model predictions

based on these constrains are plotted in the upper left of both the upper panel (V1) and the

lower panel (V2/V3). Seven alternative models were run, and their predictions are shown in the

remaining panels. For these models, the three input types, C1, C2, and C3, were constrained to

have time series varying in either the level or correlations across neurons but not both.

(TIF)

S8 Fig. The size of the electrocorticographic (ECoG) response and how well ECoG and

blood-oxygen-level dependent (BOLD) are correlated. Variance in the BOLD response
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explained by ECoG (R2, the coefficient of determination) as a function of the size of the ECoG

response. Each dot represents 1 electrode. x-axis: for each electrode, ECoG broadband,

gamma, and alpha responses were averaged across (nonbaseline) stimuli. y-axis: the cross-vali-

dated R2 when BOLD is explained by broadband (left), gamma (middle), and alpha (right).

(TIF)

S9 Fig. Relation between the simulated and measured local field potential (LFP) values.

Every dot represents the broadband (black), gamma (magenta), or alpha (green) power change

for one electrode, one stimulus condition. The power changes in the LFP are driven by changes

in parameters C1, C2, and C3. We fitted these parameters such that the simulated LFP values

for broadband, gamma, and alpha nicely match the measured values.

(TIF)
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