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Abstract

Wolbachia are common endosymbionts of terrestrial arthropods, and are also found in nematodes: the animal-parasitic
filaria, and the plant-parasite Radopholus similis. Lateral transfer of Wolbachia DNA to the host genome is common. We
generated a draft genome sequence for the strongyloidean nematode parasite Dictyocaulus viviparus, the cattle lungworm.
In the assembly, we identified nearly 1 Mb of sequence with similarity to Wolbachia. The fragments were unlikely to derive
from a live Wolbachia infection: most were short, and the genes were disabled through inactivating mutations. Many
fragments were co-assembled with definitively nematode-derived sequence. We found limited evidence of expression of
the Wolbachia-derived genes. The D. viviparus Wolbachia genes were most similar to filarial strains and strains from the host-
promiscuous clade F. We conclude that D. viviparus was infected by Wolbachia in the past, and that clade F-like symbionts
may have been the source of filarial Wolbachia infections.
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Introduction

Wolbachia are alphaproteobacterial, intracellular symbionts of

many non-vertebrate animal species, related to rickettsia-like

intracellular pathogens such as Anaplasma and Ehrlichia [1].

Wolbachia was first detected as a cytoplasmic genetic element

causing mating type incompatibilities in Culex pipiens mosquitoes,

and subsequently has been found to infect many insect species [2].

In insects, most Wolbachia can be classified as reproductive

parasites, as they manipulate their hosts’ reproduction to promote

their own transmission [3]. This is achieved by induction of mating

type incompatibilities, induction of parthenogenesis in females of

haplo-diploid species, and killing or feminisation of genetic males.

In some insects, Wolbachia infections are apparently ‘‘asymptom-

atic’’, in that no reproductive bias has been detected. There is

evidence that Wolbachia infection can be beneficial to hosts,

particularly in protection from other infectious organisms [4].

Importantly, in most insect systems tested the symbiosis is not

essential to the hosts, which can be cured by antibiotic treatment.

Wolbachia strains have been classified into a number of groups

using molecular phylogenetic analyses of a small number of

marker loci [5,6]. Insect Wolbachia largely derive from clade A and

B. Outside Insecta, arthropod Wolbachia infections have been

identified in terrestrial Collembola (Hexapoda), Isopoda (Crusta-

cea), Chelicerata and Myriapoda, and also in marine Amphipoda

and Cirripeda (Crustacea). Most non-insect arthropod infections

also involve Wolbachia placed in clades A or B. A minority of

arthropod infections involves Wolbachia placed in distinct lineages

(clades E through N) [5,7]. In clade A and B symbionts,

transmission appears to be essentially vertical (mother to offspring)

in ecological time, but phylogenetic analysis reveals that lateral

transfer between hosts has been common on longer timescales.

Wolbachia infections have also been identified in nematodes,

notably in the animal parasites of the Onchocercidae. These

filarial parasites utilise arthropod vectors (dipterans and chelice-

rates) in transitioning between their definitive vertebrate hosts, but

the Wolbachia they carry are not closely related to those of the

vector arthropods. The majority of Wolbachia from onchocercid

nematodes are placed in two distinct but related clades, C and D

[6,8]. The biology of the interaction between filarial nematodes

and their C and D Wolbachia is strikingly different [9]. There is no

evidence of reproductive manipulation. Transmission is vertical, as

in other Wolbachia, but, unlike the arthropod symbionts, in species

with infections all members carry the symbionts, and the

phylogeny of hosts and symbionts show remarkable congruence.

Treatment with antibiotics both kills onchocercid nematode

Wolbachia, and also affects the viability of the nematodes,

suggesting a strongly mutualistic, possibly essential interaction

[10,11]. The interaction is not essential on a phylogenetic

timescale, as nested within the Wolbachia-infected onchocercids

are species that have lost their infections [12]. The biological bases

for the mutualism is a topic of significant research interest, and

may include manipulation of embryogenesis, metabolic provision-

ing and modulation of host immune responses [9,13–16].

Not all nematode Wolbachia are placed in clades C and D [17].

Clade F Wolbachia have a distinct host profile compared to the

other clades, as they have been found in both onchocercid

nematodes (Mansonella, Madathamugadia and Cercopithifilaria species)

[18], and arthropods (hexapods and chelicerates). The Wolbachia

symbiont from the nematode Dipetalonema gracile is the sole
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representative of clade J, but is closely related to clade C Wolbachia

[19]. A Wolbachia infection has been described in Radopholous similis,

a tylenchid plant parasitic nematode distantly related to the

Onchocercidae [20]. This symbiont has been placed in a new

clade I. The biological role(s) of these nematode Wolbachia have yet

to be defined. Wolbachia have been sought in other nematode

species, both parasitic and free-living. These searches, carried out

using Wolbachia-specific PCR amplification of marker genes, have

generally proved negative in individuals sampled across the

diversity of Nematoda other than Onchocercidae [21]. In the

many ongoing nematode genome and transcriptome projects,

Wolbachia-derived sequence has only been described from

onchocercid nematodes and R. similis. However, there are two

overlapping expressed sequence tags from Ancylostoma caninum (also

a member of Strongyloidea) that have high similarity to Wolbachia

genes [22], but these have not been verified as derived from a

Wolbachia symbiont in this species. (The relationships of the

nematode taxa discussed are illustrated in Figure 1 [18,23,24].)

Lateral transfer of Wolbachia genome fragments into the host

nuclear genome has been detected in arthropods and nematodes

that carry live infections [25,26]. Inserted fragments range from

what is likely the whole bacterial genome inserted into an azuki

beetle chromosome, to short fragments at the limit of specific

detection. These fragments have excited much debate, particularly

concerning the Onchocercidae, where it has been hypothesised

that they may represent functional gene transfers into the

nematode genome and thus play significant roles in host biology

[27–30]. However most Wolbachia insertions have accumulated

many substitutions and insertion-deletion events compared to their

functional homologues in extant bacterial genomes. In this they

most resemble nuclear insertions of mitochondrial DNA, which

are ‘dead on arrival’ and evolve neutrally in the host chromosome

[25].

Interestingly, the onchocercid nematodes Onchocerca flexuosa [31],

Acanthocheilonema viteae [11,32] and Loa loa [12] lack Wolbachia

despite their placement within the group of Wolbachia-containing

species. This suggests that they have lost their live Wolbachia

infections. Fragments of Wolbachia-like sequence have been

detected in the nuclear genome in these species [31,33]. Wolbachia

nuclear transfers, or nuwts, in nematodes that currently lack live

Wolbachia infection can be thought of molecular fossils of the

previous symbiosis history of the host. Just as fossil skeletal remains

can reveal the past distribution of larger biota, and viral insertions

reveal the history of host infection [34,35], nuwts can reveal past

Author Summary

Bovine lungworms are economically important nematode
parasites of cattle. We have sequenced the genome of the
bovine lungworm to provide information for drug and
vaccine discovery. Within the lungworm genome we found
extensive evidence of an ancient association between the
lungworm and a bacterium called Wolbachia. The lung-
worm Wolbachia is now a ‘‘fossil’’ in the genome, but tells
of an ancient infection. Association between lungworms,
and related nematode worms, and Wolbachia was not
known previously. We have used the lungworm Wolbachia
sequence to explore the history of nematode-Wolbachia
interactions, particularly the jumping of these symbionts
between arthropods and nematodes.

Figure 1. Relationships of nematode species harbouring Wolbachia symbionts. A phylogenetic cartoon showing the relationships of the
nematode species discussed in this work [23]. To the left, the systematic structure of the class Chromadoria is given, and the three major suborders
within Rhabditida are highlighted. Lifecycle strategies of the groups are indicated. The fine-scale relationships of species discussed in the text are
given to the right. The presence of live Wolbachia infection (+: yes, 2: no), evidence of laterally-transferred Wolbachia sequences in the nuclear
genome (+: yes, 2: no, ?: unknown), and the availability of complete genome sequences (+: yes, 2: no, 6: partial genome sequence) for each of the
species are indicated.
doi:10.1371/journal.pgen.1004397.g001

Genomic Fossils of Wolbachia in Bovine Lungworm
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symbioses, and their divergence from current Wolbachia genomes

can be used to estimate the date of the symbiosis.

We are engaged in a phylum-wide survey of genomes within the

Nematoda [36]. As part of our analytic procedures we routinely

screen raw genomic DNA data for contamination with environ-

mental, commensal and host DNAs with a pipeline that uses read

coverage, contig GC% and sequence identity to known protein

sequences [37]. This serves to identify, and ease removal of,

contaminating genomes, which in turn improves target genome

assembly and aids independent assembly of symbiont genomes

where present. Here we present an analysis of genome sequence

data from the strongyloidean nematode Dictyocaulus viviparus, the

bovine lungworm, which reveals molecular fossils of an ancient

Wolbachia symbiosis in this economically important species, which

is only distantly related to the previously known nematode hosts

(Figure 1).

Results

The draft genome sequence of Dictyocaulus viviparus
We generated a draft genome for the strongyloidean nematode

D. viviparus based on a single adult male specimen provided from a

cow slaughtered at an abattoir in Ngaoundéré, Cameroon. The D.

viviparus genome was assembled using Velvet from 16 gigabases of

cleaned data from 165 million, 100-base, paired-end reads from a

500 base pair (bp) insert library sequenced on an Illumina

HiSeq2500 instrument. The draft assembly spanned 169.4

megabases (Mb) (Table 1). In terms of contiguity, the draft was

of moderate quality with an N50 (length of contig at which 50% of

the genome is in contigs of this size or larger) of 22 kilobases (kb),

and N90 of 5 kb. There were 17,715 contigs above 500 bp. The

assembly had a GC content of 34.5% and estimated read coverage

of ,80 fold (Figure 2A). The mitochondrial contigs from the

assembly had .99.5% identity to the published mitochondrial

genome of D. viviparus. The size of this draft assembly is within the

range of published genome sizes from species of the same suborder

(Rhabtitina), which range from 80 Mb (Heterorhabditis bacteriophora

[38]) to 320 Mb (Haemochus contortus [38]) (Table 2). Given that we

used a single library, and had no long-range mapping data, it is

likely that this genome size estimate is lower than the true genome

as near-identical repeats will have been collapsed or left

unassembled. We assessed the completeness of the draft assembly

Table 1. Assembly statistics for the Dictyocaulus viviparus
nuclear genome and the Wolbachia-like insertions.

D. viviparus nuclear
genome *

Wolbachia-like
fragments **

number of reads (million) 165

span of data (Gb) 16

span of assembly (Mb) 169.4 1.0

number of contigs 17,715 193

N50 length (bp) 22,560 10,017

mean read coverage 84.53 119.06

GC% 34.5 34.9

* The D. viviparus mitochondrial genome was assembled in four contigs, with
mean coverage ,10,000 fold. The four contigs were aligned to the published D.
viviparus mitochondrion genome and cover the entire span.
** Fragment lengths were added as full contigs if no nematode-like sequence
was detected. If the contig contained nematode sequences, only the range of
the Wolbachia BLAST hits was added.
doi:10.1371/journal.pgen.1004397.t001

Figure 2. Comparison of the Dictyocaulus viviparus proteome to
that of other rhabditid nematodes. Venn diagram illustrating the
orthoMCL clustering of the predicted proteome of Dictyocaulus
viviparus (DVI) to those of Caenorhabditis elegans (CEL), Heterorhabditis
bacteriophora (HBA) and Haemonchus contortus (HCO). The numbers of
proteins clustered and the total number of predicted proteins is given
below each species’ name.
doi:10.1371/journal.pgen.1004397.g002

Table 2. Genome assembly and annotation metrics of D. viviparus and other Rhabditina species.

Species Dictyocaulus viviparus Caenorhabditis elegans Haemonchus contortus Heterorhabditis bacteriophora

Assembly size (Mb) 169.4 100.3 368.8 77.0

Number of contigs .500 bp 17715 6 19728 1259

Mean contig length .500 bp 9561 14326628 18696 61164

N50.500 bp 22560 17493829 83501 312328

GC 34.5 35.4 43.1 33.3

Number of N’s (Mb) 0.5 0 23.6 2.6

Predicted genes 14306 20520 21276 14667

Median protein length (bp) 834 1017 900 423

Median exon length (bp) 168 146 109 94

Median exons per gene 7 5 7 4

Reference this work [43] [44,45] [38]

doi:10.1371/journal.pgen.1004397.t002
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Figure 3. Wolbachia sequence in a Dictyocaulus viviparus genome assembly. A. Taxon-annotated GC%-coverage plot of the primary D.
viviparus genome assembly, with contigs that have significant matches to Wolbachia proteins highlighted in red. A total of 193 contigs spanning
1 Mb (out of a total assembly span of 169 Mb) had significant similarity to Wolbachia. B. Circos plot comparing the 25 longest of the D. viviparus
genome contigs that contained Wolbachia-like sequence to the genome of the Wolbachia endosymbionts of the filarial nematode Brugia malayi
(wBm) [9] and Onchocerca ochengi (wOo). The arcs show BLASTn-derived matches between the contigs and the genome sequences. Transcripts from
D. viviparus mapped to the assembly are reported as green lines in the outer circle of the figure. C. Frequency histogram illustrating the different
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using the Core Eukaryotic Genes Mapping Approach (CEGMA

[39]), and identified 90% complete and 93% partial genes. A

previous Roche 454 transcriptome assembly for D. viviparus [40]

was used to assess the assembly’s completeness in terms of

representation of known D. viviparus transcripts. Retaining matches

where over 70% of the transcript were mapped to the same

genome contig, 87% of transcripts were present in the assembly.

Many additional transcripts were split between contigs.

Using a MAKER2-Augustus pipeline [41,42], we predicted

14,306 protein-coding genes, with a median length of 834 bp,

median exon length of 168 bp, and a median of 7 exons per gene.

We compared this predicted gene set for D. viviparus to those of

Caenorhabditis elegans [43], H. bacteriophora [38] and H. contortus

[44,45] using orthoMCL [46]. A majority (75%) of the predicted

D. viviparus proteins clustered with proteins from these rhabditine

nematodes (Figure 2). The only species which had a low

proportion of proteins clustered was H. bacteriophora (,40%), an

observation that has been noted previously [38].

Thus, while the goal of our study was not to produce a high-

quality reference genome for D. viviparus, the draft assembly and

annotation produced are still of reasonable quality (Table 2). A

majority of known D. viviparus genes are present, similarity to

related nematode species is high, and most of the genes appear to

be present and in full length. The genome assembly and a

dedicated BADGER genome exploration environment [47] are

available from http://dictyocaulus.nematod.es.

Identification of Wolbachia-like sequences in the nuclear
assembly

As part of our standard quality control processes, we generated

a taxon-annotated GC-coverage plot (TAGC plot) [37], with the

goal of identifying any non-nematode (either bovine host or

environmental bacterial) contamination (Figure 3 A). This process

allows identification of contaminants by their presence as contigs

with differing GC content or estimated read coverage compared to

that of assured target genome contigs [48]. The taxonomic

annotation, using the NCBI BLAST+ suite, serves to assign

contaminant contigs to their possible species of origin. This process

identified a total of 193 contigs, spanning 1 Mb, that had best

matches to Wolbachia (Figure 3 B). The Wolbachia-like contigs had a

GC content very close to the mode for the nematode genome, but

they had a wide range of estimated coverages, from approximately

equal to the majority of nematode-derived contigs to 3–4 fold

higher Figure 3 C). Unusually, the Wolbachia-like contigs were not

better assembled than the nuclear genome. The lower complexity

of the alphaproteobacterial genome usually results in more

contiguous assembly, even at low coverage.

The putative Wolbachia from D. viviparus (wDv) contigs were

compared to the complete genomes of Wolbachia from Brugia malayi

(wBm) [9] and O. ochengi (wOo) [16]. The average identity of the

BLAST hits was 84.5% 63.2% to both of the other Wolbachia

genomes, indicating similar evolutionary distance from these two

taxa (Figure 3 D). The matches were distributed across the genomes

of other Wolbachia (Figure 3 B). The Wolbachia-like fragments were

uploaded to the RAST server [49] for direct annotation, and 1580

coding sequences were predicted, almost double than found in

previous nematode Wolbachia genomes (http://rast.nmpdr.org/

?page = JobDetails&job = 112231; Table 3). This elevated number

largely resulted from frameshifts and stop codons in the middle of

genes, which fragmented the open reading frames, and overall only

567 different Wolbachia genes (of a usual 800 to 1500) were

identified. We also screened the contigs that had Wolbachia matches

for other informative similarities, and identified 29 that contained

both nematode and Wolbachia matches (examples are illustrated in

Figure 3 E). We explored both read coverage and read-pair sanity

across these 29 contigs using Tablet [50] to validate the co-assembly

of nematode and Wolbachia-like segments, as de Bruijn graph

assemblers can create chimaeric contigs. We found the contigs to be

valid, contiguous regions of the genome. Even in cases such as

scaffold00357 (Figure 3 E) where the nuclear and Wolbachia

components had distinct read coverages, manual inspection of the

presumed Wolbachia-nuclear junctions revealed no issues of incon-

sistent read pairing or inferred insert length. Segments with much

higher coverage than the nuclear genome may be derived from

patterns of coverage of the Wolbachia-like scaffolds (black) compared to the nuclear genome scaffolds (green). D. Frequency plot of similarity of D.
viviparus Wolbachia-like sequences to wBm (blue) and wOo (the Wolbachia endosymbiont of the filarial nematode Onchocerca ochengi) (red). Each D.
viviparus Wolbachia-like segment was split into 500 bp fragments, and the best percentage identity with the reference genomes calculated using
BLASTn. E. The Wolbachia-like fragments identified in the D. viviparus genome assembly are co-assembled with nematode genes, and have
accumulated multiple inactivating mutations. Two putative Wolbachia insertions in nuclear contigs are shown in views derived from the gBrowse
genome viewer. Each panel shows (from top to bottom) the whole scaffold with the zoomed-in region highlighted, the GC% plot for the scaffold, the
scale for the zoomed-in region, the read coverage for the zoomed-in region, the genes called by RAST in the zoomed in region and the genes called
by AUGUSTUS in the zoomed-in region. The upper plot shows scaffold00357 while the lower plot shows scaffold00506.
doi:10.1371/journal.pgen.1004397.g003

Table 3. Putative Wolbachia-like open reading frames identified in the Dictyocaulus viviparus nuclear genome.

Feature Value Comment

Number of open reading frames (ORFs) * 1580

Mean ORF length (bp) 729 6 703 In wBm the mean length is 8596712 bp

Distinct Wolbachia genes identified ** 567 These are present in 1033 ORFs. 547 ORFs had no similarity to other
Wolbachia genes.

Genes identified in only 1 ORF 318 134 had ,70% coverage; 79 of these genes are not present in wBm

Genes identified in more than 1 ORF 249 Mean number of ORFs per gene identifier = 2.9; SD = 1.4

*Predicted using RAST. The RAST analysis of the Wolbachia-like fragments from D. viviparus is available on the RAST server at http://rast.nmpdr.org/
?page = JobDetails&job = 112231.
**These are genes identified by RAST as being similar to genes identified in other Wolbachia genomes. Some genes are present in multiple, distinct copies in the D.
viviparus assembly.
doi:10.1371/journal.pgen.1004397.t003
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collapse of dispersed repeat copies of the Wolbachia fragment. From

these analyses we conclude that the Wolbachia-like fragments are not

from an unsuspected live Wolbachia infection of D. viviparus, but are

rather neutrally-evolving insertions of Wolbachia genome fragments

into the nematode nuclear genome, and are relics of an ancient

symbiosis, now lost. We have called the fragmented Wolbachia wDv,

though, obviously, we have no evidence of an extant wDv organism

(and in fact regard it as being extinct).

As a preliminary assessment of whether the insertions are

restricted to some populations of D. viviparus (and thus that the

symbiosis may have been recent and only in part of the species), or

are more widespread (and thus likely to derive from more ancient

symbiosis), we screened an independent D. viviparus isolate for

presence of Wolbachia gene fragments. We performed directed

PCR and Sanger sequencing of Wolbachia gene fragments from a

D. viviparus isolate maintained at the Moredun Institute, Edin-

burgh, isolated in Scotland in 2005. Both ftsZ and 16S rRNA

fragments were amplified from this strain, and, when sequenced,

were closely similar to the whole genome assembly-derived

fragments, but differed by several substitutions (Figure 4 A, B).

Comparison of the nuclear small subunit ribosomal RNA

sequence from the assembly to those from Dictyocaulus species

affirmed the species identification (Figure 4 C). We also screened

the previous D. viviparus transcriptome assembly [40] for Wolbachia-

like fragments and identified six transcribed fragments (Table 4)

that were likely to be derived from Wolbachia, confirming presence

of symbiont gene fragments in a third isolate.

These transcribed Wolbachia-like fragments might offer evidence

for functional integration of the remnants of the wDv genome into

the nuclear genome. We thus investigated each fragment for

possible function. In four of five fragments deriving from protein-

coding genes there were frameshifts and in-frame stop codons.

None of the transcribed fragments showed evidence of splicing.

One transcript, where the Wolbachia-like sequence was in the likely

39 UTR of a nematode gene (a homologue of C. elegans FRM-1),

showed standard spliceosomal introns in the nematode-gene-like

part, but the Wolbachia fragment itself was not spliced. Four of the

transcript fragments were very short (500–600 bases, approxi-

mately one 454 read length).

Relationships of the Wolbachia of D. viviparus to other
Wolbachia

To identify the relationships of wDv, sequences from the

Wolbachia-like contigs were added to a five-gene supermatrix

(including 16S rDNA, groEL, ftsZ, dnaA and coxA loci) used

previously for phylogenetic analyses of Wolbachia [18]. This matrix

does not include data from all 14 recognised Wolbachia clades, as

sequencing in most has been limited. wDv fragments correspond-

ing to these genes were identified using BLAST and aligned with

MUSCLE. We were not able to identify a dnaA gene in the D.

viviparus assembly. We added to the alignment data from wOo and

available sequences from the Wolbachia from Radopholus similis

(wRs). Both RAxML, MrBayes and PhyloBayes analyses suggested

that wDv belongs to clade F, with strong branch support (Figure 5).

The long terminal branch of wDv compared to other Wolbachia in

the same clade is likely to be a consequence of the accumulation of

mutations in the wDv regions due to their insertion and

subsequent neutral evolution in the nematode genome. wOo was

placed robustly within clade C as expected. Placement of wRs was

less definite as it clustered as a sister taxon to clade D, but on a

long branch with low support. We were unable to recover the

published phylogeny [20] with wRs arising basally to other

Wolbachia, even when the matrix was analysed with wDv excluded

(data not shown), and thus this previous finding may be a

methodological artifact.

One genomic feature that distinguishes clade C and D Wolbachia

is the absence of WO phage. WO phage are active temperate

bacteriophage that are present in the sequenced clade A and B

genomes, and that may mediate genetic transfer of key symbiosis

genes between strains [51]. Using the 1363 protein sequences

derived from WO phage available in the NCBI/ENA/DDBJ

databases we identified 15 scaffolds in the D. viviparus genome that

contained significant (BLAST E-values less than 1e-20) to WO

phage proteins. These matches (Table 5) were to a wide range of

WO phage genes, including capsid proteins, portal proteins,

secretion system components, recombinases and others. In this

genomic feature, wDv resembled A and B Wolbachia more than it

did C and D.

Discussion

Fossils of Wolbachia infection reveal an unexpected
palaeosymbiosis

D. viviparus is the first nematode from the Rhabditina (the group

that includes C. elegans and the important animal-parasitic

Strongyloidea) that has been shown to have a relationship with

Wolbachia. However, the Wolbachia sequences identified in the draft

genome sequence do not appear to derive from a living organism,

but rather show features suggestive of being ancient laterally

transferred fragments of the genome of a clade F-like Wolbachia,

which is now extinct. The insertions were not unique to the

individual Cameroon nematode sampled, but were identified in

another D. viviparus (from Scotland). Published and unpublished

transcriptome data for D. viviparus include a very low level of

fragments that mapped to Wolbachia-like regions of our assembly.

We suggest that the lateral transfers may be found in all D.

viviparus, and that it will be exciting to survey additional

Dictyocaulinae and related families within Strongyloidea for

evidence of (palaeo-) symbiosis, and to better date the origin of

the laterally-transferred fragments.

Lateral transfers of Wolbachia DNA into the host nucleus, nuwts,

have been identified previously in filarial nematodes and

arthropods [26,52,53]. The evidence for the D. viviparus Wolba-

chia-like sequences being ancient lateral transfers include their

fragmentation, their interspersion with nematode sequence in

robustly-assembled contigs, and their having inactivating muta-

Figure 4. Comparison of Wolbachia-like insertions from two Dictyocaulus viviparus isolates, and relationships of the Cameroon D.
viviparous. A. 16S rRNA gene fragments from the Cameroon isolate of D. viviparus (obtained through whole genome sequencing) and from the
Moredun isolate (from specific amplification) are shown aligned. The genome sequence assembly has three copies of Wolbachia-like 16S genes, two
tandemly arranged and truncated in scaffold scaf09320, and one in scaffold scaf01523. B. ftsZ gene fragments from the Cameroon isolate of D.
viviparus (obtained through whole genome sequencing) and from the Moredun isolate (from specific amplification) are shown aligned. While we
were able to amplify the complete fragment from the Moredun strain, the genome assembly contains only a truncated ftsZ gene (and no consensus is
shown for the ,200 bases of essentially unaligned sequence at the 59 end of the alignment). C. Bayesian phylogenetic analysis of the complete
nuclear small subunit ribosomal RNA (nSSU) genes of the Cameroon D. viviparus and other Dictyocaulus sp., and outgroups (taken from the European
Nucleotide Archive). The Cameroon D. viviparus is most similar to the European D. viviparus sequenced previously. RAxML analyses yielded the same
topology. The 59 gene fragment isolated and sequenced from the Moredun strain was identical to the other D. viviparus nSSU sequences.
doi:10.1371/journal.pgen.1004397.g004

Genomic Fossils of Wolbachia in Bovine Lungworm

PLOS Genetics | www.plosgenetics.org 7 June 2014 | Volume 10 | Issue 6 | e1004397



T
a

b
le

4
.

P
o

ss
ib

le
tr

an
sc

ri
b

e
d

g
e

n
e

s
o

f
W

o
lb

a
ch

ia
o

ri
g

in
in

th
e

D
ic

ty
o

ca
u

lu
s

vi
vi

p
a

ru
s

g
e

n
o

m
e

.

n
a

m
e

o
f

tr
a

n
sc

ri
p

t
fr

a
g

m
e

n
t

*
le

n
g

th
(b

p
)

B
L

A
S

T
n

E
-v

a
lu

e
o

f
b

e
st

m
a

tc
h

to
W

o
lb

ac
h

ia
g

e
n

o
m

e
s

fu
n

ct
io

n
a

l
id

e
n

ti
fi

ca
ti

o
n

o
f

m
a

tc
h

e
d

g
e

n
e

g
e

n
o

m
ic

sc
a

ff
o

ld
(s

)
co

n
ta

in
in

g
m

a
tc

h
(e

s)
fr

a
m

e
sh

if
t

m
u

ta
ti

o
n

s
in

fr
a

m
e

st
o

p
co

d
o

n
s

co
m

m
e

n
ts

1
8

1
8

7
3

5
2

3
5

.0
0

E-
1

6
0

in
o

si
n

e
m

o
n

o
p

h
o

sp
h

at
e

d
e

h
yd

ro
g

e
n

as
e

n
D

v.
1

.0
.s

ca
f0

6
8

5
9

n
D

v.
1

.0
.s

ca
f1

5
1

2
4

2
0

T
h

is
lo

n
g

tr
an

sc
ri

p
t

fr
ag

m
e

n
t

co
n

ta
in

s
a

n
e

m
at

o
d

e
g

e
n

e
o

n
o

n
e

st
ra

n
d

(a
h

o
m

o
lo

g
u

e
o

f
C

.
el

eg
a

n
s

FR
M

-1
)

an
d

a
sh

o
rt

m
at

ch
to

th
e

N
-t

e
rm

in
u

s
o

f
W

o
lb

a
ch

ia
IM

P
d

e
h

yd
ro

g
e

n
as

e
o

n
th

e
o

th
e

r.
T

h
e

D
.

vi
vi

p
a

ru
s

FR
M

-1
g

e
n

e
is

o
n

a
sc

af
fo

ld
(0

6
8

5
9

)
th

at
al

so
co

n
ta

in
s

th
e

N
-t

e
rm

in
al

W
o

lb
a

ch
ia

IM
P

d
e

h
yd

ro
g

e
n

as
e

fr
ag

m
e

n
t.

A
d

d
it

io
n

al
m

at
ch

e
s

to
IM

P
d

e
h

yd
ro

g
e

n
as

e
(n

o
t

in
th

e
tr

an
sc

ri
p

t
fr

ag
m

e
n

t)
ar

e
fo

u
n

d
o

n
sc

af
fo

ld
1

5
1

2
4

.

3
1

0
1

7
1

1
4

6
0

ch
ap

e
ro

n
in

G
ro

EL
n

D
v.

1
.0

.s
ca

f1
7

5
1

8
n

D
v.

1
.0

.s
ca

f0
5

5
2

7
3

0
T

h
e

re
ar

e
tw

o
m

at
ch

e
s

to
W

o
lb

a
ch

ia
G

ro
EL

in
th

e
n

u
cl

e
ar

as
se

m
b

ly
.

T
h

e
tr

an
sc

ri
p

t
fr

ag
m

e
n

t
m

at
ch

e
s

sc
af

fo
ld

1
7

5
1

8
b

e
tt

e
r

(9
6

%
id

e
n

ti
ty

)
th

an
it

d
o

e
s

0
5

5
2

7
,

b
u

t
0

5
5

2
7

co
n

ta
in

s
a

lo
n

g
e

r
G

ro
EL

fr
ag

m
e

n
t.

3
4

8
1

9
6

6
0

1
.0

0
E-

1
2

5
3

0
S

ri
b

o
so

m
al

p
ro

te
in

S6
n

D
v.

1
.0

.s
ca

f0
7

1
3

6
0

0
T

h
e

tr
an

sc
ri

p
t

fr
ag

m
e

n
t

ap
p

e
ar

s
to

b
e

a
fu

ll-
le

n
g

th
co

p
y

o
f

th
e

S6
g

e
n

e
,

w
it

h
o

u
t

fr
am

e
sh

if
ts

.
T

h
e

tr
an

sc
ri

p
t

fr
ag

m
e

n
t

m
at

ch
e

s
a

re
p

e
ti

ti
ve

n
u

cl
e

ar
sc

af
fo

ld
th

at
co

n
ta

in
s

tw
o

p
ar

ti
al

co
p

ie
s

o
f

an
S6

-l
ik

e
g

e
n

e
.

3
5

5
4

3
6

2
1

9
.0

0
E-

1
4

6
5

0
S

ri
b

o
so

m
al

p
ro

te
in

L2
5

n
D

v.
1

.0
.s

ca
f0

4
5

8
7

2
0

T
h

e
m

at
ch

in
th

e
n

u
cl

e
ar

as
se

m
b

ly
e

xt
e

n
d

s
b

e
yo

n
d

th
e

tr
an

sc
ri

p
t

fr
ag

m
e

n
t,

an
d

in
cl

u
d

e
s

ad
d

it
io

n
al

fr
am

e
sh

if
ti

n
g

in
d

e
ls

.

3
6

7
2

1
5

6
9

9
.0

0
E-

1
3

6
p

h
o

sp
h

o
g

ly
ce

ro
m

u
ta

se
n

D
v.

1
.0

.s
ca

f0
0

0
5

5
1

1
T

h
e

tr
an

sc
ri

p
t

fr
ag

m
e

n
t

co
ve

rs
o

n
ly

th
e

fi
rs

t
4

0
%

o
f

th
e

W
o

lb
a

ch
ia

p
h

o
sp

h
o

g
ly

ce
ro

m
u

ta
se

.
T

h
e

n
u

cl
e

ar
as

se
m

b
ly

in
cl

u
d

e
s

a
fu

lle
r

le
n

g
th

m
at

ch
w

it
h

ad
d

it
io

n
al

fr
am

e
sh

if
ts

an
d

in
d

e
ls

.

3
8

8
3

6
5

1
2

1
.0

0
E-

3
3

1
6

S
rR

N
A

n
D

v.
1

.0
.s

ca
f0

1
5

2
3

A
sh

o
rt

fr
ag

m
e

n
t

o
f

th
e

1
6

S
R

N
A

**
.

T
h

e
m

at
ch

to
sc

af
fo

ld
0

1
5

2
3

is
n

o
t

p
e

rf
e

ct
,a

s
it

in
cl

u
d

e
s

m
an

y
su

b
st

it
u

ti
o

n
s

an
d

an
1

8
b

as
e

in
d

e
l.

*
T

h
e

tr
an

sc
ri

p
to

m
e

as
se

m
b

ly
is

fr
o

m
4

5
4

d
at

a
o

f
[4

0
].

**
T

h
is

fr
ag

m
e

n
t

n
o

t
fr

o
m

th
e

sa
m

e
re

g
io

n
th

at
w

as
am

p
lif

ie
d

fr
o

m
th

e
M

o
re

d
u

n
st

ra
in

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
g

e
n

.1
0

0
4

3
9

7
.t

0
0

4

Genomic Fossils of Wolbachia in Bovine Lungworm

PLOS Genetics | www.plosgenetics.org 8 June 2014 | Volume 10 | Issue 6 | e1004397



tions. Read coverage of the Wolbachia-like fragments varied

greatly. If all the fragments derived from the genome of a live

infection, it would be expected that they would have very similar

coverage, as seen in other Wolbachia infected nematodes [37,54].

Fragments with very high read coverage are likely to be repeats

(within the nematode genome). While about 1 Mb of contigs had

matches to Wolbachia, these did not constitute a complete genome.

Only ,60% of the expected Wolbachia gene content was present

(for example the dnaA gene was missing) and many genes and gene

fragments were duplicated. Genome fragmentation and gene

inactivation is suggestive of a long period of residence in the D.

viviparus nuclear genome [25].

Do these Wolbachia-like but nuclear-encoded sequences have a

current expressed function in D. viviparus? The majority of the

potential protein-coding genes in the Wolbachia-like fragments

contain insertions, deletions, frameshift mutations or nonsense

codons compared to their homologues from living Wolbachia

genomes. We identified only six Wolbachia-like transcript fragments

in 61,134 transcripts assembled from 3 million D. viviparus

transcriptome sequences [40]. Four of the transcript fragments

were very short, about one 454 read length, and one Wolbachia-like

match was in the 39 untranslated region of a bona fide nematode

gene. Four of five fragments from protein-coding genes had

frameshift and in-frame stop codon mutations, while the 16S

rRNA fragment had a large deletion compared to 16S from living

Wolbachia. On these bases it is unlikely these Wolbachia-derived

sequences play roles in D. viviparus biology.

This discovery suggests that all three suborders of the nematode

order Rhabditida (Rhabditina, Tylenchina and Spirurina) have

members whose genomes and biology have been shaped by

symbioses with Wolbachia. In the well-studied clade C and D

Wolbachia the relationship has features of mutualism [14]. The

Wolbachia observed in R. similis is apparently live, as bacterial cells

can be seen within host cells by microscopy [20], but there are

currently no data on the nature of the symbiosis: its genome

sequence is awaited with interest. In D. viviparus we have no

positive evidence for live infection. Our analyses placed both wDv

and wRs close to clade F Wolbachia, and showed that clades C, D

and F form a group distinct from clades A and B. From these and

previous [18] analyses Clade F appears more ‘‘promiscuous’’ in its

host relationships (its known hosts include both nematodes and

arthropods). The symbiont biology of clade F is not well known: in

Cimex, the clade F symbiont may be essential for fertility and

nymphal development [55] but symbiont-host interactions remain

unexplored elsewhere. We note that the presence of Wolbachia

(albeit now extinct) in D. viviparus, a nematode that does not use an

arthropod intermediate vector host, suggests that a simple model

of nematode acquisition of Wolbachia from their vector arthropods

is less likely. Clade F-like Wolbachia emerge as a credible source of

the clade C and D Wolbachia of filarial nematode species. The wDv

genome was likely to have contained WO phage [51], a mobile

element present in clade A and B genomes but strikingly absent

from clade C and D genomes.

In this scenario, the genomic fossils of Wolbachia found in D.

viviparus are evidence of infection of an F-like Wolbachia in a

dictyocauline ancestor. We identified insertions in independent

isolates of the parasite suggesting that the association was not

limited to one subpopulation of D. viviparus. We note that there

are Wolbachia-like sequences in transcriptome data from A.

caninum, another strongyloidean nematode, and thus it is possible

that Wolbachia infections may have been widespread in this

group. While reports of Wolbachia in the strongyloidean

Angiostrongylus have been discounted [56,57], we are excited by

the possibility that other palaeosymbioses, now extinct, may be

revealed in forthcoming genome projects across the Nematoda

and Metazoa.

Figure 5. Analysis of the phylogenetic relationships of the Wolbachia nuclear insertions in the Dictyocaulus viviparus genome.
Phylogenetic tree inferred from 16S rDNA, groEL, ftsZ, dnaA and coxA loci with maximum likelihood (RAxML) and Bayesian (MrBayes, PhyloBayes)
inference. Branch support is reported as (RaxML/MrBayes/PhyloBayes). Strains representing Wolbachia supergroups A, B, C, D, F and H are indicated.
doi:10.1371/journal.pgen.1004397.g005
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Finally, we provide a first draft assembly and annotation of the

important nematode parasite D. viviparus. The identification of

our specimen as D. viviparus is based on close identity of

sequenced loci and the complete mitochondrial genome between

our specimen and previously published D. viviparus data. As the

specimen was destroyed during DNA extraction we no longer

have a voucher for the individual. We note that there are very

few records of D. viviparus in sub-Saharan Africa, and it is typically

described as a temperate species [58]. A very large abattoir

survey in the Democratic Republic of Congo found only 3

infected carcasses from 571 examined, and all of these were from

cattle reared above 1,500 m (Ngaoundéré is at 1,200 m) [59].

Table 6. Analysis software versions and parameter settings.

Software tool Reference Version Parameters used* Comments

FASTQC [60] v0.10.1

fastq-mcf [61] ea-utils.1.1.2–537 2l 51 -q 20 –qual-mean 20 -R

Blobology [37] 2013-10-21 default

Khmer [62] khmer-17-05-2013 -k 20 -C 20 -p

Velvet [63] 1.2.08 -exp_cov auto -cov_cutoff auto Kmer length of 51 was used

GapFiller [64] v1-11 -o 10 -m 55

clc_bio program used: clc_mapper 4.1.0 -l 0.9 -s 0.9

BLAST [67] 2.25 default

CEGMA [39] 2.0 default

SNAP [76] 2006-07-28 default used within MAKER pipeline

GeneMark [77] v.2.3e –BP OFF -max_nnn 500 -
min_contig 10000

MAKER2 [41] 2.25 default maker_opts file changed

Augustus [42] 2.7 script used: auto_Aug.pl

orthoMCL [46] 2.0.3 default

MUSCLE [78] 3.8.31 default

RAxML [68] 7.6.4 -m GTRGAMMA

MrBayes [69] 3.2 lset nst = 6 rates = gamma

PhyloBayes [70] 2.3 -cat -gtr

FigTree [72] 3.0.2 used in construction of Figure 3
C and Figure 4

iTOL [71] used in construction of Figure 3
C and Figure 4

Geneious www.geneious.com R7 used for construction of
Figure 3 A, B

* Unless otherwise specified, default parameters were used.
doi:10.1371/journal.pgen.1004397.t006

Table 7. PCR test for Wolbachia insertions.

Target gene
Primer F (name, sequence
59 to 39)

Primer R (name, sequence 59

to 39)
Dictyocaulus
viviparus*

Caenorhabditis
elegans*

Litomosoides
sigmodontis*

Reference for
primers

Wolbachia 16S
rRNA

Wspec16S_F1 Wspec16S_R1 + - + [8]

GAAGATAATGACGGTACTCAC GTCACTGATCCCACTTTAAATAAC

Wolbachia ftsZ ftsZ_F1 ftsZ_R1 + - + [8]

ATYATGGARCATATAAARGATAG TCRAGYAATGGATTRGATAT

nuclear
nSSU

F04 R26 + + + [74]

GCTTGTCTCAAAGATTAAGCC CATTCTTGGCAAATGCTTTCG

mitochondrial
cox1

LCO1490 HCO2198 + + + [75]

GGTCAACAAATCATAAAGATATTGG TAAACTTCAGGGTGACCAAAAAATCA

* + strong positive band observed, and sequence confirmed; 2 no PCR product observed. All PCRs used New England BioLabs Phusion HF mix, an annealing
temperature of 58 uC, 35 cycles of amplification, and were repeated twice with identical results.
doi:10.1371/journal.pgen.1004397.t007
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The genome and annotation can be used as a springboard for

further analysis both investigating the Wolbachia-nematode

interaction and also potential gene identification for drug and

vaccine development.

Materials and Methods

Nematode isolation and genome sequencing
A single Dictyocaulus viviparus male was isolated from Bos indicus

(an individual of the local Gudali breed) in Ngaoundéré abattoir,

Adamawa Region in Cameroon by David Ekale and Vincent

Tanya during the ongoing Enhancing Protective Immunity

Against Filariasis EU-Africa programme. The nematode was

frozen at 280uC and shipped to Liverpool, UK, where DNA was

extracted using the DNeasy Blood & Tissue Kit (Qiagen).

Genomic sequencing was carried out by the Edinburgh Genomics

Facility, using Illumina TruSeq library preparation reagents and a

HiSeq 2500 instrument. A single 300 bp insert library was

constructed, and 100 base paired-end data generated. Raw data

have been submitted to the International Nucleotide Sequence

Database Consortium under the project accession PRJEB5116

(study ERP004482).

Genome assembly and annotation
All software tools used (including versioning and command line

options used) are summarised in Table 6. The quality of Illumina

reads was checked with FASTQC [60]. Raw reads were quality

trimmed (base quality of 20), and paired reads were discarded if

either pair was below 51 bases using fastq-mcf [61]. The trimmed

reads were digitally normalised to ,20X coverage with khmer

[62]. A draft assembly was generated using the normalised reads

with Velvet [63] and gaps within scaffolds were filled using

GapFiller [64]. Scaffold coverage was obtained by mapping all the

reads back to the assembly using the clc-bio toolkit (CLC-Bio Ltd).

Taxon-annotated GC%-coverage plots (TAGC plots) [37] were

used to identify potential bovine and other contamination. Bovine

contamination, which was minimal, was removed.

A MAKER2-Augustus annotation pipeline was used to predict

protein-coding genes from the genome [41]. The MAKER2

program combines multiple ab initio and evidence-based gene

predictors and predicts the most likely gene model. MAKER2 was

run in a SGE cluster using the SNAP ab initio gene finder trained

by CEGMA [39] output models, GeneMark-ES ab initio finder, D.

viviparus transcripts and SwissProt proteins. We used the MAKER2

predictions to train Augustus [42] and create a gene finder profile

for D. viviparus. Using the gene finder profile, the assembled

transcriptome [40] and available expressed sequence tag data [65],

Augustus was used alone to predict the final gene set, which was

used for downstream analysis. Protein sets from selected nematode

species, downloaded from Wormbase [66], were clustered using

orthoMCL [46].

Analysis of Wolbachia-like fragments
The Dictycaulus viviparus draft assembly was broken into 500 bp

fragments and each fragment was compared to Brugia malayi and

Onchocerca ochengi Wolbachia endosymbiont genomes using BLAST+
[67]. Similarity hits with lengths above 100 bases were considered

for downstream analysis. Contigs with Wolbachia-like sequences

were annotated using the RAST server, which provided both gene

finding and gene functional annotation. Junction fragments

between putative Wolbachia insertions and D. viviparus nuclear

genomic DNA were identified using BLAST+. Putative phage WO

fragments were identified through tBLASTn comparison of the

1353 phage WO proteins available in NCBI nr to the D. viviparus

assembly, using an E-value cutoff of 1e-20.

The phylogenetic relationships of Wolbachia from D. viviparus

were assessed by identifying orthologues of 16S rDNA, groEL, ftsZ,

dnaA, and coxA genes, and aligning these to orthologues from other

Wolbachia. The five-gene supermatrix was analysed using RAxML

[68], MrBayes [69] and PhyloBayes [70] (see Table 6 for specific

parameters used). Trees were visualised in iTol [71] and FigTree

[72].

Identification of Wolbachia insertions in other D. viviparus
D. viviparus genomic DNA from the Moredun, Scotland, isolate

was provided by Prof. Jacqui matthews, Moredun Institute [73].

The Moredun strain has no known connection with Cameroon.

Caenorhabditis elegans (free-living rhabditid nematode, which does

not carry Wolbachia) and Litomosoides sigmodontis (a filarial nematode

that carries a clade D Wolbachia [11]) genomic DNAs were used as

negative and positive controls, respectively. PCR primers designed

to amplify Wolbachia 16S, Wolbachia ftsZ [8], nematode nuclear

small subunit rRNA (nSSU) [74] and mitochondrial cytochrome

oxidase I (cox1) [75] were used in PCR with Phusion enzyme

(NEB) to identify similar fragments in each nematode genomic

DNA. A list of primers used and PCR conditions are given in

Table 7. Positive PCR fragments were directly sequenced in both

directions using BigDye v3 reagents in the Edinburgh Genomics

facility. D. viviparus Roche 454 transcriptome data (Bioproject

PRJNA20439) were downloaded from ENA and screened using

BLAST for sequences corresponding to the Wolbachia insertions in

our assembly.

Acknowledgments

We thank David Ekale for collection of the material in Cameroon,

Catherine Hartley in Liverpool for the DNA extraction, Jacqui Matthews

for Moredun D. viviparus DNA, Simon Babayan for L. sigmodontis DNA, and

Karim Gharbi and Anna Montazam of the Edinburgh Genomics Facility

for expert library preparation and sequencing. We also thank Alistair

Darby for insightful comments on the manuscript.

Author Contributions

Conceived and designed the experiments: MB GK BM VNT. Performed

the experiments: VNT BM GK MB. Analyzed the data: GK MB.

Contributed reagents/materials/analysis tools: VNT BM. Wrote the

paper: MB GK BM.

References

1. Werren JH (1997) Biology of Wolbachia. Annual Reviews of Entomology 42:

587–609.

2. Zug R, Hammerstein P (2012) Still a host of hosts for Wolbachia: analysis of

recent data suggests that 40% of terrestrial arthropod species are infected. PloS

one 7: e38544.

3. Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of

invertebrate biology. Nature reviews Microbiology 6: 741–751.

4. Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, et al.

(2011) The wMel Wolbachia strain blocks dengue and invades caged Aedes

aegypti populations. Nature 476: 450–453.

5. Lo N, Paraskevopoulos C, Bourtzis K, O’Neill SL, Werren JH, et al. (2007)

Taxonomic status of the intracellular bacterium Wolbachia pipientis. Interna-

tional journal of systematic and evolutionary microbiology 57: 654–657.

6. Comandatore F, Sassera D, Montagna M, Kumar S, Koutsovoulos G, et al.

(2013) Phylogenomics and analysis of shared genes suggest a single

Genomic Fossils of Wolbachia in Bovine Lungworm

PLOS Genetics | www.plosgenetics.org 13 June 2014 | Volume 10 | Issue 6 | e1004397



transition to mutualism in Wolbachia of nematodes. Genome biology and

evolution.

7. Augustinos AA, Santos-Garcia D, Dionyssopoulou E, Moreira M, Papapana-

giotou A, et al. (2011) Detection and characterization of Wolbachia infections in

natural populations of aphids: is the hidden diversity fully unraveled? PloS one 6:

e28695.

8. Bandi C, Anderson TJ, Genchi C, Blaxter ML (1998) Phylogeny of Wolbachia in

filarial nematodes. Proc Biol Sci 265: 2407–2413.

9. Foster J, Ganatra M, Kamal I, Ware J, Makarova K, et al. (2005) The

Wolbachia genome of Brugia malayi: endosymbiont evolution within a human

pathogenic nematode. PLoS Biology 3: e121.

10. Genchi C, Sacchi L, Bandi C, Venco L (1998) Preliminary results on the effect of

tetracycline on the embryogenesis and symbiotic bacteria (Wolbachia) of

Dirofilaria immitis. An update and discussion. Parassitologia 40: 247–249.

11. Hoerauf A, Nissen-Pahle K, Schmetz C, Henkle-Duhrsen K, Blaxter ML, et al.

(1999) Tetracycline therapy targets intracellular bacteria in the filarial nematode

Litomosoides sigmodontis and results in filarial infertility. J Clin Invest 103: 11–

18.

12. McGarry HF, Pfarr K, Egerton G, Hoerauf A, Akue JP, et al. (2003) Evidence

against Wolbachia symbiosis in Loa loa. Filaria journal 2: 9.

13. Taylor MJ, Cross HF, Bilo K (2000) Inflammatory responses induced by the

filarial nematode Brugia malayi are mediated by lipopolysaccharide-like activity

from endosymbiotic Wolbachia bacteria. The Journal of experimental medicine

191: 1429–1436.

14. Fenn K, Blaxter M (2004) Are filarial nematode Wolbachia obligate mutualist

symbionts? Trends in Ecology and Evolution 19: 163–166.

15. Fenn K, Blaxter M (2006) Wolbachia genomes: revealing the biology of

parasitism and mutualism. Trends Parasitol 22: 60–65.

16. Darby AC, Armstrong SD, Bah GS, Kaur G, Hughes MA, et al. (2012) Analysis

of gene expression from the Wolbachia genome of a filarial nematode supports

both metabolic and defensive roles within the symbiosis. Genome Res 22: 2467–

2477.

17. Casiraghi M, Bordenstein SR, Baldo L, Lo N, Beninati T, et al. (2005)

Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences:

clustering of arthropod and nematode symbionts in the F supergroup, and

evidence for further diversity in the Wolbachia tree. Microbiology 151: 4015–

4022.

18. Lefoulon E, Gavotte L, Junker K, Barbuto M, Uni S, et al. (2012) A new type F

Wolbachia from Splendidofilariinae (Onchocercidae) supports the recent

emergence of this supergroup. Int J Parasitol 42: 1025–1036.

19. Casiraghi M, Bain O, Guerrero R, Martin C, Pocacqua V, et al. (2004) Mapping

the presence of Wolbachia pipientis on the phylogeny of filarial nematodes:

evidence for symbiont loss during evolution. International journal for

parasitology 34: 191–203.

20. Haegeman A, Vanholme B, Jacob J, Vandekerckhove TT, Claeys M, et al.

(2009) An endosymbiotic bacterium in a plant-parasitic nematode: member of a

new Wolbachia supergroup. International journal for parasitology 39: 1045–

1054.

21. Bordenstein SR, Fitch DH, Werren JH (2003) Absence of wolbachia in

nonfilariid nematodes. Journal of nematology 35: 266–270.

22. Elsworth B, Wasmuth J, Blaxter M (2011) NEMBASE4: the nematode

transcriptome resource. International journal for parasitology 41: 881–894.

23. Blaxter M (2011) Nematodes: the worm and its relatives. PLoS biology 9:

e1001050.

24. Ferri E, Bain O, Barbuto M, Martin C, Lo N, et al. (2011) New insights into the

evolution of Wolbachia infections in filarial nematodes inferred from a large

range of screened species. PloS one 6: e20843.

25. Blaxter M (2007) Symbiont Genes in Host Genomes: Fragments with a Future?

Cell Host and Microbe 2: 211–213.

26. Fenn K, Conlon C, Jones M, Quail MA, Holroyd NE, et al. (2006) Phylogenetic

relationships of the Wolbachia of nematodes and arthropods. PLoS Pathog 2:

e94.

27. Dunning Hotopp JC, Clark ME, Oliveira DCSG, Foster JM, Fischer P, et al.

(2007) Widespread Lateral Gene Transfer from Intracellular Bacteria to

Multicellular Eukaryotes. Science Epub ahead of print on ScienceExpress Aug

30, 2007.

28. McNulty SN, Abubucker S, Simon GM, Mitreva M, McNulty NP, et al. (2012)

Transcriptomic and proteomic analyses of a Wolbachia-free filarial parasite

provide evidence of trans-kingdom horizontal gene transfer. PloS one 7: e45777.

29. McNulty SN, Fischer K, Curtis KC, Weil GJ, Brattig NW, et al. (2013)

Localization of Wolbachia-like gene transcripts and peptides in adult

Onchocerca flexuosa worms indicates tissue specific expression. Parasites &

vectors 6: 2.

30. Ioannidis P, Johnston KL, Riley DR, Kumar N, White JR, et al. (2013)

Extensively duplicated and transcriptionally active recent lateral gene transfer

from a bacterial Wolbachia endosymbiont to its host filarial nematode Brugia

malayi. BMC Genomics 14: 639.

31. McNulty SN, Foster JM, Mitreva M, Dunning Hotopp JC, Martin J, et al. (2010)

Endosymbiont DNA in endobacteria-free filarial nematodes indicates ancient

horizontal genetic transfer. PLoS One 5: e11029.

32. Casiraghi M, Anderson TJ, Bandi C, Bazzocchi C, Genchi C (2001) A

phylogenetic analysis of filarial nematodes: comparison with the phylogeny of

Wolbachia endosymbionts. Parasitology 122 Pt 1: 93–103.

33. Desjardins CA, Cerqueira GC, Goldberg JM, Dunning Hotopp JC, Haas BJ, et
al. (2013) Genomics of Loa loa, a Wolbachia-free filarial parasite of humans.

Nature genetics 45: 495–500.

34. Katzourakis A (2013) Paleovirology: inferring viral evolution from host genome

sequence data. Philos Trans R Soc Lond B Biol Sci 368: 20120493.

35. Katzourakis A, Gifford RJ (2010) Endogenous viral elements in animal genomes.

PLoS Genet 6: e1001191.

36. Kumar S, Koutsovoulos G, Kaur G, Blaxter M (2012) Toward 959 nematode

genomes. Worm 1: 1–9.

37. Kumar S, Jones M, Koutsovoulos G, Clarke M, Blaxter M (2013) Blobology:

exploring raw genome data for contaminants, symbionts and parasites using
taxon-annotated GC-coverage plots. Frontiers in Genetics 4: 237.

38. Bai X, Adams BJ, Ciche TA, Clifton S, Gaugler R, et al. (2013) A lover and a

fighter: the genome sequence of an entomopathogenic nematode Heterorhabdi-
tis bacteriophora. PloS one 8: e69618.

39. Parra G, Bradnam K, Korf I (2007) CEGMA: a pipeline to accurately annotate

core genes in eukaryotic genomes. Bioinformatics 23: 1061–1067.

40. Cantacessi C, Gasser RB, Strube C, Schnieder T, Jex AR, et al. (2011) Deep

insights into Dictyocaulus viviparus transcriptomes provides unique prospects for

new drug targets and disease intervention. Biotechnology advances 29: 261–271.

41. Cantarel BL, Korf I, Robb SM, Parra G, Ross E, et al. (2008) MAKER: an easy-

to-use annotation pipeline designed for emerging model organism genomes.

Genome research 18: 188–196.

42. Stanke M, Keller O, Gunduz I, Hayes A, Waack S, et al. (2006) AUGUSTUS:

ab initio prediction of alternative transcripts. Nucleic Acids Research 34: W435–

439.

43. The C. elegans Genome Sequencing Consortium (1998) Genome sequence of

the nematode C. elegans: a platform for investigating biology. Science 282: 2012–

2018.

44. Schwarz EM, Korhonen PK, Campbell BE, Young ND, Jex AR, et al. (2013)

The genome and developmental transcriptome of the strongylid nematode

Haemonchus contortus. Genome biology 14: R89.

45. Laing R, Kikuchi T, Martinelli A, Tsai IJ, Beech RN, et al. (2013) The genome
and transcriptome of Haemonchus contortus, a key model parasite for drug and

vaccine discovery. Genome biology 14: R88.

46. Li L, Stoeckert CJ, Jr., Roos DS (2003) OrthoMCL: identification of ortholog
groups for eukaryotic genomes. Genome Res 13: 2178–2189.

47. Elsworth B, Jones M, Blaxter M (2013) Badger–an accessible genome

exploration environment. Bioinformatics 29: 2788–2789.

48. Kumar S, Blaxter ML (2011) Simultaneous genome sequencing of symbionts

and their hosts. Symbiosis 55: 119–126.

49. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, et al. (2008) The RAST
Server: rapid annotations using subsystems technology. BMC genomics 9: 75.

50. Milne I, Bayer M, Cardle L, Shaw P, Stephen G, et al. (2010) Tablet–next

generation sequence assembly visualization. Bioinformatics 26: 401–402.

51. Kent BN, Bordenstein SR (2010) Phage WO of Wolbachia: lambda of the

endosymbiont world. Trends Microbiol 18: 173–181.

52. Kondo N, Nikoh N, Ijichi N, Shimada M, Fukatsu T (2002) Genome fragment
of Wolbachia endosymbiont transferred to X chromosome of host insect. Proc

Natl Acad Sci U S A 99: 14280–14285.

53. Dunning-Hotopp JC, Clark ME, Oliveira DC, Foster JM, Fischer P, et al. (2007)
Widespread lateral gene transfer from intracellular bacteria to multicellular

eukaryotes. Science 317: 1753–1756.

54. Godel C, Kumar S, Koutsovoulos G, Ludin P, Nilsson D, et al. (2012) The
genome of the heartworm, Dirofilaria immitis, reveals drug and vaccine targets.

FASEB journal: official publication of the Federation of American Societies for

Experimental Biology 26: 4650–4661.

55. Hosokawa T, Koga R, Kikuchi Y, Meng XY, Fukatsu T (2010) Wolbachia as a

bacteriocyte-associated nutritional mutualist. Proceedings of the National

Academy of Sciences of the United States of America 107: 769–774.

56. Tsai KH, Huang CG, Wang LC, Yu YW, Wu WJ, et al. (2007) Molecular
evidence for the endosymbiont Wolbachia in a non-filaroid nematode,

Angiostrongylus cantonensis. Journal of biomedical science 14: 607–615.

57. Foster JM, Kumar S, Ford L, Johnston KL, Ben R, et al. (2008) Absence of
Wolbachia endobacteria in the non-filariid nematodes Angiostrongylus canto-

nensis and A. costaricensis. Parasites & vectors 1: 31.

58. Thamsborg SM, Boa ME, Makundi AE, Kassuku AA (1998) Lungworm
infection (Dictyocaulus viviparus) on dairy cattle farms in tropical highlands of

Tanzania. Tropical animal health and production 30: 93–96.

59. Chartier C (1990) [Dominant characteristics of helminth parasitism in cattle in
Ituri (Haut-Zaire). I. The helminth fauna]. Rev Elev Med Vet Pays Trop 43: 75–

84.

60. Andrews S (2013) fastqc. http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/.

61. Aronesty E (2011) ea-utils: Command-line tools for processing biological

sequencing data.

62. Brown CT, Howe A, Zhang Q, Pyrkosz AB, Brom TH (2012) A Reference-Free

Algorithm for Computational Normalization of Shotgun Sequencing Data.

arXiv q-bio: http://arxiv.org/abs/1203.4802.

63. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly

using de Bruijn graphs. Genome research 18: 821–829.

64. Nadalin F, Vezzi F, Policriti A (2012) GapFiller: a de novo assembly approach to

fill the gap within paired reads. BMC Bioinformatics 13 Suppl 14: S8.

Genomic Fossils of Wolbachia in Bovine Lungworm

PLOS Genetics | www.plosgenetics.org 14 June 2014 | Volume 10 | Issue 6 | e1004397

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://arxiv.org/abs/1203.4802


65. Ranganathan S, Nagaraj SH, Hu M, Strube C, Schnieder T, et al. (2007) A

transcriptomic analysis of the adult stage of the bovine lungworm, Dictyocaulus
viviparus. BMC genomics 8: 311.

66. Harris TW, Baran J, Bieri T, Cabunoc A, Chan J, et al. (2013) WormBase 2014:

new views of curated biology. Nucleic Acids Research 42: D789–793.
67. Boratyn GM, Camacho C, Cooper PS, Coulouris G, Fong A, et al. (2013)

BLAST: a more efficient report with usability improvements. Nucleic Acids
Research 41: W29–33.

68. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic

analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–
2690.

69. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, et al. (2012)
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across

a large model space. Systematic biology 61: 539–542.
70. Lartillot N, Lepage T, Blanquart S (2009) PhyloBayes 3: a Bayesian software

package for phylogenetic reconstruction and molecular dating. Bioinformatics

25: 2286–2288.
71. Letunic I, Bork P (2011) Interactive Tree Of Life v2: online annotation and

display of phylogenetic trees made easy. Nucleic Acids Research 39: W475–478.

72. Rambaut A (2012) FigTree version 1.4. http://tree.bio.ed.ac.uk/software/

figtree/.
73. Pezzementi L, Krejci E, Chatonnet A, Selkirk ME, Matthews JB (2012) A

tetrameric acetylcholinesterase from the parasitic nematode Dictyocaulus

viviparus associates with the vertebrate tail proteins PRiMA and ColQ.
Molecular and biochemical parasitology 181: 40–48.

74. Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, et al. (1998) A
molecular evolutionary framework for the phylum Nematoda. Nature 392: 71–

75.

75. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for
amplification of mitochondrial cytochrome c oxidase subunit I from diverse

metazoan invertebrates. Molecular marine biology and biotechnology 3: 294–
299.

76. Korf I (2004) Gene finding in novel genomes. BMC Bioinformatics 5: 59.
77. Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, Borodovsky M (2005) Gene

identification in novel eukaryotic genomes by self-training algorithm. Nucleic

Acids Research 33: 6494–6506.
78. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with

reduced time and space complexity. BMC Bioinformatics 5: 113.

Genomic Fossils of Wolbachia in Bovine Lungworm

PLOS Genetics | www.plosgenetics.org 15 June 2014 | Volume 10 | Issue 6 | e1004397

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/

