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Abstract: Walnuts are rich in polyphenols ellagitannins, modulate gut microbiota (GM), and exert
health benefits after long-term consumption. The metabolism of ellagitannins to urolithins via GM
depends on urolithin metabotypes (UM-A, -B, or -0), which have been reported to predict host
responsiveness to a polyphenol-rich intervention. This study aims to assess whether UMs were
associated with differential GM modulation after short-term walnut consumption. In this study,
27 healthy individuals consumed 33 g of peeled raw walnuts over three days. GM profiling was
determined using 16S rRNA illumina sequencing and specific real-time quantitative polymerase chain
reactions (qPCRs), as well as microbial activity using short-chain fatty acids analysis in stool samples.
UMs stratification of volunteers was assessed using ultra performance liquid chromatography–electro
spray ionization–quadrupole time of flight–mass spectrometry (UPLC-ESI-QTOF-MS) analysis of
urolithins in urine samples. The gut microbiota associated with UM-B was more sensitive to the
walnut intervention. Blautia, Bifidobacterium, and members of the Coriobacteriaceae family, including
Gordonibacter, increased exclusively in UM-B subjects, while some members of the Lachnospiraceae
family decreased in UM-A individuals. Coprococcus and Collinsella increased in both UMs and higher
acetate and propionate production resulted after walnuts intake. Our results show that walnuts
consumption after only three days modulates GM in a urolithin metabotype-depending manner and
increases the production of short-chain fatty acids (SCFA).

Keywords: walnuts; polyphenol; urolithins; metabotypes; gut microbiota; Gordonibacter;
personalised nutrition

1. Introduction

Nuts are a significant source of macronutrients (e.g., proteins, unsaturated fats, polysaccharides,
fiber), micronutrients (e.g., vitamins and minerals), and bioactive compounds (e.g., tocopherols,
phytosterols, phenolic compounds [1]). Ellagitannins (ETs) and ellagic acid (EA) are polyphenols
present in nuts, pomegranates, and berries [2]. The human gut microbiota can metabolize ETs and EA
into the bioactive metabolites urolithins by lactone-ring cleavage, decarboxylation, and dehydroxylation
reactions [3]. Epidemiologic studies have associated long-term nut consumption with a reduced
incidence of coronary heart disease, hypertension, and cholesterol-lowering effect [4]. The health-related
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effects of nut consumption may be linked to gut microbiota, which can release bioactive compounds
with higher bioavailability and functionality than parental compounds [5]. Several studies have
demonstrated changes in gut microbial communities after the intake of ETs-containing foods on week
timescale [2,6–10]. Besides, some of these studies revealed a personalized effect of foods containing
ETs [6], which supports the concept of personalized nutrition. According to how ETs metabolize
via gut microbiota, individuals can be stratified into three urolithin metabotypes (UMs) [11,12].
Metabotype A (UM-A) is characterized by the production of urolithin-A (Uro-A). Metabotype B
(UM-B) is characterized by the production of urolithin-B (Uro-B), isourolithin-A (IsoUro-A), and Uro-A.
Metabotype 0 (UM-0) does not produce these final urolithins [11]. Recently, three urolithin-producing
bacteria belonging to the genus Gordonibacter (G. pamelaeae and G. urolithinfaciens) and Ellagibacter
isourolithinifaciens were isolated from human feces [13–16]. UMs have been proposed as potential
cardiovascular disease (CVD) risk biomarkers [17]. Furthermore, UMs were associated with the host
blood lipid profile and with the interindividual variability in the improvement of cardiovascular risk
biomarkers after the consumption of pomegranate ellagitannins for six weeks [6,17]. In this scenario,
this study aims to evaluate the impact of a short-term (three days) nutritional intervention with walnuts
on the gut microbiota composition and function in healthy individuals according to their UMs.

2. Materials and Methods

2.1. Study Design and Participants

A total of 27 healthy individuals (Valencia, Spain) were enrolled in the study. The inclusion
criteria were for participants to be older than 18 years old, have a non-declared pathology, and not have
taken antibiotics, medication, or pre/probiotics in the two months before the study. The intervention
consisted of an intake of 33 g of walnuts per day for three days. A total of 100 g of peeled walnuts
provided with 65 g of fats (SFA: 6.4 g; MUFA: 10 g; PUFA: 48 g), 4 g of carbohydrates, 15 g of protein,
12 g of dietary fiber, and 0.02 g of salt. Proanthocyanidins were quantified after acid-catalysis in the
presence of phloroglucinol, as previously reported [18]. The analysis of hydrolysable tannins was
performed after an acid hydrolysis of nut samples using a method previously reported [19].

Walnut samples contained (mg/g fresh weight; mean ± SD): ellagic acid 4.15 ± 0.60; gallic
acid 0.48 ± 0.07; and catechin 0.44 ± 0.04. At the beginning (T0) and the end (T3) of these
time-points, participants collected fecal samples for gut microbiota analysis and short fatty acids (SCFA)
determination and urine for urolithin determination and subsequent UMs stratification. Moreover,
each participant filled out a questionnaire about their clinical, anthropometric, and nutritional records
at the end of the interventional study. Additionally, the intake of ellagitannins-containing food, as
pomegranate and berries were restricted throughout the intervention study. BMI was calculated and
stratified as following: lean–normal weight (≤25.0 kg/m2), overweight (25.0–30.0 kg/m2), and obese
(≥30.0 kg/m2) [20]. Written informed consent was obtained from all the volunteers. The local ethics
committee of Atención Primaria-Generalitat Valenciana (CEIC-APCV) approved the study protocol.
All experiments were carried out following approved guidelines and regulations.

2.2. Dietary Estimation

The dietary intake of the participants was determined through a comprehensive 140-item validated
food frequency questionnaire (FFQ) [21]. In all cases, we validated the FFQ information registered
by participants with a three-day food record questionnaire for the intake of dietary nutrients. FFQ
records were transformed to energy, macro, and micronutrients daily intake using the nutrient food
composition tables developed by the Centro de Enseñanza Superior de Nutrición Humana y Dietética
(CESNID) and analyzed by EASY DIET software. Moreover, a 14-item, PREDIMED (PREvención con
DIeta MEDiterránea) validated test was used to appraise adherence of participants to the Mediterranean
diet [22].
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2.3. Biological Samples

Each volunteer collected urine and fecal samples at home using plastic containers following
standardized protocol given by the team. Then, those were placed in the freezer at −20 ◦C overnight,
before sending to the laboratory where the samples were stored at −80 ◦C until analysis.

2.4. Urolithin Quantification in Urine

Urolithins were identified in urine samples after the three-day nut intervention using ultra
performance liquid chromatography–electro spray ionization–quadrupole time of flight–mass
spectrometry (UPLC-ESI-QTOF-MS), as previously described [23]. The individuals’ stratification,
according to their UMs (UM-A, UM-B, and UM-0), was carried out as previously described [24].

2.5. Gut Microbiota Composition Analysis

DNA was extracted from fecal samples using a commercial kit, the Master-Pure DNA Extraction
Kit (Epicentre, Madison, WI, USA), following the manufacturer’s instructions with modifications
described in García-Mantrana [25]. Purification of the DNA was performed using the DNA Purification
Kit (Macherey-Nagel, Duren, Germany) according to the manufacturer’s instructions.

Specific primers (F_Gordon and R_Gordon) and a TaqMan probe (P_Gordon) targeting the
16S rRNA gene of Gordonibacter genus were used for quantification via the real-time quantitative
polymerase chain reactions (qPCR) [26], because Gordonibacter genus appears in a very low relative
abundance, and is not possible to detect by next-generation sequencing (NGS) methods. A touch-down
qPCR protocol was applied for DNA amplification and the ramping profile was: 1 cycle at 95 ◦C for
5 min, followed by the first 20 cycles of 94 ◦C for 30 s, an auto-increment of 0.5 ◦C from 55 to 65 ◦C for
45 s, 72 ◦C for 2 min. Then, the second 20 cycles of 94 ◦C for 30 s, 55 ◦C for 45 s, and 72 ◦C for 2 min
were applied. Finally, it was added 1 cycle at 72 ◦C for 5 min.

Gut microbiota composition and diversity were determined by V3-V4 variable region of the 16S
rRNA gene sequencing, following Illumina protocols. After 16S rDNA gene amplification, Nextera
XT Index Kit (Illumina, San Diego, CA, USA) was used for the multiplexing step and a Bioanalyzer
DNA 1000 chip (Agilent Technologies, Palo Alto, CA, USA) for checking the PCR product quality.
Libraries were sequenced using a 2× 300 pb paired-end run (MiSeq Reagent kit v3) on a MiSeq-Illumina
platform (FISABIO sequencing service, Valencia, Spain), according to the manufacturer’s instructions
(Illumina). Statistical analyses of the 16S rRNA gene sequence data were performed with QIIME
statistical tools [27]. Chimeric sequences and sequences that could not be aligned were removed from
the data set. Sequences that were classified as Cyanobacteria and Chloroplasts were also removed.

2.6. Statistical Analysis

Calypso software version 8.84 was used with total sum normalization (TSS) for data mining,
multivariate testing, including a redundancy analysis (RDA) and parametric tests [28]. Subsequently,
beta diversity based on the Bray Curtis distance (non-phylogenetic) was carried out. To test significance
between groups, PERMANOVA test was used. Alpha diversity indexes (Chao1, Simpson, and Shannon)
were also determined. Linear discriminant analysis effect size (LEfSe) was used to detect bacterial
features between metabotypes and conditions. Data were classified by metadata factors. Graphpad
Prism v. 5.04 was used for t-test analysis according to data normality assessed by Kolmogorov-Smirnov
and Shapiro-Wilk test. Pearson correlations between relative abundances of bacterial groups and SCFA
levels were done using Calypso software. Data were considered statistically significant at p < 0.05.

2.7. Gut Microbiota Activity Analysis

Fecal supernatants were obtained from 100 mg of fecal sample in 1 mL of buffered saline solution.
Short Chain Fatty Acids (SCFA) analysis was carried out in the fecal supernatants that were filtered
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through 0.45 µm-pore-size nitrocellulose filters (Millipore, Burlington, MA, USA). C2-C8 fatty acids
analysis was performed as described [29].

3. Results

3.1. Characteristics of Subjects

The analysis of urolithins in urine after three days of walnut consumption was used for clustering
the individuals according to their UMs: UM-A (n = 14), UM-B (n = 13), and UM-0 (n = 0). No significant
differences were found in the demographic, clinical, and nutritional characteristics, as well as the
Mediterranean diet score according to UMs (Table 1).

Table 1. Clinical and nutritional characteristics of the participants.

Urolithin Metabotypes

Total (n = 27) UM-A (n = 14) UM-B (n = 13) p Value

Age (years) 39.5 ± 7.3 36.1 ± 7.2 43.1 ± 5.6 0.521
BMI (kg/cm2) 23.3 ± 3.2 23.9 ± 3.5 22.7 ± 2.8 0.625

Normal Weight (%) 70.4 64.3 76.9 0.961
Overweight (%) 29.6 35.7 23.1 0.393

Sex
Female (%) 55.5 57.1 61.5 0.471
Male (%) 40.7 42.8 38.5 0.565
MD (%) 55.5 57.1 53.8 0.669

Total Protein (g/day) 93.9 ± 15.5 95.5 ± 13.5 92.2 ± 17.9 0.597
Animal-Derived Protein (g/day) 47.7 ± 13.9 50.8 ± 12.4 44.4 ± 15.1 0.237
Plant-Derived Protein (g/day) 44.1 ± 7.7 42.4 ± 7.4 45.9 ± 7.9 0.232

Lipids (g/day) 78.8 ± 9.5 80.9 ± 8.6 76.5 ± 10.3 0.246
SFA 16.5 ± 3.2 16.1 ± 3.5 16.9 ± 3.0 0.527
MUFA 33.5 ± 4.9 33.7 ± 5.4 33.3 ± 4.5 0.844
PUFA 12.8 ± 2.5 12.6 ± 2.1 13.0 ± 2.9 0.684

Total Carbohydrates (g/day) 215.4 ± 29.7 207.8 ± 24.3 223.6 ± 33.6 0.171
Dietary Fiber (g/day) 26.1 ± 5.9 26.7 ± 6.4 25.4 ± 5.7 0.593

Insoluble Dietary Fiber (g/day) 16.8 ± 4.8 17.2 ± 4.9 16.3 ± 4.8 0.636
Soluble Dietary Fiber (g/day) 3.1 ± 0.8 3.0 ± 0.9 3.2 ± 0.8 0.553

Results are presented as mean ± SD and percentage (%). SFA: saturated fatty acids; MUFA: monounsaturated
fatty acids; PUFA: polyunsaturated fatty acids. p < 0.05 for comparison the clinical and nutritional characteristics
between UMs. MD: Mediterranean diet adherence.

3.2. Baseline Microbiota Composition is Urolithin-Metabotype Dependent

Baseline microbiota (T0, n = 27) was characterized by the presence of Firmicutes with a mean
relative abundance and SD of 77.31% ± 2.88, followed by Bacteroidetes (15.86% ± 0.28), Actinobacteria
(3.13% ± 0.65), Verrucomicrobia (1.78% ± 1.22), and Proteobacteria (1.31% ± 1.50) at the phylum
level. The relative abundance of phylum Synergistetes was significantly enriched in UM-B (p < 0.05)
compared to UM-A. At the family level, the family Lachnospiraceae was associated with UM-A,
whereas the abundance of the families Cerasicoccaceae, Peptostreptococcaceae, Synergistaceae, and
Paraprevottelaceae were related to UM-B. A redundancy analysis (RDA) on genus level showed
significant differences in the microbial population, according to UMs (p = 0.025) (Figure 1A). Volunteers
belonging to UM-B had a higher richness (p = 0.003, Chao 1 index) than UM-A (Figure 1B).

Lefse analysis showed that Dorea, Holdemania genus, and members of Lachnospiraceae family
were enriched in UM-A, while genus cc_115, Oxalobacter, members of Synergistaceae, Cerasicoccaceae,
Coriobacteriacea, Peptostreptococcaceae family, and Paraprevotella were associated with UM-B
individuals (Figure 1C).
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Figure 1. Gut microbiota composition and diversity according to metabotypes (UM-A and UM-B)
before the intervention (T0). (A) Redundancy analysis (RDA) on the genus level. (B) Gut microbial
richness was measured by Chao index. (C) Linear discriminant analysis (LDA) effect size (LEfSe) plot
of taxonomic biomarkers identified in the gut microbiome of volunteers. (D) Relative abundances on
genus level in UM-A and UM-B. ANOVA test was used to test significance differences in the relative
abundances according to metabotype. Results are presented as mean ± SD. Significant differences
(p < 0.05) are marked with an asterisk (*).

3.3. Microbiota Composition of UM-B is Sensitive to Walnuts Consumption

The redundancy analysis (RDA) of all individuals (n = 27) showed that bacterial communities were
significantly affected by the three day walnut intervention (p = 0.001). However, when the volunteers
were stratified according to their UMs, these shifts were only significant for UM-B (p = 0.017) (Figure 2D).
At the phylum level, walnut intake decreased the relative abundance of Bacteroidetes and increased
Actinobacteria when all individuals were considered (p < 0.05). These differences were consistent
for UM-B after clustering. At the family level, walnut consumption increased the Coriobacteriaceae
family in both UMs, while the Bifidobacteriaceae family increased after three days only for UM-B
volunteers. Among bacterial genera, members of the Lachnospiraceae family decreased after the
walnut intervention in UM-A individuals, Coprococcus and Collinsella increased in both UMs, whereas
Blautia, Bifidobacterium, and unclassified Coriobacteriaceae increased only in participants belonging
to UM-B (p < 0.05) (Figure 2B,E). According to the Chao1 index, gut microbial richness significantly
decreased for UM-A (p = 0.024) and UM-B (p < 0.001) after walnut consumption (Figure 2C,F).
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Figure 2. Effect of the intervention with walnuts in gut microbiota composition (A,B) and diversity (C)
in UM-A and in gut microbiota composition (D,E) and diversity (F) in UM-B. ANOVA test was used to
test significance differences in the relative abundances before and after the intervention. Alpha diversity
measured by Chao1 index. Results are presented as mean ± SD. Significant differences (p < 0.05) are
marked with an asterisk (*).

3.4. Walnut Consumption Increased Faecal Gordonibacter Levels in UM-B

Before the intervention, UM-A tended to present higher counts of Gordonibacter. However, it
was not significant compared to UM-B (p = 0.601) (Figure 3A). After intervening and analyzing the
individuals as a single group, a significant increase of fecal Gordonibacter levels was observed (p = 0.024)
(Figure 3B). After clustering, according to UMs, walnut consumption only increased Gordonibacter levels
in UM-B individuals (p = 0.034) (Figure 3C,D). No significant associations with BMI, MD stratification,
nutrient intake, or sex with Gordonibacter levels were found.
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Figure 3. Microbiota composition before (T0) and after the intervention (T3). Gordonibacter levels
measured using qPCR according to UMs before the intervention (A). Gordonibacter levels before and
after the intervention for all the participants (B). Gordonibacter levels before and after the intervention
for UM-A (C) and UM-B participants (D). Paired t-test was used to test significance differences in
Gordonibacter levels before and after the intervention. Results are presented as mean ± SEM.
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3.5. Effect of Walnut Consumption on Gut Microbiota Activity

Before the intervention, volunteers belonging to UM-A tended to present higher levels of butyrate
(p = 0.070). After the intervention, we did not find significant differences in SCFA production after
walnut consumption according to UMs (data not shown), but analyzing all participants as a single
group, the walnut intake increased the total SCFA (p = 0.012) levels, specifically acetate (p= 0.021) and
propionate (p = 0.040) (Figure 4).
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Figure 4. SCFA profile before and after the intervention for all the participants. Acetate (A), propionate
(B), butyrate (C) and total SCFA (D) levels measured by GC for all the participants. A paired t-test
was used to test significant differences in SCFA levels before and after the intervention. Results are
presented as mean ± SEM.

3.6. Associations between Gut Microbiota Composition/Activity and Walnut Intervention

Before the walnut intervention, at the genus level a positive correlation was found between the
increase in acetate and Phascolarctobacterium (p = 0.006) and Anaerostipes (p = 0.011), propionate and
Phascolarctobacterium (p = 0.040), Coprococcus (p = 0.031) and Anaerostipes (p = 0.011), and butyrate and
Coprococus (p = 0.030) and Anaerostipes (p = 0.020), respectively. At the species level, we found that
this positive correlation between propionate and butyrate with Coprococus was due to Coprococcus
catus. After the walnut intervention, positive correlations were observed between acetate levels and
Phascolarctobacterium (p = 0.018) and Dehalobacterium (p = 0.014), propionate levels and Eubacterium
(p = 0.024), Phascolarctobacterium (p = 0.040), Slackia (p = 0.024), and butyrate levels with Dehalobacterium
(p = 0.016), and Eubacterium (p = 0.006).

4. Discussion and Conclusions

Understanding individuals’ response to dietary bioactive compounds such as polyphenols is
essential in the context of personalized nutrition [30]. The occurrence of specific gut microbiota
metabotypes can affect the metabolism and bioactivity of polyphenols and the response of individuals
upon polyphenol consumption can vary [6]. Our present study shows that the impact exerted by the
three day walnut intervention on the gut microbiota depends on the urolithin metabotypes (UMs) of
healthy individuals. Therefore, our results add significance to previous studies that aimed to explain the
controversial benefits of bioactive compounds present in foods due to the inherent high inter-individual
variability [6]. Notably, only UM-B participants responded significantly to the intervention with
walnuts towards a change in the gut microbiota composition.
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Parameters such as baseline gut microbiota composition and habitual daily intakes may influence
a differential host response [31]. Furthermore, gut microbiota composition would be considered as a
predictor for the inter-individual variability in response to dietary interventions [31]. Although UM
groups did not present differences in their dietary intakes, significant differences in the gut microbial
composition, according to UMs clustering, were observed. In agreement with another study [32], higher
relative abundances of Synergistetes phylum and members of Coriobacteriaceae family were observed
in UM-B individuals, whereas members of the Lachnospiraceae family predominated in UM-A. We
also found a higher gut microbiota richness in UM-B individuals in agreement with Romo-Vaquero
and colleagues [32]. Differences of basal microbiota in UMs may be linked to the individual response
to ETs intake. It has been reported that intervention with an ellagitannin-rich pomegranate extract for
three weeks exerted a differential impact on cardiovascular risk markers of individuals depending on
their UM metabotype [6]. The cardiovascular benefits were mainly observed in UM-B individuals,
who initially presented a higher cardiovascular risk [6]. These results are in agreement with our
present study, where only UM-B subjects responded significantly to the walnut intervention. Moreover,
a previous study that evaluated the capacity to produce nut phenolic metabolites in subjects with
metabolic syndrome showed that several urolithins significantly increased after a nut-enriched-diet.
However, this pathology is associated with an altered gut bacterial diversity [33].

Overall, the evidence on the impact of walnuts on the gut microbiota is scarce and mainly provided
by long-term interventions where the significance of the gut microbiota metabotypes, linked to the
inter-individual variability, was not explored [8,9,34]. In agreement with González-Sarrías et al., our
results supported the personalized effect associated with ellagitannin-containing foods consumption [6].
In the present study, a three day walnut intervention modulated some microbial groups, including the
increase of Blautia, Bifidobacterium and bacterial members of Coriobacteriaceae, such as Gordonibacter,
but only in UM-B individuals. Previous research has shown that walnut consumption increased the
relative abundance of butyrate-producing species, although the authors observed opposite results on
some bacterial groups such as Ruminococcus and Bifidobacteria [8,35]. Holscher et al. assessed the
impact of consuming 42 g walnuts per day for two three week periods on the human gut microbiota
composition and observed a decrease in the relative abundance of Ruminococcus and Bifidobacteria [8].
However, another recent study showed that the same amount of walnuts per day enhanced the
abundance of Ruminococcaceae and Bifidobacteria [35]. The effect of walnut consumption on the gut
microbial composition may be linked to ellagic acid and ellagitannins, but other polyphenols and other
compounds such as dietary fiber and unsaturated fats [4] would also be influencing factors.

The highest content in omega-3 fatty acids characterizes walnuts with respect to other nuts [36,37].
Although the impact of polyunsaturated fatty acids on the gut microbiota is poorly defined, several
human studies have shown some common changes in the gut microbiota after omega-3 PUFA
supplementation. In particular, a decrease in Faecalibacterium, from Ruminococcaceae family, often
associated with an increase in other butyrate-producing bacteria belonging to the Lachnospiraceae
family has been observed [38]. Walnuts present similarities in the chemical composition with other
nuts, like almonds and pistachios, which do not contain ellagitannins. Some studies have investigated
the effects of other dried fruits and nuts on the gut microbiota composition [9,34,39]. Ukhanova et al.
demonstrated enrichment in butyrate producers after almonds and pistachios consumption for
18 days [34]. Holscher and colleagues performed an interventional study with almonds and found
an increase in the relative abundances of several butyrate-producing bacteria such as Lachnospira,
Roseburia, and other bacterial groups such as Dialister and Oscillospira [9]. In any case, all these studies
focused on changes in gut microbial composition and agreed on the same point that these interventions
produced an increase in butyrate-producing bacteria. In our study, a three-day walnut intervention
was enough to increase acetic acid and propionate of fecal samples, without differences between UMs.
Riviére et al. reported health benefits of propionate in mice by reducing serum cholesterol, improving
insulin sensitivity, and promoting satiety [40]. Recently, the use of inulin-propionate ester, to deliver
propionate to the colon selectively, improved insulin resistance in overweight and obese subjects [41].
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A recent study (including 365 study participants in 13 trials) found that diets enriched with walnuts
led to lower total and LDL-cholesterol when compared with other diets [42]. It has also been reported
that walnut consumption is associated with a lower risk of type 2 diabetes [4]. The PREDIMED trial is the
largest primary prevention trial showing that an intervention to promote a Mediterranean diet, which
is beneficial against the incidence of several major chronic diseases in subjects at high cardiovascular
risk, particularly when improved adherence to the Mediterranean diet includes increased consumption
of extra virgin olive oil and mixed tree nuts. The PREDIMED trial showed that participants included
in the MD group supplemented with nuts presented a lower risk of cardiovascular events and type 2
diabetes [43,44].

The increase in acetate production is in accordance with the increase in the relative abundances of
the Bifidobacterium genus. Moreover, acetate is used by cross-feeding species as a co-substrate to produce
butyrate [40]. Therefore, this could mean that the increase of Bifidobacterium could favor the colonization
of other beneficial butyrate-producing bacteria, such as Coprococcus, leading to an increase in butyrate
production. Although we did not observe a significant increase in butyrate production, which could
have been due to the short-term walnut intervention, we found positive correlations between higher
acetate and propionate production, and Phascolarbacterium, Coprococcus, and Anaerostipes. These results
agree with previous studies that described the production of SCFA, including acetate and propionate,
by Phascolarctobacterium [45] as well as the production of butyrate by Coprococus and Anaerostipes [40].
At the species level, we also observed positive correlations between Coprococcus catus, butyrate, and
propionate concentrations. This is related to the capability of this bacterial species for butyrate
and propionate production, via butyryl-CoA: acetate CoA-transferase route and acrylate pathway,
respectively [45]. It is well known that butyrate exerts health benefits, including the preservation
of the gut barrier integrity. Remarkably, it has been demonstrated that urolithin-A (Uro-A), as a
microbial metabolite, significantly enhances the gut barrier function through the up-regulation of the
epithelial tight junctions’ proteins [46], which confirmed pioneering investigations of our group that
demonstrated for the first time the preservation of the colon architecture by Uro-A under intestinal
inflammation [2]. Although fecal SCFA profiles are widely used as markers of gut health or disease,
caution on interpreting the results may be required. More than 95% of SCFAs in the gut are quickly
absorbed. Therefore, measurement of fecal SCFAs concentration only represents the 5% of produced
SCFA left unabsorbed. Luminal concentrations of SCFAs can be affected by both rates of production
and disappearance, circadian rhythms, section of the intestine, and specific microenvironment at
luminal or mucosal compartments [47].

In summary, the main findings of this interventional study show that walnut consumption for
three days is enough to modulate gut microbial composition in a UM-depending manner and to
increase the production of SCFA. This study supports the concept of personalized nutrition and that
not all the dietary recommendations may exert the same benefits in all individuals. This concept is
growing and there is enough evidence that explains that a complex relationship between diet and
microbiome could be behind this. Nevertheless, there are still difficulties predicting gut microbiota
and host responses to a given dietary intervention. There is still no consensus because there are many
parameters that we should take into account, such as host physiology, habitual dietary patterns, and
gut microbiota baseline. Therefore, more research is needed and clinical trials should take into account
this inter-individual variability.
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Abbreviations

GM gut microbiota
UM urolithin metabotype
qPCR real-time quantitative polymerase chain reaction

UHPLC/Q-TOF-MS
ultra-high performance liquid chromatography-quadrupole time-of-flight mass
spectrometry

ETs ellagitannins
EA ellagic acid
Uro urolithin
IsoUro isourolithin
CVD cardiovascular disease
SCFA short chain fatty acids
BMI body mass index
FFQ food frequency questionnaire
CESNID Centro de Enseñanza Superior de Nutrición Humana y Dietética
PREDIMED PREvención con DIeta MEDiterránea
LEfSe linear discriminant analysis effect size
RDA redundancy analysis
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