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Anti-PD-1/PD-L1 immunotherapy has limited efficacy in hepatocellular carcinoma (HCC)
and does not benefit all patients. A FAK inhibitor (VS-4718) has been reported to improve
the microenvironment in some tumors. This study aimed to investigate the effect of the
combination of the FAK inhibitor VS4718 and anti-PD1 for the treatment of HCC in a
mouse model and its possible mechanism of action. The expression of FAK and infiltrated
immune cells in human HCC from the data of TCGA were analyzed. A primary murine HCC
model was established via protooncogene (c-Met/β-catenin) transfection. The pathological
characteristics of tumors were examined after the mice were treated with VS4718 and/or
anti-PD1 therapy. This study revealed that FAK is highly expressed in human HCC and is
associated with poor prognosis of OS (overall survival) and PFS (progress free survival) in
HCC patients. Immune cell infiltration (CD8+ T, Tregs, M0, M2, CAFs and MDSCs) was
correlated with FAK expression. In the experimental HCCmodel, the combination of a FAK
inhibitor VS4718 and an anti-PD1 antibody had a better effect than monotherapy against
HCC. VS4718 reduced the number of Tregs and macrophages but increased the number
of CD8+ T cells in HCC mice. Notably, FAK inhibitor promoted the expression of PD-L1 in
HCC. This study suggested that combination of the FAK inhibitor VS4718 and anti-PD1
could be a potential therapy for HCC by improving the immune environment, reducing liver
fibrosis and simultaneously preventing PD1 from binding to the increased PD-L1 induced
by FAK inhibitor VS4718.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death (Yang et al.,
2019). Due to the high rate of recurrence and metastasis of HCC and resistance to antitumor drugs,
the 5-years survival rate of HCC patients is low (Greten et al., 2019; Xiang et al., 2019). Therefore,
exploration of more effective treatments for HCC is an urgent need (Rimassa et al., 2019).

In recent years, attention has been given to the effectiveness of immunotherapy which targets
immune checkpoints, such as anti-programmed cell death 1(PD1) targeted immunotherapy, which
has resulted in encouraging effects in the treatment of some solid tumors (Motzer et al., 2020). PD1
belongs to the CD28 family and it regulates peripheral immune tolerance and autoimmunity in CD8+

T cells, regulatory T cells (Tregs), and myeloid suppressor cells (MDSCs) (Yao et al., 2018; Pu et al.,
2019). PD-L1 and PD-L2 are specific ligands of PD-1 and are mainly expressed in tumor cells and
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antigen-presenting cells. PD1 inhibits the function of effector
T cells when it binds to PD-L1 or PD-L2 (Dong et al., 1999). The
FDA has approved the anti-PD1 drugs nivolumab and
pembrolizumab for the second-line treatment of HCC.
However, not all patients are sensitive to these therapies, and
the clinical efficacy of anti-PD1 is limited to a subset of patients,
with a total effective rate of 20% or lower (Xu et al., 2018; Zhu
et al., 2018). These results indicate that most patients are not
suitable for anti-PD1 therapy. Therefore, it is of great significance
to find ways to improve the sensitivity and effectiveness of anti-
PD1 therapy.

Focal adhesion kinase (FAK) is encoded by the PTK2 gene. It is
a nonreceptor tyrosine kinase in the integrin signal transduction
cascade, which mediates the connection between cells and
extracellular matrix (Evans and Müller, 2000). Highexpression
of FAK is detected in a variety of human solid tumors (Song
et al., 2021; Torres-Ayuso, et al., 2021). FAK can be phosphorylated
and activated to target multiple downstream signaling pathways,
promoting cell growth, development, invasion, and metastasis.
FAK affects both cancer cells and tumor stromal cells (Shang
et al., 2015; Shang et al., 2016; Lees et al., 2021). FAK can regulate
the transcription of inflammatory genes and promote antitumor
immune evasion (Jeong, et al., 2021). Previous studies have found
that inhibition of FAK activity changed immune cell infiltration in
tumor microenvironment (Jiang et al., 2016; Serrels et al., 2017;
Canel et al., 2020). A FAK inhibitor VS4718, also named PND-
1186, blocks FAK Tyr-397 phosphorylation and has become a
potential anticancer drug (Wang et al., 2019; Dawson et al., 2021).
The effect of VS4718 with PD1 blockade as a possible combination
therapy has not been evaluated.

In this work, we used the c-Met/β-catenin plasmids to induce
primary HCC model in C57BL/6 J mice. Using this mouse
primary HCC model, we aimed to observe the efficacy of a
FAK inhibitor (VS4718) in combination with an anti-PD1
antibody for the treatment of HCC and investigate the related
mechanism.

MATERIALS AND METHODS

Data Source and Preprocessing
Gene expression data of LIHC projects (included 50 normal and
374 tumor tissues) with clinical information were obtained from
TCGA (https://portal.gdc.cancer.gov/). Survival analyses, such as
overall survival (OS), were measured from the date of study
enrollment to death from any cause or last follow-up. Disease-free
survival (DFS) is defined as the time between the treatment of
intrahepatic lesions and the first discovery of recurrence or
metastasis (Liu et al., 2018). The relationship between the
expression of FAK and immune cells (CD8+ T, Tregs, M0,
M2, CAFs, and MDSCs) was analyzed by TIMER2.0 website
(http://timer.cistrome.org/) (Li et al., 2016; Li et al., 2017; Li et al.,
2020).

Plasmids
The plasmids pT3-EF1a-c-Met (Cat. #31784) and pT3-N90-β-
catenin (Cat. #31785) were obtained from Addgene

(United States). The plasmids pCMV/SB (Liang et al., 2018)
was presented by Professor Dong (Naval Medical University,
Shanghai, China). The plasmids were purified using EndoFree
Maxi Plasmid Kit (Cat. #DP117) from Tiangen Biotech (China)
for hydrodynamic tail vein injection.

Mice and Treatments
C57BL/6 J mice were purchased from Jiesijie (Shanghai, China).
Mice were 6–8 weeks old and their body weight ranged from 18 to
22 g. The mice were placed in a micro-isolator cage in a room
illuminated from 7:00 AM to 7:00 PM (12:12-HR light-dark
cycle) and adequate food and water were provided. All animal
experimental procedures were approved by the Institutional
Animal Care and Use Committee of Tongji University.

To establish an HCC mouse model, we used the tail vein
hydrodynamic high-pressure injection technique to inject 22.5 µg
pT3-EF1α-c-MET; 22.5 µg pT3-EF1α-ΔN90-β-catenin; 5 µg
pCMV/SB plasmid DNA dissolved in sterile saline (10% of the
body weight of mice) into the mouse. After 4 weeks, the HCC
mouse model was established which caused cancer only in liver
(Shang et al., 2015).

The HCC mice were treated with drugs as following: 1)
placebo group: A placebo is given orally (0.5%
methylcellulose) or by injection (PBS) in equal doses and the
same number of times. 2) anti-PD1 group: 200 μg PD1 antibody
(anti-mPD1 clone RMP1-14, BioXcell, Cat. # BE0146) was
injected by intraperitoneal injection, once every 3 days; 3)
FAK inhibitor (VS4718) group: 50 mg/kg FAK inhibitor
(VS4718) (Csnpharm, Cat. # CSN16593) dissolved in 0.5%
methylcellulose (v/v, saline) was given to mice by gavage,
twice a day. 4) The combination of anti-PD1 and FAK
inhibitor group: 200 μg PD1 antibody was injected by
intraperitoneal injection, once every 3 days and 50 mg/kg FAK
inhibitor (VS4718) dissolved in 0.5% methylcellulose (v/v, saline)
was given to mice by gavage, twice a day.

Protein Extraction and Western Blot
The mouse HCC tissues were added with RIPA (Thermo
Scientific, 89,900) containing protease inhibitors (MCE, HY-
K0010), placed on ice, and lysed for 30 min. After
centrifugation at 12,000 rpm at 4°C for 10 min, the
supernatant was transferred to a new EP tube. Then, the
protein samples were quantified by the BCA method. The
samples were placed in a metal bath and denatured at 100°C
for 10 min. The protein samples were separated by
electrophoresis on 10% SDS-PAGE gel and transferred to a
0.45 mm nitrocellulose membrane. Western blotting was
performed with specific primary antibodies. Finally, imaging
was performed using ECL (GE Health Care, United States).
The detailed information about antibodies was listed in
Supplementary Table S1.

ImmunoHistochemical Staining
The mouse HCC tissue was immobilized in 10% formalin and
embedded in paraffin. Then, 5 μm thick slices were dewaxed in
xylene and rehydrated in descending graded ethanol. A specific
antigenic repair solution was used for antigenic repair. The slices
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were sealed in 10% BSA solution at room temperature for 1 h. The
slides were then incubated overnight with specific antibodies at
4°C.The corresponding positive expression was detected by 3,3′
-diaminobenzidine (DAB) or indirect immunofluorescence.
Positive staining was scored in at least three fields. At least
three mice were included in each group.

RNA Extraction, cDNA Synthesis, and qPCR
The total RNAs were extracted from cells and tissues by the total
RNA rapid extraction kit(Bioteke Corporation, RP4002). The
cDNA was reverse-transcribed from 500 ng of total RNA using
HiScript II Q RT SuperMix for qPCR kit (Vazyme, R222-01). The
cDNA was diluted (1:20) for qPCR by ChamQ SYBR qPCR
Master Mix (Vazyme, Q311-02) with gene-specific primers. β-
actin was used as an endogenous control for normalization. The
detailed information about the primer sequences was listed in
Supplementary Table S2.

Statistical Analysis
GraphPad Prism 8.0.2 software was used for statistical analysis.
Data were expressed as mean ± standard deviation (SD).
Student’s t-test was used to compare two groups. Multiple
groups were compared using one-way ANOVA. p < 0.05 was
considered to be statistically significant. A Fishers’ exact test was
used to analyze significance. The means ± SD are shown in the
figures where applicable.

RESULTS

High Expression of FAK in Human HCC was
Associated With Poor Prognosis and an
Immunosuppressive TME
We analyzed the expression of FAK in human HCC and the
correlation of FAK with patient outcome. It was found that FAK
was highly expressed in HCC tissues (p < 0.001) (Figure 1A). In
addition, we investigated FAK expression in the paired sample,
and the expression of FAK was also higher in HCC tissues (p <
0.001) (Figure 1B). Cox regression analysis showed that high
expression of FAK was associated with poor OS (p � 0.049) and
PFS (p � 0.027), indicating that HCC patients with high FAK
expression had a worse prognosis than those with low FAK
expression (Figures 1C,D).

To evaluate whether FAK might impact the tumor
microenvironment (TME), we analyzed the relationship
between the expression of FAK and immune cells in HCC
tumor tissues by TIMER2.0. The results showed that the
expression of FAK was correlated with the number of CD8+

T, Tregs, macrophages (M0, M2), CAFs and MDSCs (Figure 1E).

Combination of FAK Inhibition and Anti-PD1
Therapy Effectively Inhibited the Growth of
HCC in Mice
To observe the efficacy of VS4718, anti-PD1 monotherapy or the
combination of VS4718 and anti-PD1 in the treatment of HCC,

we established a C57BL/6 J primary HCC model with complete
immune function and then randomly grouped them for drug
administration (Figure 2A). Compared with placebo, VS4718 or
anti-PD1 monotherapy, the combination of VS4718 and anti-
PD1 significantly inhibited HCC development in mice
(Figure 2B). Compared with placebo and monotherapy, both
liver weight and liver weight/mouse body weight were
significantly lower in the combination treatment group
(Figures 2C,D). It was found that the tumors were smaller
and the liver tissue structure was relatively normal on H and
E staining in the combination treatment group compared to the
placebo and monotherapy groups (Figure 2E). These results
suggest that a FAK inhibitor (VS4718) can promote the anti-
PD1 immunotherapeutic efficacy in HCC in mice.

Combination of FAK Inhibition and Anti-PD1
Therapy Inhibited Proliferation and
Promoted Apoptosis of HCC in Mice
To observe the effect of treatment on tumor status, including
proliferation and apoptosis, PCNA immunohistochemical staining
(Figure 3A) and TUNEL staining (Figure 3B) were performed. We
analyzed the positive staining area in each group. We found that the
combination treatment significantly inhibited tumor proliferation
(Figure 3C) and promoted liver tumor cell apoptosis in mice
compared with placebo and monotherapy (Figure 3D).

FAK Inhibition Reduced the Fibrosis of HCC
in Mice
To determine the effect of drug treatments on fibrosis of HCC in
mice, Sirius red staining (Figure 4A) and a-SMA
immunohistochemical staining (Figure 4B) were performed.
The anti-PD1 group showed a similar level of fibrosis
compared with the placebo group. The FAK inhibitor group
and combination group showed a significantly lower level of
fibrosis (Figures 4C,D), implying that inhibition of FAK could
reduce fibrosis in HCC mice.

FAK Inhibition Improved the Immune
Microenvironment of HCC in Mice
To detect immune cell infiltration in HCC tissues of mice, CD8a,
Foxp3, and F4/80 + immunohistochemical staining were used
(Figures 5A–C). We found that the level of CD8a infiltration in
HCC was higher in the FAK inhibitor monotherapy and
combination groups than in the placebo or anti-PD1 groups
(Figure 5D). Foxp3, a surface marker of Tregs, was significantly
decreased (Figure 5E). F4/80 + expression decreased significantly
(Figure 5F). These results suggest that a FAK inhibitor alone or in
combination with an anti-PD1 antibody increases the number of
CD8a T cells and decreases the number of Tregs and
macrophages. We also detected the mRNA expression of some
macrophage recruitment molecules (Ccl2, Flt3lg, Csf1, Csf2) and
Tregs recruitment molecules (Ccl20, Cxcl13) in HCC tissues. The
results showed that, compared with placebo and anti-PD1
monotherapy, a significantly lower expression of macrophage
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FIGURE 1 |High expression of FAK in human HCC is associated with poor prognosis and an immunosuppressive TME (A) FAK expression is higher in human HCC
tissues than in paired normal tissues by Wilcoxon rank sum test (p < 0.001). (B) The expression of FAK significantly increased in HCC tissues compared with adjacent
tissues in the paired samples with Wilcoxon signed-rank test. (C–D) Kaplan-Meier survival analysis showed that increased expression of FAK was significantly
associated with poor Overall Survival (p � 0.049) and Progression-free survival (p � 0.027). (E) The relationship between FAK expression and CD8+ T cells(Rho �
-0.17 p � 1.85e-2), Tregs(Rho � 0.28 p � 1.16e-7),M0(Rho � 0.292; p � 3.16e-8),M2(Rho � 0.233; p � 1.19e-5),CAFs(Rho � 0.22; p � 3.67e-5) and MDSCs(Rho �
0.363; p � 3.02e-12).Significance identification: ns, p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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FIGURE 2 | Combination of FAK inhibition and anti-PD1 therapy effectively inhibited the growth of HCC in mice (A) After 4 weeks of plasmid injection in C57BL/6 J
mice, a primary hepatocellular carcinomamodel was established and themice were randomly divided into four groups (Placebo group, n � 7; Anti-PD1 group, n � 7; FAK
inhibitor group, n � 7; Combination group, n � 8), and specific information about the administration (time, dosage, and method). (B) The mouse liver after 2 weeks of
medication. (C–D) The liver weight of mice and the liver weight/body weight of mice were compared in each group (Placebo group, n � 7; Anti-PD1 group, n � 7;
FAK inhibitor group, n � 7; Combination group, n � 8). Significance identification: ns, p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001. (E) HCC tissues of mice were
histologically analyzed by H and E staining (scale bars, 400 μm).
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recruitment molecules and Tregs recruitment molecules was
observed in the FAK inhibitor monotherapy and combination
groups (Figure 5G).

FAK Inhibition Increased the Expression of
PD-L1 in HCC
To study whether the FAK inhibitor can affect PD-L1 expression in
HCC in mice, we used qPCR to detect the mRNA expression of PD-
L1. The results showed that the mRNA expression of PD-L1 in the
FAK inhibitor monotherapy group and the combination group was
higher than that in the placebo and anti-PD1 monotherapy groups
(Figure 6A). Then, we extracted proteins from HCC in mice to
perform Western blotting. We found that compared with the
placebo group and anti-PD1 monotherapy group, p-FAK protein
expression was decreased, but PD-L1 protein expression was
significantly increased in the FAK inhibitor monotherapy group
and the combination group (Figure 6B). To verify the expression of
p-FAK and PD-L1, immunofluorescence staining was performed on
the HCC tissues of mice. We also found that p-FAK expression was
decreased in both the FAK inhibitor monotherapy group and the
combination group, but PD-L1 protein expression was significantly
increased (Figure 6C).

DISCUSSION

In this study, we observed the effect of a FAK inhibitor (VS4718)
in combination with an anti-PD1 antibody for the treatment of
HCC in a mouse model. The results suggested that VS4718
significantly enhanced the sensitivity of HCC to anti-PD1 and
improved therapeutic effect in mice.

FAK, which is overexpressed and highly phosphorylated in a
variety of cancer cells, can activate multiple signaling pathways
(Zhang et al., 2020). FAK not only affects cancer cells but also the
TME which is associated with tumor growth and apoptosis
(Anderson et al., 2017; Hamidi and Ivaska, 2018). The high
expression of FAK is related to inhibitory immune cell
infiltration in some tumors (Li et al., 2016; Li et al., 2017; Li
et al., 2020). At present, many small molecule FAK inhibitors
have been evaluated or are undergoing clinical trials, and results
show that FAK inhibitors have anticancer efficacy and tolerability
(Brown et al., 2018; de Jonge et al., 2019; Mohanty et al., 2020).
Previous research showed that FAK knockdown or
pharmacological inhibition of FAK activity promoted
apoptosis and induced tumor regression (Haun et al., 2018;
Cooper and Giancotti, 2019). We found that FAK was highly
expressed in human HCC tissues and associated with poor

FIGURE 3 | Combination of FAK inhibition and anti-PD1 therapy inhibited proliferation and promoted apoptosis of HCC in mice (A) PCNA immunohistochemistry
on HCC tissues of mice (scale bars, 100 μm). (B)HCC tissues of mice in each group were stained with TUNEL-staining (scale bars, 200 μm). (C)Quantification of PCNA
staining (n � 5 mice/group). (D) Quantification of TUNEL staining (n � 3 mice/group). Significance identification: ns, p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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prognosis of patients, which was consistent with the results of a
clinical study (Fujii et al., 2004). Our experiment in mice showed
that inhibition of the activity of FAK not only inhibited the
growth of HCC but also reduced liver fibrosis and improved the
immune microenvironment of HCC in mice.

Clinical trials showed that only 14.3% (22/154) of HCC patients
responded to anti-PD1 therapy. (http://www.opdivohcp.com/
advanced-hcc/efficacy/clinical-trial). Another challenge is that
patients who respond initially may develop drug resistance later,
leading to disease recurrence (Schoenfeld and Hellmann 2020).
Therefore, some drugs combined with anti-PD1 are being
explored to improve the sensitivity of HCC to treatment (Cheng
et al., 2020). The immunosuppressive TME has been considered to
be the reason for the failure of immunotherapy inHCC (Sangro et al.,
2021). Extensive myeloid cell infiltration, such as macrophages and
Tregs, may lead to dysfunction of infiltrating T cells (Mitchem et al.,
2013), and cause tumor immunosuppression (Jiang, et al., 2016).
These factors might contribute to the low sensitivity of tumors to
anti-PD1 treatment. Similarly, in our experiments, anti-PD1
exhibited a weaker therapeutic effect on murine HCC, which is
characterized by a higher degree of fibrosis and more

immunosuppressive cell (macrophage and Treg) infiltration in
the HCC tissues of mice. Some reports suggested that FAK
inhibitors could act as immune modulators to improve the
immune microenvironment of tumors (Jiang et al., 2016;
Anderson et al., 2017; Osipov et al., 2019). Therefore, we
evaluated the effect of FAK inhibitors on the liver tumor TME.
A FAK inhibitor (VS4718) in combination with anti-PD1 therapy
effectively inhibited the infiltration of macrophages and Tregs but
increased CD8+ T cell infiltration in tumors compared to anti-PD1
monotherapy. Mechanistically, the effect of the FAK inhibitor on
HCC immune infiltration may be due to a decrease in some
macrophage recruitment molecules (Ccl2, Flt3lg, Csf1, Csf2)
(Soncin et al., 2018; Sterner et al., 2019) and Treg cell
recruitment molecules (Ccl20, Cxcl13) (Chen et al., 2017; Ji et al.,
2020) in HCC.

Another reason for the inhibitory TME could be the highly
fibrotic stroma of tumor tissue (Robinson et al., 2016). A high
density of stroma forms a barrier that makes it difficult for drugs to
reach the tumor interior (Provenzano et al., 2012). Previous reports
showed that inhibition of FAK reduced tumor fibrosis, thereby
reducing the tumor barrier and improving the TME (Jiang et al.,

FIGURE 4 | FAK inhibition reduced the fibrosis of HCC inmice (A) Sirius-red staining was performed onHCC tissues of mice in each group (scale bars, 100 μm). (B)
a-SMA immunohistochemistry was performed on HCC tissues of mice in each group (scale bars, 100 μm). (C)Quantification of Sirius-red staining (n � 3mice/group). (D)
Quantification of a-SMA staining (n � 3 mice/group). Significance identification: ns, p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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FIGURE 5 | FAK inhibition improved the immune microenvironment of HCC in mice (A) CD8a immunohistochemistry on HCC tissues of mice in each group (scale
bars, 100 μm). (B) Foxp3 immunofluorescence on HCC tissues of mice in each group (scale bars, 200 μm). (C) F4/80 immunohistochemistry on HCC tissues of mice in
each group (scale bars, 100 μm). (D) The number of CD8a positive cells in on HCC of mice (n � 5mice/group). (E)Quantitative analysis of Foxp3 positive area per field by
ImageJ (n � 4mice/group). (F)Quantitative analysis of F4/80 positive area per field by ImageJ (n � 4mice/group). Significance identification: ns, p ≥ 0.05; *, p < 0.05;
**, p < 0.01; ***, p < 0.001. (G) The mRNA expressions of macrophage recruitment/polarization factors (Ccl2, Flt3lg, Csf1, Csf2) and Tregs recruitment factors (Ccl20,
Cxcl13) in HCC tissues of mice detected by q-PCR (n � 3 mice/group).
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2016; Miller andWeissleder, 2017). Our results showed that a FAK
inhibitor (VS4718) affects tumor fibrosis. We suggest that the
antifibrotic effect of VS4718 plays a supporting role in the
treatment of HCC. This effect might involve the inhibition of
FAK on TGF-β/SMAD signaling pathway (Jiang et al., 2020).

Unexpectedly, we observed that treatment with VS4718
resulted in overexpression of PD-L1 in HCC. This finding
differs from that of a previous study which showed that FAK
inhibition induced the downregulation of PD-L1 in triple-
negative breast cancer (Pan et al., 2019). High expression of
PD-L1 may lead to the suppression of immune function

(Topalian et al., 2016; Li et al., 2019). However, clinical studies
have shown that patients with increased CD8+ T cell infiltration
and high PD-L1 positivity in HCC are more sensitive to anti-PD1
therapy and have a significantly improved disease control rate,
which is significantly associated with prolonged PFS and OS
(Aguiar et al., 2018; Han et al., 2019; Morita et al., 2021). The
combination of VS4718 and an anti-PD1 antibody can not only
increase the infiltration of CD8+ T cells and reduce the infiltration
of immunosuppressive Tregs and macrophages but also block the
binding of PD1 on the surface of T cells to PD-L1 on the surface
of tumor cells. This might be the main reason why the

FIGURE 6 | FAK inhibition increased the expression of PD-L1 in HCC (A) The mRNA expressions of PD-L1 in HCC in mice detected by q-PCR (n � 3 mice/group).
Significance identification: ns, p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001. (B) The expression levels of p-Fak (Y397), Fak and PD-L1 in HCC in mice detected by
Western Blotting (n � 3 mice/group). (C) Immunofluorescence staining of p-FAK and PD-L1 in HCC in mice (scale bar, 200 μm).
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combination of a FAK inhibitor (VS4718) and an anti-PD1
antibody can better inhibit HCC in mice than FAK inhibitor
(VS4718) monotherapy.

However, ourmurinemodel did not represent the heterogeneity
of all HCC cases (Craig et al., 2020). The effect of a FAK inhibitor
(VS4718) combined with an anti-PD1 antibody needs to be
evaluated in different HCC models. The actual clinical
therapeutic effect of FAK inhibitors combined with anti-PD1
antibodies on HCC patient needs further clinical research. In
addition, the detailed mechanism of the combination of FAK
inhibitor and anti-PD1 warrants further study.

In conclusion, our findings revealed that the combination of
the FAK inhibitor VS4718 and an anti-PD1 antibody could
suppress tumor progression in HCC mice and was better than
monotherapy. The combined therapy improved the tumor
immune microenvironment and reduced liver fibrosis. In
addition, the combination therapy blocked the potential side
effects of FAK inhibition-induced PD-L1 upregulation. Taken
together, we demonstrate that the FAK inhibitor VS4718
enhances the efficacy of anti-PD1 immunotherapy in HCC.
The combination of a FAK inhibitor and PD1 inhibitor could
be a potential therapeutic strategy for the treatment of HCC.
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