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Abstract

Computational methods for predicting drug-target interactions have become important in drug research because they can
help to reduce the time, cost, and failure rates for developing new drugs. Recently, with the accumulation of drug-related
data sets related to drug side effects and pharmacological data, it has became possible to predict potential drug-target
interactions. In this study, we focus on drug-drug interactions (DDI), their adverse effects (DDIAE) and pharmacological
information (DDIPharm), and investigate the relationship among chemical structures, side effects, and DDIs from several
data sources. In this study, DDIPharm data from the STITCH database, DDIAE from drugs.com, and drug-target pairs from
ChEMBL and SIDER were first collected. Then, by applying two machine learning approaches, a support vector machine
(SVM) and a kernel-based L1-norm regularized logistic regression (KL1LR), we showed that DDI is a promising feature in
predicting drug-target interactions. Next, the accuracies of predicting drug-target interactions using DDI were compared to
those obtained using the chemical structure and side effects based on the SVM and KL1LR approaches, showing that DDI
was the data source contributing the most for predicting drug-target interactions.
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Introduction

Computational approaches are promising tools in drug research

since they can help reduce the time, costs, and failure rates for

developing new drugs. A key problem, however, is that

computational approaches have typically been limited in practical

applications due to the lack of drug-related data sets, though

databases such as DrugBank, KEGG, ChEMBL, and STITCH2

have recently been constructed [1–4], thereby enabling opportu-

nities to apply computational approaches to drug research.

To date, several approaches have been proposed for predicting

drug-target interactions. Commonly used approaches include

docking simulations and literature-based data mining [5,6].

However, docking simulations cannot be applied to proteins that

do not have known 3D structures. Although homology models

have been proposed, their accuracies tend to be lower compared

to the use of crystal structures, except in a few cases [7]. Another

issue is that literature-based data mining methods often rely on the

co-occurrence of drugs and proteins in literature and are unable to

consider specific drug features, such as its chemical structure [8].

Recently, the relationship between drugs and target proteins has

been studied based on aspects such as chemical structure, side

effects, drug pharmacology, and protein sequence, with chemical

structure-based approaches being the most well-known [9]. The

hypothesis of using chemical structures is based on the condition

that two molecules having similar chemical structures are likely to

target common proteins, and that their chemical structure can

then be related to the drug’s effectiveness [10–13]; similarly, two

proteins having similar sequences are likely to be targeted by the

same drugs. Several studies attempting to integrate the chemical

structures of drugs and protein sequences have been conducted

[14–16]. These studies have used different metrics to calculate the

similarity between drugs, such as the Tanimoto score and a

signature kernel, as well as metrics for similarity between proteins

such as the Smith-Waterman alignment of protein sequences and

enzyme commission (EC) numbers. In addition, by combining

drug and protein similarities, approaches such as the bipartite local

model and tensor product of drug and protein kernels have been

developed and these integrations have helped to increase the

prediction accuracy of drug-target interactions [14–16].

Understanding the side effects of drugs is another promising

resource. Drugs causing similar side effects are likely to target

similar proteins. It was previously found that determining the

similarities of drugs based on their common side effects could be

highly correlated to the similarities of their chemical structures,

and could sometimes be used to predict new drug-target

interactions that were not revealed by the similarities of their

chemical structures [17]. However, this approach can only be

applied to drugs with known side effects. The drug’s pharmaco-

logical data is also a useful resource; one study investigated the

relationship between the chemical space and the pharmacological

space containing their pharmaceutical effects, adverse effects,

cautions, usages, properties, etc. [18]. The study showed that

determining the pharmacological space is useful for predicting

drug-target interactions.

Since the study by Yamanishi et al. [18] confirmed that

pharmacological spaces are useful in predicting drug-target

interactions, we further investigated this concept with respect to
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drug-drug interactions (DDIs); i.e, how the positive or negative

association of two drugs can be used to infer the drug’s target

proteins. Note that the process of developing and repositioning

drugs is rather complicated because of problems incurred by

unexpected effects, such as adverse effects between DDIs, similar

activities, and pharmacological actions when drugs are co-

administered. Predicting drug-target interactions using their

chemical structure and known side effects cannot effectively model

these relationships. Nevertheless, integrating multiple features of

drugs might be a powerful prediction tool since it focuses on the

multiple aspects of drugs–this is why many studies have attempted

to integrate multiple features in bioinformatics problems, such as

for protein function prediction [19–21].

In this study, we investigate the contribution of DDI in the

prediction of drug-target interactions. For this task, we first collect

two sets of DDIs from known databases. For example, an adverse

DDI effect (DDIAE) from drugs.com is a modification of the effect

of drugs when other drugs are co-administered, consequently

leading to severe side effects [22]. In addition, the pharmacological

DDI (DDIPharm) collected from STITCH [4] is a relation between

compounds that is derived from similar activities and has similar

effects or associations.

The accuracy of predicting drug-target interactions using DDI

depends on several factors. First, if we assume that two similar

drugs are likely to target the same proteins, the measure of

similarity between the two drugs based on DDI should affect the

prediction accuracy. Second, there are several drug-target

interaction databases; however, since the prediction accuracy

depends on gold-standard interactions, it is important to select and

compare drug-target interactions from several drug-related data-

bases. For the first issue, we calculated the similarity for DDI based

on three measures: direct interactions, the shortest path, and using

a diffusion kernel. Each measure was then compared by predicting

drug-target interactions using support vector machine (SVM) and

kernel-based L1-norm regularized logistic regression (KL1LR)

methods. In previous studies, SVM has been widely used for

predicting drug-target interactions [14–16]. Although KL1LR was

not previously applied to the prediction of drug-target interactions,

it has proven to be powerful when used for protein function

predictions [21]. It should also be noted that although the SVM

model gives a high prediction accuracy for drug-target interac-

tions, it is not clear how to use it to study the factors contributing

to a drug’s target protein; in contrast, since the KL1LR approach

is model-based, it can more easily be used to explore the

contribution of other drugs having a high similarity in predicting

target proteins. Furthermore, the L1-norm regularization property

of KL1LR can generate an explainable model for significant

features by assigning some coefficient values to zero [21]. Also, due

to its simplicity, its computational time is faster than the SVM

approach. For the second issue, we collected two sets of drug-

target interactions: ChEMBL [3] and STITCH [4]; we subse-

quently showed that the prediction results obtained from these two

data sets are consistent.

We also compared the contribution of DDI to both the chemical

structure and side effect similarities based on the SVM and

KL1LR approaches, showing that DDI was the data source

contributing the most for predicting drug-target interactions. Next,

we integrated the chemical structure, side effect, and DDI data sets

to predict drug-target interactions.

Even though this study primarily focuses on DDI, as a final step

we further investigated the integration of protein similarity to drug

similarity using DDI and then compared our approach to other

methods.

Materials

DDI Data
In this study, we focused on two DDI data sets: DDIAE and

DDIPharm. First, we extracted DDIAE from drugs.com, a website

dealing with information pertaining to the adverse and side effects

of two drugs [23]. However, data access for drugs.com is not

convenient because the information is comprised of unstructured

text. Therefore, we had to manually retrieve drug names and

DDIAE from documents by matching drug synonyms to ChEMBL

data [3]. Second, DDIPharm was extracted from STITCH; in

STITCH, interactions between chemicals were collected from

various resources including similar activity profiles in the

anticancer drug screen data of 60 human tumor cell lines

(NCI60), pharmacological actions obtained from Medical Subject

Headings (MeSH), literature by using natural language processing,

and pathway and experimental databases [4].

Although DDIAE contains the adverse effects of two drugs and

DDIPharm mainly contains two drugs with similar activities or

associations, these two data sets were not mutually exclusive.

Indeed, it was found that the ratio of common drug interactions

between the two DDI data sets was around 10%, based on

interactions among the drugs used in this research.

Drug-target Interaction Data with Chemical Structures
and Side Effects

Drug-related data sets were extracted from four databases:

ChEMBL [3], SIDER [24], STITCH2 [4], and drugs.com [23]

(Table 1). Using these databases, we constructed two independent

sets of drug-target interactions that were then used as positive

gold-standard data sets. For the first data set, we used the

ChEMBL database. ChEMBL contains 257,867 compounds with

target protein information, 2,733 targets, and 584,516 interactions

(version 5). SIDER contains 888 drugs, 1,450 side effects, and

62,269 drug side-effect pairs. Drugs.com is an online drug

information resource that includes DDIAE; it contains 559 drugs

with matched identifiers from ChEMBL drugs, and among them

444 have DDIAE pairs. Since ChEMBL does not contain side

effect information and DDIAE data sets, we determined the

possible side effects and DDIAE for drugs by matching synonyms

of the drugs in ChEMBL, SIDER, and drugs.com. As a result, we

found 444 drugs in common, 835 target proteins, and 4,438 drug-

target interactions (Figure 1a).

For the second data set, we extracted drug-target interactions

from STITCH, which is derived from NCI60, PubChem, Medical

Subject Headings (MeSH) pharmacological actions, and literature

using natural language processing (NLP) [4]. STITCH contains

DDIPharm data and we can directly use the side effects in SIDER

since STITCH and SIDER use the same drug identifiers. The

number of proteins in STITCH is larger than the number of

ChEMBL proteins when we combine common drugs from all data

sources; 752 drugs and 10,967 proteins, and 88,920 drug-target

interactions were obtained (Figure 1b). Note that we only used

proteins from Homo sapiens.

Finally, 324 drugs were found to be common between

ChEMBL and STITCH (Figure 1c). Here, we mapped common

drugs by calculating the chemical structure similarity because the

drug identifiers from the two data resources are different. When

the similarity between two drugs is 1.0, the two drugs are

considered equal. All 324 common drugs are FDA approved

drugs, although ChEMBL and STITCH contain compounds as

well as FDA approved drugs in their original sets. In these 324

drugs, there were 3,647 and 39,882 drug-target interactions in

ChEMBL and STITCH, respectively. These known interactions

Drug-Drug Interactions
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were then used to estimate the prediction accuracy of the proposed

methods and contributions of drug-related data sources for

inferring drug-target interactions.

Methods

To predict the drug-target interactions, the similarity between

drugs, the similarity between target proteins, or a combination of

both similarities can be used. In this section, we first introduce

similarity measures between drugs using data sets such as chemical

structure, side effects, and DDI. Next, we describe how two

classification methods, KL1LR and SVM, are used in predicting

drug-target interactions by integrating similarity measures. Then,

methods for measuring the similarity between proteins are

provided. Finally, approaches for predicting the drug-target

interactions using both the similarities between drugs and

similarities between proteins are explained. Note that since the

main focus of this study is the DDI contribution, the similarity

measures between drugs based on DDI and their subsequent

integration with other similarities between drugs using KL1LR are

extensively explained. Figure 2 depicts the diagram of the entire

procedure.

Drug Similarity Measures
Chemical structure-based drug similarity. We obtained

the chemical structures of drugs from ChEMBL and STITCH.

ChEMBL has several formats for representing chemical structures,

such as canonical smiles, mole files, and InChI keys. Among them,

we used the canonical smiles format to represent the chemical

structure and used an open source library, a small molecule

subgraph detector (SMSD) toolkit, to calculate the similarity score

of the structures. In SMSD, the Tanimoto similarity was used to

detect a maximum common subgraph [25]. Finally, we construct-

ed a similarity score matrix Kc for all drug pairs.

For comparative purposes, the signature kernel between two

chemical structures is computed as a dot product between the

molecular signature vectors for a given height h, which is a

predefined distance from a given atom; the similarity between

two chemical structures is hk(A,B)~
hs(A):hs(B)

jhs(A)jjhs(B)j
, where

hs(A)~(a1,a2,:::,am), A is the chemical structure, m is the

number of possible atomic signatures of height h, and ai is the

presence or absence of the particular atomic signature for height h
[16]. To implement the signature molecular descriptor, software

from [26] was used. The signature kernel matrix is then denoted as

Km, though for convenience, the chemical structure similarity in

this study is the Tanimoto score, unless the specific kernel is

mentioned.

Side effect-based drug similarity. We computed the

similarity between drugs based on their side effects, which is

computed based on the number of common side effects between

them. Here, we employed a down-weighting method to penalize

the correlating side effects and the frequently occurring side effects

[17,27]. Correlations between side effects are measured using

hierarchical clustering; if two side effects are reported in similar set

of drugs, they are clustered together since their correlation is

considered high. When a side effect s belongs to a large cluster

because it is co-related with many other side effects, the weight gs

Figure 1. Numbers of drugs, proteins, and drug-target interactions used in this research. (a) Drug-target interactions from ChEMBL are
combined with side effects and DDIAE from SIDER and drufgs.com databases. (b) Drug-target interactions from STITCH are combined with side
effects and DDIPharm from SIDER and STITCH databases. (c) Common drugs from ChEMBL and STICH are shown with the numbers of target
interactions.
doi:10.1371/journal.pone.0080129.g001

Table 1. Drug-related data sets used in this study.

ChEMBL SIDER STITCH drugs.com

Drug 257,867 888 55,503 5591

Protein 2,733 – 14,732 –

Drug-Protein 584,516 – 897,803 –

SE – 1,450 – –

Drug-SE – 62,269 – –

DDIAE or DDIPharm – – 47,911 4442

Row names represent the following data: ‘Drug’ is # of drugs with target
interactions, Protein’ is # of proteins from humans, ‘Drug-Protein’ is # of drug-
target pairs, ‘SE’ is # of side effects, ‘Drug-SE’ is # of drug-side effect pairs, and
‘DDIAE ’ or ‘DDIPharm ’ is # of drugs having DDI. The two superscripts in the last

column represent the following: 1 is # of drugs with matched identifiers from

ChEMBL drugs with target interactions and SIDER side effects, and 2 is # of

drugs having DDI in 1 .
doi:10.1371/journal.pone.0080129.t001

Drug-Drug Interactions
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of side effect s decreases. Here, the frequency penalty weight rs is

defined as { log (fs), where fs is the frequency of side effect s [17].

Finally, the similarity score of two drugs i and j is calculated as

follows; let SEi be a set of side effects of drug i, then.

Si,j~
X

s[SEi

T
SEj

rs
:gs: ð1Þ

The similarity Si,j is used as the kernel matrix Ks of side effects.

DDI-based drug similarity. We computed the DDI simi-

larity using direct interactions, the shortest path, and a diffusion

kernel. First, when direct interactions are used, the similarity Si,j

between two drugs i and j is defined as.

Si,j~
1 if drug i interacts with drug j

0 otherwise

�
ð2Þ

Second, determination of the shortest path is based on the drug

network. For this task, each drug is considered as a node and

interactions between the drugs are edges. The similarity Si,j

between two drugs i and j is then defined as
1

(di,jz1)
, where di,j is

the shortest distance between the two drugs; this method considers

the relationship between drugs even though they do not directly

interact. Third, the similarity between drugs using a diffusion

kernel is defined as S~eftHg, in which H is defined as [28].

Figure 2. Overview of the entire method procedure. (a) Drug similarities and drug-protein interactions are used to calculate the probabilities of
unknown drug-target interactions. Three different drug similarities (chemical structure, drug side effect, and DDI similarity) are applied. Two learning
models (KL1IR and SVM) are used to train and test interactions. (b) Protein similarities are integrated with drug similarities to predict unknown drug-
target interactions. In this process, the bipartite local model is used.
doi:10.1371/journal.pone.0080129.g002

Drug-Drug Interactions
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H(i,j)~

1 if drug i interacts with drug j

{(n{1) if i is equal to j

0 otherwise

8><
>: ð3Þ

where n is the number of drugs, t is the diffusion constant, and

efHg is the matrix exponential of matrix H. In this case, the

diffusion kernel considers both indirect and direct interactions, and

controls the contributions of indirect interactions using the

diffusion constant t. Hence, the similarity S will be used as the

kernel Ki for the DDIs in this paper.

Predicting Drug-target Interactions Based on Drug
Similarities

KL1LR model. Previously, KL1LR has been successfully

used to predict protein functions [21]; here, we applied KL1LR to

predict drug-target interactions. To make this paper self-

contained, let us first describe the KL1LR method and then

explain how KL1LR was applied to this problem. In brief, for a

given protein, let Xi~1 if drug i interacts with the protein;

otherwise Xi~0. For a given kernel, two feature vectors F1 and F0

are constructed, where F1 is the average of kernel values between

drug i and other drugs that target the given protein, and F0 is the

average of kernel values between drug i and drugs that do not

target the given protein. These features reflect our assumption that

the value of F1 will be high if a drug i targets the given protein

since other drugs with high drugs similarities also target the given

protein. Then, a logistic regression model can be used to calculate

the corresponding coefficients c, a, and b, i.e,

log
Pr Xi~1jX {i½ �,h
� �

1{Pr Xi~1jX {i½ �,h
� �~czaF1 ið ÞzbF0 ið Þ ð4Þ

where X {i½ �~ X1,X2,:::,Xi{1,Xiz1,:::,Xnð Þ, n is the number of

drugs, and

F1 ið Þ~
P

j,j=i K i,jð ÞI Xj~1
� �

P
j,j=i I Xj~1

� � ,F0 ið Þ~
P

j,j=i K i,jð ÞI Xj~0
� �

P
j,j=i I Xj~0

� � :

where K(i,j) is a kernel value (i.e. a similarity between drug i and j)

and I is an indicator function to check whether Xj interacts with

the given protein. We used an L1-norm regularization to combine

multiple data sets. The L1-norm regularization generates an

explainable model for multiple features by shrinking non-

significant coefficients to zero [29]. Here, Equation (4) can be

extended to Equation (5) to combine multiple data sets. For this

task, let coefficients h~ c,a1,b1,a2,b2,:::,aD,bDf g, then

Pr hð Þi~Pr Xi~ijX {i½ �,h
� �

~
exp cz

PD
d~1 adFd

0 ið Þz
PD

d~1 bdFd
1 ið Þ

� �
1zexp cz

PD
d~1 adFd

0 ið Þz
PD

d~1 bdFd
1 ið Þ

� � ð5Þ

where D is the number of data sets, and Fd
0 and Fd

1 represent F1

and F0 for the d-th data set. The log likelihood function from the

observed data is subsequently given by

XN

i~1

Xi log Pr hð Þiz 1{Xið Þ 1{ log Pr hð Þi
� �� �

: ð6Þ

Next, the coefficients h are estimated by maximizing the log

likelihood and penalizing coefficients for related features.

Minimize{
XN

i~1

Xi log Pr hð Þiz 1{Xið Þ 1{ log Pr hð Þi
� �� �

zl
XD

d~1

jad jz
XD

d~1

jbd j
 ! ð7Þ

where a regularization parameter l controls the cardinality of h.

For implementation, we used an interior-point method for KL1LR

[30].

SVM model. In SVM, drug data sets are represented by

kernels, where an element of the kernel is the similarity between

two drugs. The kernel matrix of three data sets–chemical

structure, side effect, and DDI–will be referred to as Kc, Ks, and

Ki, respectively. These kernels are used in SVM to predict drug-

target interactions.

SVM can handle both linear and nonlinear data to represent

biological data using a kernel trick [31]. SVM requires a positive

semi-definite kernel. For the case that the kernel matrix is not

positive semi-definite, we transform it by adding a small multiple

of the identity matrix to the diagonal until all eigenvalues become

non-negative [14]. In SVM, a cost parameter C controls the trade-

off between the misclassification of training data and the margin

that is defined to be the smallest distance between the decision

boundary and the training data.

To integrate these three data sets, we generated a combined

kernel K by adding three kernels: K~dcKczdsKszdiKi, where

dc, ds, and di are the kernel fusion coefficients used to give weights.

Parameters in Prediction Models
Since the prediction accuracy depends on the choice of

parameters in a diffusion kernel, KL1LR, and SVM, several

values for the following parameters were used in each training and

testing procedure and the accuracies were compared in the Results

section. These parameters include:

N a diffusion constant t in diffusion kernel,

N a regularization parameter l in KL1LR,

N a cost parameter C in SVM, and

N kernel fusion coefficients of dc, ds, and di in SVM. For the

optimal choice of kernel function coefficients, we tested several

combinations of the three coefficients as well as the approach

used in a previous study by Lanckriet et al. [19], which was

successfully applied in a protein-function prediction approach

to integrate multiple kernels. To implement the kernel fusion

method, software from [32] was used.

In this experiment, several values for KL1LR and SVM

parameters were tested as the basis for a rigorous comparison. For

KL1LR, 13 different l values in [0.01, 0.3] were used; for SVM,

18 different C values in [0.1, 100] were tested (accuracies using all

these values are shown in Table S4).

Drug-Drug Interactions
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Protein Similarity Measures
The similarity score between two target proteins can be

measured based on the protein sequences or enzyme commission

(EC) numbers. Amino acid sequences of two proteins are aligned

using the Smith-Waterman alignment method [33], with the

normalized score used as the similarity measure. The hierarchy

score of the enzyme EC number is another method for measuring

the similarity [15]. In this method, enzymes are organized into

hierarchies that represent specific functions within each family.

Hierarchy scores are then computed as the number of common

ancestors in the corresponding hierarchy plus one. Two kernel

matrices based on the sequences and hierarchies of the EC

numbers are denoted as Kl and Kh, respectively. These protein

similarities can also be used to predict drug-target interactions

using KL1LR and SVM; thus, for a given drug, the probabilities of

targeting proteins can be calculated based on protein similarities.

Predicting Drug-target Interactions by Integrating Drug
And Protein Similarities

To integrate kernels obtained from drugs and proteins, a

bipartite local model is used. The model introduced by Bleakley

et al. [14] calculates the probability of targeting proteins for a given

drug using the protein kernel, and also calculates the probability of

being targeted by drugs for a given protein using the drug kernel.

When these probabilities are calculated for all drugs and proteins,

two independent probabilities for the interaction between drugs

and proteins are generated for all drug and protein pairs. To

aggregate these two probabilities, m(x,y)~maxfx,yg is then used,

where x and y are the probabilities predicted based on the drug

and protein kernels. This bipartite local model was applied to both

KL1LR and SVM.

For comparative purposes, the tensor product of the drug and

protein kernels is also used in this study. This method obtains the

inner product between tensor products using

k((c,t),(c0,t0))~kcompound (c,c0)|ktarget(t,t
0), where c denotes a

compound, t denotes a target protein, and k(:,:) is a kernel value.

In two previous studies [15,16], the tensor product of the two

kernels was used as a kernel in SVM.

Performance Measurement
To assess the prediction performances, we used a 5-fold cross

validation. In brief, for a given target protein, drugs are randomly

divided into five groups, with the corresponding kernel matrix for

the drugs and drug-target pairs also divided into five groups. In

each case, four groups are used for training and one is the test

group. Next, the probabilities of interactions are calculated for the

drug-target pairs in the test group; this process is repeated five

times using a different test set each time, and the random division

process into five groups is also repeated five times. This 5|5 fold

cross validation was performed for all proteins. Finally, a global

accuracy is computed using the area under the ROC curve (AUC)

based on the sensitivity (SN) and false positive rate (FPR) values;

the interaction probabilities between each drug and target pairs

are used to calculate the SN and FPR for different thresholds. The

final AUC value is the average of all 25 cases.

Results

Predicting Drug-target Interactions based on DDI
Similarity

Comparison of DDI data. We compared two DDI data sets,

DDIPharm and DDIAE, to predict drug-target interactions. In this

experiment, we used the shortest path similarity to compute the

kernel matrix for the SVM and KL1LR methods. Figure 3 shows

the prediction accuracy. Accuracies from DDIPharm are seen to be

consistently higher than those from DDIAE for both ChEMBL

and STITCH drug-target interaction data sets and for both SVM

and KL1LR methods. This result implies that DDIPharm is more

useful in predicting drug-target interactions than DDIAE. There-

fore, in subsequent analyses, we used DDIPharm data to represent

the DDI.

We further validated the reliability of DDIPharm by comparing it

with the KEGG pharmacological data set [18]. The KEGG

pharmacological information was obtained from package inserts of

drugs and its effectiveness in predicting drug-target interactions

has been shown in several studies [18,34], although it only covered

252 drugs. The drugs from KEGG were then classified into four

categories: enzyme, GPCR, ion channel, and nuclear receptor.

Since the numbers of common drugs with STITCH in the other

three categories were small, we used enzyme drugs for compar-

ison. We found 443 common drugs by matching the names of

drugs between 212 KEGG enzyme drugs and 49,924 STITCH

compounds; the numbers of corresponding proteins were 3,330

and 478, respectively. Then, we measured the accuracies using

KL1LR and SVM under the same experimental conditions.

Table 2 shows that accuracies using DDIPharm were on average

similar to those using KEGG pharmacological information and

better for STITCH data set. The benefit of using DDIPharm lies in

that drugs with DDIPharm information is larger than those with

KEGG pharmacological data with similar accuracies.

Relative Performance of DDI Similarity Measures
Three measures were used to calculate the similarity of

DDIPharm: direct interactions, the shortest path, and using a

diffusion kernel. Figure 4 presents the prediction accuracy of drug-

target interactions depending on these three measures when

DDIPharm was used. For the diffusion kernel, diffusion constant

t = 0.5 was used after trying different values of 0.1, 0.3, 0.5, and

1.0. Prediction was performed using both SVM and KL1LR

Figure 3. Comparison of STITCH DDIPharm and drugs.com. DDIAE.
Two DDI data sets were used to predict ChEMBL and STITCH drug-
target interactions (DTI). Each kernel was measured using the shortest
path method. DDIAE contains 11 unreachable drugs. Therefore, we
used 313 drugs from the ChEMBL and STITCH data sets.
doi:10.1371/journal.pone.0080129.g003
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approaches. For both ChEMBL and STITCH drug-target

interaction data sets, the accuracy using the shortest path was

found to be the highest. Therefore, we used the shortest path

kernel to measure the similarity between two drugs based on

DDIPharm in the following experiments.

Unknown Drug-target Interactions with High
Probabilities

Since the ChEMBL and STITCH data sets might not contain

all true drug-target interactions, highly ranked unknown interac-

tions with a high probability from KL1LR might be potential

drug-target interaction candidates. Hence, we checked whether

these unknown interactions were included in other databases.

Among 50 highly ranked unknown interactions in ChEMBL, 13

interactions were found in databases such as STITCH [4],

DrugBank [1], KEGG [2], CTD [35], and BindingDB [36], as

shown in Table 3. For the purpose of comparison, we also checked

whether unknown interactions were found in other databases

when the chemical structure similarity was used. Although some

unknown interactions were found, the chemical structure similar-

ity predicted several drug-target pairs for the same protein family.

For example, Midazolam interacts with GABRA1, GABRA2,

GABRA3, GABRA5, and GABRA6. It is also worth noting that

two different drug similarities predict different subsets of interac-

tion pairs. All unknown interactions within the top 50 pairs from

the ChEMBL and STITCH data sets are listed in Table S5.

Since Table 3 and Table S3 show that a number of highly

ranked unknown drug-target interactions in ChEMBL or

STITCH are also found in other data sets, we next checked the

ratio of interactions that are unknown in one data set but are

included in the other data sets–for a various range of ranks. We

posit that highly ranked unknown drug-target pairs are more likely

to be included in other data sets if the prediction method performs

well; i.e., the ratio should increase when the rank increases. For

this task, we first collected 460 common proteins from the two data

Table 2. Comparison of DDIPharm and KEGG
pharmacological information.

Methods Data Sources Kernels l or C AUC

KL1LR STITCH DDIPharm 0.04 0.7508

KL1LR STITCH Pharmacology 0.04 0.7369

KL1LR KEGG DDIPharm 0.04 0.7316

KL1LR KEGG Pharmacology 0.03 0.7232

SVM STITCH DDIPharm 2 0.7982

SVM STITCH Pharmacology 0.75 0.7685

SVM KEGG DDIPharm 30 0.6727

SVM KEGG Pharmacology 20 0.7089

Two sets of drug-target interactions from STITCH and KEGG were used for
prediction. l and C are the KL1LR and SVM parameters, respectively; Table S1
contains prediction results when different parameter values were used. Table S2
contains ROC curves of true positive rate and false positive rate, and tables of
true positive, false positive, true negative, and false negative values for each
threshold.
doi:10.1371/journal.pone.0080129.t002

Figure 4. Prediction accuracies of DDIPharm constructed from
three similarity measures. Three different measures were used to
construct kernels for SVM and KL1LR. These measures were then used
to predict ChEMBL and STITCH drug-target interactions.
doi:10.1371/journal.pone.0080129.g004

Table 3. List of highly ranked unknown drug-protein pairs in
ChEMBL.

Drug similarity Drugs Proteins Prob. Evidence

DDIPharm Nifedipine SLC22A1 0.678445 CTD

Verapamil ADRB1 0.672712 CTD

Phenytoin CYP3A4 0.656528 STITCH

Diphenhydramine SLC22A1 0.632571 DrugBank

Amitriptyline SLC6A2 0.576068 DrugBank

Midazolam SLC22A1 0.569028 DrugBank

Valium ERG1 0.521953 CTD

Nifedipine ADRB1 0.513618 CTD

Phenytoin ABCB1 0.503147 STITCH

Midazolam GABRA1 0.498508 STITCH

Fenoprofen PTGS1 0.494015 DrugBank

Oxaprozin PTGS1 0.494015 STITCH

Metoprolol HTR1A 0.478448 STITCH

Chem. struc. Amoxicillin SLC15A1 0.644264 STITCH

Midazolam GABRA5 0.614966 DrugBank

Midazolam GABRA3 0.614966 DrugBank

Midazolam GABRA2 0.556632 DrugBank

Midazolam GABRA1 0.503353 STITCH

Midazolam GABRA6 0.414876 KEGG

Alprazolam GABRA6 0.408056 DrugBank

Aspirin ADRB2 0.339491 CTD

Rabeprazole ATP4A 0.33869 STITCH

Rabeprazole ATP4B 0.33869 STITCH

Terbutaline ADRB1 0.315024 CTD

Among all 270,540 drug-protein pairs from the ChEMBL data set, the top 50
unknown pairs determined by the KL1LR method using DDIPharm data sets
were checked, and the unknown pair was listed if it was found in the STITCH [4],
DrugBank [1], KEGG [2], BindingDB [36], and CTD [35] data sets. Drugs in the
second column and proteins in the third column are likely to interact, based on
the probabilities shown in the fourth column. If interactions are found in more
than two data sets, only one source is listed. Similarly, the results obtained
using chemical structure similarities are shown.
doi:10.1371/journal.pone.0080129.t003
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sets to construct common drug-protein pairs. Then, we calculated

the probabilities of all drug-target pairs using the KL1LR method

with the DDIPharm similarity and ranked them. Figure 5a shows

the ratios of known drug-target interactions in STITCH among

the unknown interactions in ChEMBL; the ratios decrease when

the ranks of interactions in ChEMBL decrease. Figure 5b

compares the ratios for a threshold of 0.5, where it becomes clear

that highly ranked pairs are included in the other data set.

Figure 5c and Figure 5d are plots for the STITCH data set.

Because the number of interactions in ChEMBL is small

compared to all possible drug-target pairs in STITCH, the ratios

in Figure 5c and Figure 5d are relatively small compared to

Figure 5a and Figure 5b. However, it is similarly observed that

ratios in the highly ranked pairs are higher than those in the low

ranked pairs. Therefore, these results indicate that highly ranked

drug-target pairs are more likely to be true interactions than the

lower ranked drug-target pairs.

Predicting Drug-target Interactions based on DDI,
Chemical Structure, and Side Effect Similarities

Relationship between DDI similarity with chemical

structure and side effect similarities. In a previous study,

the chemical structure and side effect similarities of drugs were

shown to be useful for predicting the drug’s target proteins [17];

i.e., drugs with similar chemical structures are likely to target the

same proteins, and drugs with similar side effects are also likely to

have the same targets. Here, we estimated whether or not

similarities determined by DDI can be correlated to similarities

obtained by chemical structures and side effects. For this task, we

first measured the DDIPharm similarity using the shortest path

method. The shortest distance between drugs has values between 1

and 6 if there is a path between two drugs, since most drugs are

connected within six interactions. Even though DDIPharm

similarity is presented using one of six different values, it can

effectively show correlation with other similarities. The correla-

tions between DDIPharm similarity and the chemical structure and

side effect similarities are high. The two axes of the grid in Figure 6

represent the side effect and chemical structure similarity,

respectively; in the grid, corresponding drug pairs are assigned,

and the average DDI similarities of the drug pairs are then

presented in a different color. As the side effect and chemical

structure similarities increase, the DDIPharm similarity also

increases. The Pearson correlation coefficients of DDIPharm-

chemical, DDIPharm-side effect, and chemical-side effect are

0.3005, 0.27, and 0.1896, respectively, thereby confirming that

these three features are positively correlated.

Integrating DDI Similarity with Chemical Structure and

Side Effect Similarities. We first compared the accuracy of

each drug-related data source, chemical structure, side effect, and

DDIPharm, in predicting drug-target interactions. As shown in

Table 4, the prediction accuracy of DDIPharm was consistently

higher than for the chemical structure and side effects, regardless

of the prediction method and drug-target interaction data set.

Next, we combined DDIPharm with the chemical structure and

side effect data sets, and found that the results of combining these

multiple data sets using both SVM and KL1LR were similar to the

AUC values obtained by the DDIPharm data set. In this research,

DDIPharm is thus deemed to be the most informative data source.

In Table 4, KL1LR is seen to be comparable to SVM in terms

of its ability to predict drug-target interactions. 13 different l
values for KL1LR and 18 different C values for SVM were tested

as shown in Table S4 (the highest accuracies are shown in Table 4).

We also tested various combinations of kernel fusion coefficients of

dc, ds, and di for SVM: (1,1,1), (0.5, 1, 1), (1, 0.5, 1), (1, 1, 0.5),

(0.5, 0.2, 1), and (0.8, 0.2, 1). Since all coefficients displayed similar

results, we only presented the AUC values when all kernel fusion

coefficients were 1. In addition, we tested kernel fusion coefficients

generated using the kernel fusion method from [20,37]; the mean

coefficient values of the chemical structure, side effects, and

DDIPharm were 0.531, 0.251, and 0.218 for ChEMBL, and 0.414,

0.322, and 0.264 for STITCH, respectively. Accuracies with these

coefficients are shown in Table 4, though they were not higher

than the case of (1, 1, 1).

Since KL1LR assigns unrelated features to zero, we investigated

which features have non-zero values. Figure 7 presents the non-

zero ratios of coefficients for features from the chemical structure,

side effects, and DDIPharm. In Equation (4), F1 is a feature

constructed from the average of similarity values between drug i
and other drugs that target the given protein. The coefficient of F1

for DDIPharm is the highest, which confirms that it contributes the

most to the prediction of drug-target interactions.

Assessment of positive and negative drug-target

interactions. Since STITCH contains interactions from text

mining, there is a possibility that some drug-target interactions

might be false positives, which in turn might lead to false

predictions. To assess how predictions were affected by including

interactions from text mining, we performed predictions using only

experimental drug-target interactions; the number of drugs,

proteins, and drug-target interactions were 261, 2,140, and

4,774, respectively. Based on SVM, the AUC values for the 5-

fold cross validation using the chemical structure, side effect, and

DDIPharm similarities were 0.8149, 0.8360, and 0.8174. When the

same 261 drugs and 2,140 proteins were used, with 16,345 drug-

target interactions from experiments, text mining, and other

databases included for the prediction, the accuracies became

0.7682, 0.7820, and 0.8009 for three different drug similarities, as

shown in Table 5; although the performance in this case was

decreased compared to the case using only experimental

interactions, the difference in performances was not significant.

For the KL1LR model, the accuracies were similar for both cases.

As such, this comparison shows that our prediction model is

reliable even though some false positive interactions were included

in the data set.

Integrating Drug Similarity with Protein Similarity
To this point, we have focused solely on drug similarity.

However, since protein similarity could also be a useful resource

for predicting drug-target interactions, we further investigated how

the prediction accuracy could be increased if the drug and protein

similarities are integrated. Prior to this task, we concurrently

compared our approach to existing methods [14–16]. In the

methods described by Bleakley et al. [14] and Faulon et al. [16], a

protein kernel is constructed using the Smith-Waterman alignment

of protein sequences. In Jacob et al. [15], the protein kernel is

constructed using EC numbers. In this comparison, we reduced

the ChEMBL and STITCH proteins from 835 and 8,599 to 536

and 1,940, respectively, as some proteins did not have EC

numbers. For all three methods, the chemical structure was used to

construct the drug kernel: the Tanimoto similarity for Bleakley

et al. [14] and Jacob et al. [15], and the signature kernel for Faulon

et al. [16], with the height of the signature kernel h = 1. Then, to

integrate the drug and protein kernels, Bleakley et al. [14] used the

bipartite local model, and Jacob et al. [15] and Faulon et al. [16]

used the tensor product of two kernels. Here, the computational

cost for obtaining the tensor product was very high. For example,

the tensor product of 324 compounds and 1,940 proteins

produced a (32461,940) by (32461,940) kernel size, requiring

huge memory resources. To resolve this computational issue, we
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divided proteins into smaller groups of 15 proteins and then

computed the tensor product between 324 compounds and 15

proteins.

For KL1LR, we generated a protein kernel using the Smith-

Waterman alignment of protein sequences and then used the

bipartite local model to integrate the two probabilities from the

drug and protein kernels. To investigate the effect of integrating

the kernels, we first measured the accuracy of the drug-target

interaction prediction when the chemical structure was used.

Table 6 compares the three methods and KL1LR; for compar-

ative purposes, the accuracy of KL1LR with no protein kernel is

also shown, confirming that integration with a protein kernel

improved the prediction accuracy. The prediction accuracies of

the two methods using the bipartite local model (Bleakley et al. [14]

Figure 5. Prediction accuracies of DDIPharm constructed from three similarity measures. Three different measures were used to construct
kernels for SVM and KL1LR. These measures were then used to predict ChEMBL and STITCH drug-target interactions. (a) In the different ranges of
ranks assigned by probabilities of interactions between drugs and targets in ChEMBL, ratios of known drug-target interactions in STITCH among
unknown interactions in ChEMBL are presented according to their ranks. (b) The left bar is the ratio for interactions having prediction probabilities
$0.5; among 28 unknown interactions in ChEMBL, 6 are known in STITCH. The right bar shows interactions with prediction probabilities ,0.5; among
68,334 unknown interactions in ChEMBL, only 2,543 are known in STITCH. (c) In the different ranges of ranks assigned by probabilities of interactions
between drugs and targets in STITCH, ratios of known drug-target interactions in ChEMBL among unknown interactions in STITCH are presented
according to their ranks. (d) The left bar is the ratio for interactions having prediction probabilities $0.5; among 402 unknown interactions in STITCH,
20 are known in ChEMBL. The bar on the right shows interactions with prediction probabilities ,0.5; among 88,028 unknown interactions in STITCH,
only 712 are known in ChEMBL.
doi:10.1371/journal.pone.0080129.g005
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and KL1LR) are seen to be higher than those using the tensor

products (Jacob et al. [15], Faulon et al. [16]). Next, we used DDI

instead of the chemical structure to integrate the drug and protein

kernels. From the table, the DDI similarity outperformed the

chemical structure similarity regardless of data source and method,

thereby confirming the importance of DDI in predicting drug-

target interactions. This comparison also shows that the SVM used

in Bleakley et al. [14] and KL1LR have similar performances

when the same bipartite local model is used to integrate the drug

and protein similarities.

Discussion and Conclusion

Data sources are one of the most important factors in predicting

drug-target interactions. Recently, though several drug and

Figure 6. DDIPharm similarity depending on chemical structure and side effect. In each cell, drug pairs with corresponding side effect and
chemical structure similarities are assigned. Then, the average DDI similarities of the drug pairs in the cell are presented in different colors.
doi:10.1371/journal.pone.0080129.g006

Table 4. Comparison of prediction accuracies of three drug similarities in predicting drug-target interactions.

Methods DTI Single drug similarity Combining multiple drug similarities

data source CH SE DDIPharm CS CSD CSD (Lanckriet)

KL1LR ChEMBL 0.7689 0.8109 0.9064 0.7434 0.9055* –

SVM ChEMBL 0.8566 0.8947 0.9145 0.9074 0.9382* 0.8342

KL1LR STITCH 0.7653 0.7653 0.8126* 0.7684 0.8091 –

SVM STITCH 0.7571 0.7689 0.7937 0.7723 0.7980* 0.7857

AUC values are presented when two prediction methods and two drug-target interaction (DTI) data sets are used. CH and SE indicate the drug similarity based on the
chemical structure and side effect, respectively. CS and CSD indicate the drug similarity by combining CH and SE, and combining CH, SE, and DDI, respectively. The last
column indicates that the kernel fusion method developed in Lanckriet et al. [20] is used for combining multiple kernels in SVM.
*indicates the highest value for each combination of method and data source. For different combinations of methods and data sets, Table S5 contains ROC curves of
true positive rate and false positive rate, and tables of true positive, false positive, true negative, and false negative values for each threshold.
doi:10.1371/journal.pone.0080129.t004
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protein related data sources have become available, the range of

possible data sources is diverse; the numbers of drugs and proteins

are different, and drug-target interactions are not consistent since

some interactions might not be contained in the one data set, or

other data sets contain false interactions. In addition, since the

identifiers for drugs and proteins are different, it is difficult to

integrate sets of multiple data sources. In this research, we

constructed common sets between ChEMBL and STITCH by

using properties of drugs obtained from SIDER side effects, as well

as DDIAE and DDIPharm data sets.

Another issue is that STITCH contains interactions from text

mining as well as direct chemical-protein binding data, some of

which might be false interactions. As shown in the Results section,

the differences in performance in terms of predicting drug-target

interactions was not significant between two cases in which

interactions from text mining were included and excluded. Hence,

even though STITCH may contain some indirect drug-target

interactions, we included all STITCH interactions to increase the

number of potential positive interactions. Also, the observation

that our predictions were consistent between ChEMBL and

STITCH confirms that our model is reliable for overcoming

problems associated with false positive interactions.

To further investigate the relationship between DDIPharm and

other drug-related data sets pertaining to chemical structure and

side effects, we compared DDIPharm, chemical structure, and side

effect similarities. It was found that the prediction accuracy of

DDIPharm often outperformed the other data sets, and that

integration with other data sets improved the prediction accuracy.

This result indicates that DDIPharm is a primary informative data

set for predicting drug-target interactions. One of the advantages

of DDIPharm is that the number of compounds having DDIPharm is

large; Table 1 shows that 47,911 compounds from STITCH have

DDIPharm information. Therefore, it is possible that these

compounds have potential target proteins, based on the above

computational predictions. In this study, however, for comparative

purposes, we only used a subset of the compounds that were

common in other data sets.

Figure 7. Non-zero ratios of KL1LR coefficients. In Equation (4),
F1 is the average of kernel values between a drug and other drugs that
target the given protein; F0 is the average between a drug and other
drugs not targeting the given protein. Non-zero ratios are calculated

using
Ncoef=0

Ncoef

, where Ncoef=0 is the number of non-zero coefficients

and Ncoef is the number of coefficients.
doi:10.1371/journal.pone.0080129.g007

Table 5. Comparison of drug-target interactions predictions from experiments and those from experiments and text mining in
STITCH.

Method Source of drug-target interaction Chemical structure Side effect DDIPharm CS CSD

KL1LR Experiments only 0.7800 0.7744 0.8311 0.8221 0.8288

KL1LR All 0.7787 0.7768 0.8294 0.7774 0.8267

SVM Experiments only 0.8149 0.8360 0.8174 0.8410 0.8461

SVM All 0.7682 0.7820 0.8009 0.7843 0.8078

AUC values for predicting drug-target interactions are shown to compare two cases of using experimentally validated interactions and by using all interactions
including experiments, text mining, and other databases. The comparison was conducted using two prediction models (KL1LR and SVM) and three drug similarities
(chemical structure, side effect, and DDIPharm) and combining them. CS and CSD indicate the drug similarity by combining CH and SE, and combining CH, SE, and DDI,
respectively. For the choice of parameter values, see Table S6.
doi:10.1371/journal.pone.0080129.t005

Table 6. Integrating protein similarity and drug similarity.

Data
Source KL1LR KL1LR Bleakley Jacob Faulon

w/o KT w KT

KC\KT – Protein Protein ECN Protein

seq. (Kl) seq. (Kh) (Kl) seq. (Kl)

Ch. struc.
(Kc, Km)

ChEMBL 0.7396 0.9274 0.9557 0.6290 0.6721

Ch. struc.
(Kc, Km)

STITCH 0.7700 0.8535 0.8377 0.6890 0.6847

DDI ChEMBL 0.9232 0.9290 0.9624 0.7683 0.7678

DDI STITCH 0.8228 0.8531 0.8649 0.7678 0.6985

Drug-target interaction prediction accuracies using three methods and KL1LR
are presented. For KL1LR, two cases of with and without protein similarity are
presented. The first column and second row represent the protein similarity and
drug similarity used in each method, respectively. Both ChEMBL and STITCH are
used as data sources, as shown in the second column. The height of the
signature kernel is 1. KC and KT are the drug and protein kernels, respectively.
ECN denotes the EC numbers. For the choice of parameter values, see Table S7.
doi:10.1371/journal.pone.0080129.t006
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In conclusion, we investigated the significance of DDI for

predicting drug-target interactions. Our results showed that

DDIPharm is indeed a useful resource when compared to data

sources such as the chemical structures of drugs, drug side effects,

and protein sequences. Also, when we used the SVM and KL1LR

methods in predicting drug-target interactions, KL1LR was found

to be comparable to SVM and useful for investigating the

contributing features when several features were integrated.
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