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Plasmodium reichenowi EBA-140 merozoite
ligand binds to glycophorin D on
chimpanzee red blood cells, shedding new
light on origins of Plasmodium falciparum
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Abstract

Background: All symptoms of malaria are caused by the intraerythrocytic proliferation of Plasmodium merozoites.
Merozoites invade erythrocytes using multiple binding ligands that recognise specific surface receptors. It has been
suggested that adaptation of Plasmodium parasites to infect specific hosts is driven by changes in genes encoding
Plasmodium erythrocyte-binding ligands (EBL) and reticulocyte-binding ligands (RBL). Homologs of both EBL and
RBL, including the EBA-140 merozoite ligand, have been identified in P. falciparum and P. reichenowi, which infect
humans and chimpanzees, respectively. The P. falciparum EBA-140 was shown to bind human glycophorin C, a
minor erythrocyte sialoglycoprotein. Until now, the erythrocyte receptor for the P. reichenowi EBA-140 remained
unknown.

Methods: The baculovirus expression vector system was used to obtain the recombinant EBA-140 Region II, and
flow cytometry and immunoblotting methods were applied to characterise its specificity.

Results: We showed that the chimpanzee glycophorin D is the receptor for the P. reichenowi EBA-140 ligand on
chimpanzee red blood cells.

Conclusions: We propose that the development of glycophorin C specificity is spurred by the P. falciparum lineage.
We speculate that the P. falciparum EBA-140 evolved to hijack GPC on human erythrocytes during divergence from
its ape ancestor.
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Background
Malaria causes over a half million deaths per year, chiefly
among children and pregnant women in sub-Saharan
Africa, and most of the cases are caused by Plasmodium
falciparum [1]. A closely related species, Plasmodium
reichenowi, infects chimpanzees [2, 3]. Until 2009, only
one P. reichenowi isolate was genetically characterised
[4]. Due to the morphological similarity of these two
species, it was initially suggested that P. falciparum

originated from P. reichenowi, most likely by a single
transfer from chimpanzees (Pan troglodytes) [5, 6] or
evolved in bonobos (Pan panicus) [7]. However, it was
previously shown that while humans cannot be infected
by P. reichenowi, P. falciparum can infect chimpanzees, al-
beit without severe symptoms as seen in humans [3, 8].
Recently, the use of molecular tools for species

identification to explore the diversity of Plasmodium
species, have revealed new phylogentic species in
great apes [6, 7, 9, 10]. As a result, in the old sub-
genus Laverania, six Plasmodium species were con-
firmed, of which P. reichenowi, P. gaboni and P.
billcollinsi only infect chimpanzees, whereas P. prae-
falciparum, P. adleri and P. blacklocki only infect go-
rillas. Indeed, it was proposed that great apes are
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natural hosts to diverse Plasmodium species, includ-
ing P. falciparum previously considered as strictly
human-specific [6].
Sequencing of Plasmodium DNA from a large collec-

tion of ape fecal samples revealed the closest relative,
and likely origin of human P. falciparum, is a clade of
parasites found in the western gorillas [11]. This finding
suggested a possible gorilla origin of human P. falcip-
arum, in opposition to previous theories proposing
chimpanzee-human transmission of P. reichenowi-re-
lated parasite. In particular, all known strains of P. fal-
ciparum circulating in humans nowadays resulted from
a single cross-transmission event from gorilla to human
[11]. These data suggested that ape-to-human transmis-
sion was possible, but an alternative theory that each
parasite species evolved independently along with its
host cannot be ruled out [12–15].
The genomic basis of the P. falciparum adaptation to

human hosts was explored by sequencing the genomes
of two closely related species, P. reichenowi and P.
gaboni, parasitic in chimpanzees. While it was shown
that the genomes of P. falciparum and P. reichenowi are
remarkably similar, striking differences were found in
the genes involved in red cell invasion, which determine
host specificity [9, 16, 17]. Invasion of erythrocytes by
Plasmodium parasites involves multiple ligands; merozo-
ites bind to erythrocytes using proteins that belong to
two families including erythrocyte-binding ligands (EBL)
and reticulocyte-binding ligands (RBL) [18, 19]. It was
suggested that changes in the sequence and arrangement
of genes in the EBL and RBL family may be directly as-
sociated with Plasmodium adaptation to its host.
Several proteins in the P. falciparum EBL family recog-

nise different human red blood cell receptors and thus en-
able the merozoite to gain entry through alternative
invasion pathways. Four functional P. falciparum EBL
proteins have been identified so far: erythrocyte-binding
antigen-175 (EBA-175), erythrocyte-binding antigen-181
(EBA-181), erythrocyte-binding ligand-1 (EBL-1) and
erythrocyte-binding antigen-140 (EBA-140) [20]. These
proteins contain several conserved regions, such as Region
II, which is involved in binding receptors on erythrocytes.
Recent results from the Malaria Genomic Epidemi-

ology Network Project [21] demonstrated that resistance
to malaria may be linked to the cluster of genes encod-
ing human glycophorins, which are surface sialoglyco-
proteins of erythrocytes [22]. Thus, it may be argued
that changes in the region of genes encoding glycophor-
ins A, B, and possibly E, all of which may act as recep-
tors for merozoite EBL proteins, arose as the result of
strong evolutionary pressure exerted by P. falciparum
on the human genome. These data emphasized the cru-
cial role that EBL proteins and glycophorins play when
merozoites burgle erythrocytes.

Plasmodium falciparum merozoite ligands that bind
glycophorins show distinct binding behaviors, which re-
sult in different invasion pathways. The well-studied P.
falciparum EBA-175 recognizes glycophorin A (GPA)
[23–25], while EBA-140 [26–28] was shown to bind gly-
cophorin C (GPC) [29–33], a minor erythrocyte sialogly-
coprotein [32, 34]. Both EBA-140 and EBA-175 bind to
erythrocytes in a sialic acid-dependent manner [35], but
binding of EBA-140, also, requires that GPC is N-
glycosylated [36]. EBA-175 recognises sialic acids
present on clusters of O-linked glycans of glycophorin A
(GPA). Homologs of merozoite EBL and RBL, including
the EBA-140 protein, were identified in P. reichenowi
[37, 38]. The amino acid sequences of the P. falciparum
and P. reichenowi EBA-140 proteins are 81% identical,
and the highest degree of similarity is seen within the
binding region (Region II). However, the binding specifi-
city of the P. reichenowi EBA-140 is still poorly under-
stood. Both ligands require sialic acid for binding. Using
the surface expression of human and chimpanzee EBA
ligands on COS 7 cells, it was shown that the P. falcip-
arum EBA-140 requires Neu5Ac, while its P. reichenowi
counterpart requires Neu5Gc [8]. Thus, the difference in
the binding specificity of these proteins may have arisen
in response to the change of host “sialome” during the
evolution of the human-specific Plasmodium species
[39]. The human lineage lost the ability to turn Neu5Ac
into Neu5Gc as a result of a mutation in the CMAH
gene, which encodes the CMP-Neu5Ac hydroxylase.
Thus, it has been hypothesized that the difference in si-
alic acid structure between humans and apes is the pri-
mary factor determining species-specific binding of
malaria parasites [8, 39]. However, it was found that the
EBA-175 ortholog from the chimpanzee-restricted para-
sites binds to human GPA with a similar affinity to that
of P. falciparum, which suggests that the EBA 175-GPA
interaction is probably not the sole determinant of Plas-
modium host specificity [40]. Moreover, it was proposed
that the interaction of the P. falciparum Rh5 RBL ligand
with basigin on erythrocytes is a major determinant of
host species tropism.
There is a general agreement that P. falciparum recog-

nises GPC on human erythrocytes [29–33]. GPC is
encoded in humans by the GYPC gene, which is unique
among the glycophorin genes because it contains two
separate translation initiation sites [41, 42]. This leads to
the synthesis of (predominantly) GPC and its truncated
form, called glycophorin D (GPD), which lacks the first
21 aa residues of GPC. It was shown that GPC, but not
GPD, plays a role in erythrocyte invasion mediated by P.
falciparum EBA-140 [29–32]. Also, GPC (but not GPD)
contains N-glycan at the Asn8 residue, the presence of
which seems to be necessary for receptor recognition
[35, 36, 43]. The sequences of the GYPC gene homologs
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in six Hominidae species (human, chimpanzee, bonobo,
gorilla, orangutan and white-cheeked gibbon) reveal a C
to A transversion, which results in the emergence of a
new start codon present only in humans [41]. Thus,
humans are the only species that produce both GPC and
GPD, with GPC being the major gene product. There-
fore, it was suggested that GPD might be an ancestral
receptor in nonhuman primates for P. reichenowi-like
parasites, while GPC emerged as a new receptor in
humans, targeted by P. falciparum [41].
To explain the role of GPC and GPD in P. reichenowi

binding, we used the recombinant binding region (Re-
gion II) of P. reichenowi EBA-140 obtained in baculo-
virus expression vector system [44]. We demonstrate
that the receptor for the P. reichenowi EBA-140 is prob-
ably the homolog of human glycophorin D on chimpan-
zee erythrocytes.

Methods
Erythrocytes
Chimpanzee (Pan troglodytes) blood was freshly col-
lected on EDTA during non-experimental clinical veter-
inary practice in the Warsaw Zoological Garden. The
blood was drawn from immobilised chimpanzee female
during a medical intervention. This sample was used to
perform diagnostic tests, and the intact remainder
(0.5 ml) was used in our experiments.

Flow cytometry analysis
The recombinant P. reichenowi EBA-140 Region II was
incubated in phosphate buffered saline (PBS), pH 7.4 for
2 h at 4 °C with 3 × 105 native and trypsin- and chymo-
trypsin- (Sigma-Aldrich, St. Louis, MO, USA) treated
chimpanzee erythrocytes. The heat-denatured Region II
was used as the negative binding control. The cells were
washed three times with PBS and incubated for 1 h at
4 °C with rabbit serum (diluted 1:200) raised against the
whole P. falciparum EBA-140 Region II [45]. The cells
were washed three times with PBS and incubated for
45 min at 4 °C with FITC-conjugated swine anti-rabbit
Ig antibody (DakoCytomation, Glostrup, Denmark) and
analyzed for fluorescence intensity using flow cytometry
(FACSCalibur, BD Biosciences, San Jose, USA). Mouse
monoclonal antibody (MoAb) (clone 2G11 [46], diluted
1:500) recognizing human GPC and the chimpanzee
GPD homolog was used as the binding control.

Western blotting (overlay assay)
Proteins of native and enzyme-treated chimpanzee
erythrocytes or human erythrocyte membranes were
fractionated by SDS-PAGE using a 10% polyacrylamide
gel according to the Laemmli method [47] and then
transferred to a nitrocellulose membrane (Schleicher &
Schuel, Dassel, Germany) according to the method of

Towbin et al. [48]. The membranes were overlaid with
the solution of P. reichenowi or P. falciparum recombin-
ant Region II (100 μg/ml) in TBS overnight at room
temperature. The bound Region II was detected with a
mouse MoAb directed against the c-myc epitope (clone
9E10, ATCC, diluted 1:10). Erythrocyte GPD was detected
on the blots with MoAb 2G11 [46] (diluted 1:500) recog-
nizing N-terminal epitope (amino acid residues 14–20/
14–18) and MoAb 1F6 [49] (diluted 1:50) recognizing C-
terminal fragment (amino acids 110–115/89–94) on hu-
man GPC and GPD, respectively. The PageRuler Pre-
stained Protein Ladder (Fermentas,Villnius, Lithuania)
was used as a protein standard.

Results
Binding of the P. reichenowi EBA-140 region II to
chimpanzee erythrocytes
Treatment of erythrocytes with proteolytic enzymes may
influence binding of antibodies or other ligands in two
ways: they can either degrade the receptor, thwarting the
binding, or trim off only the proteins that shield the re-
ceptor, thus exposing its binding sites. We found that
treatment of chimpanzee erythrocytes with chymotryp-
sin causes a slight decrease of the EBA-140 Region II
binding (Fig. 1a). In contrast, the binding after trypsin
treatment was markedly increased. We suggest that tryp-
sin digestion removes proteins that sterically hinder the
ligand-receptor interaction. MoAb 2G11, which specific-
ally binds to human GPC/GPD showed a similar binding
profile to chimpanzee erythrocytes (Fig. 1b), although
the drop in binding after chymotrypsin treatment was
more evident.

Binding of EBA-140 region II to glycophorin D
The binding of the P. reichenowi EBA-140 ligand Region
II to chimpanzee erythrocyte proteins was evaluated by
Western blotting (Fig. 2). The protein recognized by the
Region II showed the apparent molecular weight of
35 kDa, which is a similar value to GPD recognized by
MoAb 2G11. The binding of the EBA-140 Region II to
the erythrocyte receptor was decreased after chymotryp-
sin treatment, but augmented by trypsin. These data
suggest that the chimpanzee erythrocyte receptor for the
P. reichenowi EBA-140 is the GPD homolog. The bands
of higher molecular weight are GPC/GPD aggregates
with other erythrocyte glycophorins, mostly GPA [22].
Western blotting corroborated the specificity of the P.

reichenowi EBA-140 Region II binding to GPD with hu-
man erythrocyte membranes (Fig. 3). We found that the
P. reichenowi Region II binds to human GPC and its
truncated form, GPD, while the homologous P. falcip-
arum EBA-140 Region II binds only to GPC, as it was
previously shown [32].
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Discussion
While genomes of P. falciparum and P. reichenowi are
remarkably similar, large differences in the genes in-
volved in red cell invasion (which determine host speci-
ficity), stand out against that conserved background [16].
It was shown that these genomes are essentially co-
linear in the core central regions with a small number of
significant differences. The most striking of these involve
genes associated with red cell invasion. Within the five-
member EBL family, EBA-165 is a pseudogene in P.

falciparum but not in P. reichenowi, while EBL-1 has a
substantial deletion in P. reichenowi. Similarly, of six
RBLs in the P. falciparum genome, only three (Rh2b,
Rh4, Rh5) have orthologues in P. reichenowi. The Rh2
locus seems to be, the most different between these two
species. Notable differences can also be seen between
the rif and stevor multigene families where the numbers
are much lower in the human parasite [16].
Moreover, genes encoding other erythrocytic malaria an-

tigens: MSP2 [50] and var2CSA (which is associated with
malaria in pregnancy [51]), have shown recently extended
polymorphism in P. falciparum that likely originated after
the P. reichenowi-P. falciparum split [9]. Thus, it was hy-
pothesized that changes in the sequence and arrangement

Fig. 1 Flow cytometry analysis of the P. reichenowi EBA-140 Region II (RII) binding to native chimpanzee erythrocytes (nat) and erythrocytes
treated with trypsin (trp) and chymotrypsin (chtrp) (a); the binding pattern of MoAb 2G11 recognizing GPC/GPD (b). Abbreviation: MFI, mean
fluorescence intensity

Fig. 2 Western blotting analysis of the P. reichenowi EBA-140 Region II
binding to chimpanzee erythrocyte proteins. Native (nat) and trypsin
(trp) and chymotrypsin (chtrp)-treated chimpanzee erythrocytes;
the recombinant Region II was detected with anti-myc MoAb
9E10; position of GPD was identified with MoAb 2G11. M,
molecular weight marker

Fig. 3 Western blotting analysis of the P. reichenowi and P. falciparum
EBA-140 Region II binding to human erythrocyte membrane proteins.
The recombinant Region II was detected with anti-myc MoAb 9E10;
positions of GPD and GPC were identified with MoAb 1F6 [50].
M, molecular weight marker
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of genes encoding erythrocytic stage antigens, especially the
EBL and RBL proteins, may be directly associated with
Plasmodium human adaptation. Additional support for this
hypothesis comes from the evaluation of dimorphism of P.
falciparum EBA-175 alleles [17] and human specificity of
Rh5 ligand in receptor-binding preferences [40]. Explaining
how this host-switch occurred in the evolution of P. falcip-
arum lineage remains still one of the greatest challenges.
There is general agreement that GPC is the sialylated

receptor on human erythrocytes for the P. falciparum
EBA-140 [29–32]. Since EBA-140 ligand does not
recognize GPA, which is also a highly glycosylated pro-
tein, it may be presumed that the GPC protein backbone
is involved in the binding. Location of the binding site of
EBA-140 close to N- and O-glycans at the N-terminal
portion of GPC and lack thereof in its truncated form,
GPD, may explain why the P. falciparum EBA-140 Re-
gion II does not bind to GPD.
Until now, the erythrocyte receptor for the P. reichenowi

EBA-140 remained unknown. To identify it, we used a sol-
uble, recombinant Region II obtained in insect cells. We
showed previously that the P. reichenowi Region II of
EBA-140 binds specifically to chimpanzee erythrocytes in
a sialic acid-dependent manner [44]. We found that bind-
ing of the EBA-140 Region II to GPD is markedly de-
creased by treatment of erythrocytes with chymotrypsin.
Conversely, trypsin treatment enhances the binding, prob-
ably by removing proteins that sterically hinder access to
GPD, while leaving GPD intact. This is in stark contrast to
the effects of trypsin on human erythrocytes, which fail to
bind the P. falciparum EBA-140 after digestion [32]. In
our opinion, this discrepancy results from the presence of
arginine (R27) in the human GPD (R48 in GPC), which
introduces a trypsin digestion site, while the chimpanzee
GPD contains tryptophan (W) at this position. The differ-
ence makes the chimpanzee GPD resistant to trypsin, but
susceptible to chymotrypsin (Fig. 4). However, since tryp-
tophan in chimpanzee GPD is followed by methionine,
which is not a preferred residue at P1’ position, GPD may
undergo only a partial digestion by chymotrypsin. As a re-
sult, residual binding of the P. reichenowi EBA-140 RII to
erythrocytes after chymotrypsin treatment is detected by
both flow cytometry and Western blotting experiments.

It was shown before that GPC, but not GPD plays a role
in human erythrocyte invasion mediated by P. falciparum
EBA-140 ligand [29–32]. Also, only GPC is N-glycosylated
at the Asn8 residue, and the N-glycan seems to be neces-
sary for receptor recognition [35, 36, 43]. It is presumed
that P. falciparum EBA-140 ligand does not bind to hu-
man GPD [31], due to the lack of N-glycan. Thus, it may
be speculated that the P. falciparum EBA-140 ligand lost
the ability of its ancestor to bind GPD, but developed the
specificity for GPC, involving its N-glycan and O-glycans.

Conclusions
Our results show that the chimpanzee GPD is the recep-
tor for the P. reichenowi EBA-140 on chimpanzee eryth-
rocytes. Also, these results hint that development of
EBA-140 GPC specificity may have helped P. falciparum
to thrive in human erythrocytes when the human and
chimpanzee lineages diverged from their ancestor.
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