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Abstract: The COVID-19 pandemic caused by SARS-CoV-2 is unprecedented in recent memory
owing to the non-stop escalation in number of infections and deaths in almost every country of
the world. The lack of treatment options further worsens the scenario, thereby necessitating the
exploration of already existing US FDA-approved drugs for their effectiveness against COVID-19. In
the present study, we have performed virtual screening of nutraceuticals available from DrugBank
against 14 SARS-CoV-2 proteins. Molecular docking identified several inhibitors, two of which, rutin
and NADH, displayed strong binding affinities and inhibitory potential against SARS-CoV-2 proteins.
Further normal model-based simulations were performed to gain insights into the conformational
transitions in proteins induced by the drugs. The computational analysis in the present study paves
the way for experimental validation and development of multi-target guided inhibitors to fight
COVID-19.

Keywords: COVID-19; drug repurposing; multi-targeted inhibitors; structural proteins; non-
structural proteins

1. Introduction

Starting from one patient in December 2019 at Wuhan city of China, COVID-19 has
caused mayhem worldwide. As of 24 April 2020, SARS-CoV-2, the etiological agent of
COVID-19 has infected 165,069,258 people causing 3,422,907 deaths globally (as of 21 May
2021) [1]. The situation is further worsened by variants of COVID-19 circulating in the
global population, which have tremendously increased the transmission rate of the virus [2].
Apart from mutational, structural, and phylogenetic analyses of the SARS-CoV-2 genome,
scientists have been centering on drug repurposing to develop therapeutics to combat SARS-
CoV-2 contagion [3]. Various existing drugs, Remdesivir, Lopinavir/Ritonavir, Interferon
beta-1a, Chloroquine/hydroxychloroquine, are under SOLIDARITY trial initiated by WHO
for their inhibitory activity against different proteins of SARS-CoV-2 [4,5] nevertheless
better targeted inhibitors are required for COVID-19 treatment.

SARS-CoV-2 genome is known to encode up to 14 open reading frames that translate
to structural proteins, spike (S), membrane (M), envelope (E) and nucleocapsid (N); two
huge non-structural proteins (NSPs) cleaving into sixteen smaller proteins along with nine
accessory factors. The virus uses S protein to bind to the angiotensin-converting enzyme 2
(ACE2) receptor to enter the host cell. Both the M and E proteins are involved in forming the
virus envelope and the pathogenesis of the virus, while the N protein binds to the virus’s
RNA genome, creating the nucleocapsid [6]. NSPs form the replication/transcription
complex that includes the papain-like proteinase (NSP3), the main proteinase (NSP5), the
NSP7-NSP8 complex, the RNA-dependent RNA polymerase (NSP12), a NTPase/helicase
(NSP13), an exonuclease (NSP14), an endonuclease (NSP15), and 2′O-methyltransferases
(NSP16). Another group of SARS-CoV-2 is the accessory proteins, 3a, 3b, 6, 7a, 7b, 8, 9b,
9c and 10. The accessory proteins serve multitude of functions in virus replication [7]. In
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earlier studies, several SARS-CoV-2 proteins have been identified as having high mutational
propensity, which further demands for multi-targeted inhibitors [8].

In the present study, virtual screening followed by normal model-based simulations
was performed using nutraceuticals against 14 SARS-CoV-2 proteins; NSP1, NSP3, NSP5,
NSP9, NSP12, NSP13, NSP15, 3a, S, E, M, 6, 7a and N that led to the identification of
compounds that can be repurposed against SARS-CoV-2. The interaction analyses further
exhibited the hydrogen bonding and hydrophobic network forming residues between
protein and ligand. The findings of the proposed work will aid in global efforts for fight
this pandemic by expediting drug development against COVID-19.

2. Methodology
2.1. Protein Structure Modelling and Preparation

The X-ray structures of some SARS-CoV-2 proteins, N, NSP3, NSP5, NSP9 and NSP15,
are available on protein data bank (PDB) [9] corresponding to PDB ids 5MM3, 6W9C, 5RED,
6W4B and 6VWW, respectively. Homology modelling was performed for the remaining
proteins using SWISS-MODEL server which identifies the structural templates followed by
the alignment of query protein sequence with template structures and model generation.
Prior to docking studies, the proteins were processed using Schrodinger Protein Preparation
Wizard during which missing hydrogens were added, hydrogen bonds were optimized,
and water molecules were deleted [10].

2.2. Nutraceuticals (Ligands) Preparation

Nutraceuticals are bioactive phytochemicals that deliver health benefits and are rela-
tively safe for prevention and treatment against the disease. Nutraceuticals have already
been used for treating several diseases, including atherosclerosis, cancer, cardiovascular
diseases, diabetes, hypertension, inflammation, obesity, and others. A large number of
nutraceuticals are common with FDA-approved pharmaceutical drugs. The library of
150 nutraceuticals was obtained from the DrugBank database [11]. The chemical structures
of nutraceuticals were prepared with LigPrep module Schrodinger which generated diverse,
accurate, and energy minimized conformations using the OPLS-2005 force field [10].

2.3. Docking Studies

A rigorous virtual screening was performed using Schrodinger Glide (grid-based
ligand docking with energetics) [12]. Furthermore, docking studies for the top-scoring
compounds were also done using GOLD (Genetic Optimization for Ligand Docking) [13]
and AutoDock Vina [14] software.

2.4. Docking Studies Using Glide

Glide uses a range of filters and thoroughly searches the conformational, orientational,
and positional space for ligand in the receptor’s binding site. The receptor was represented
by creating a cubic grid of size 30 × 30 × 30 Å centered on the active site residues for each
protein by Schrodinger’s Receptor Grid Generation program [12]. Further, the ligands were
screened against each receptor using Glide’s high throughput virtual screening (HTVS)
approach [12]. The high-ranking ligands were then subjected to stringent screening via the
extra precision (XP) [12] method to eliminate false positives and acquire distinct binding
modes of compounds.

2.5. Docking Studies Using GOLD

GOLD employs a genetic algorithm to examine the conformational flexibility of the
ligand and partial (side-chain) flexibility of the receptor and generates the accurate binding
mode of ligands [13]. The binding site for the ligands was specified as a ligand-specific
pocket involving all the active site residues of protein within a 6 Å radius. The docked poses
of ligand were evaluated using GoldScore fitness function, which considers protein-ligand
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hydrogen bonding and van der Waals energies along with ligand internal and torsional
strain energy.

2.6. Docking Studies Using AutoDock Vina

AutoDock Vina uses a gradient optimization method to find low energy docked
conformations of ligand [14]. A grid box of size 70 × 70 × 70 Å along X, Y and Z axes was
generated considering active site residues of the protein. The lowest binding affinity ligand
pose was separated and complexed with the receptor.

2.7. Interaction Analyses

LigPlus was used to compute interactions between the docked protein-ligand com-
plexes. 2D diagrams were generated depicting hydrogen bonds and hydrophobically
interacting residues.

2.8. Normal Mode Analyses

To study the conformational variations upon ligand binding in the protein, normal
mode analyses (NMA) was performed using a rigid cluster NMA based NMSim web
server [15]. NMA has been used to predict high amplitude conformational transitions and
correlated atomic movements induced in the protein on the binding of a ligand, which
largely occurs near the lowest energy state of the unbound protein [16,17]. The protein
acquires a favorably compact state on binding a ligand, measured by radius of gyration
(ROG) [18]. Hence, ROG-guided simulation implemented in NMSim was applied with
default parameters. The NMSim approach is performed in three steps: a rigid cluster
decomposition (RCD) is obtained in the first step (FIRST analyses) followed by calculation
of normal modes using rigid cluster normal-mode analysis (RCNMA). These normal modes
are then used in the simulation performed by NMSim [15]. The information regarding the
conformational changes of the protein during the simulation was provided by root-mean-
square-deviation (RMSD) and root-mean-square-fluctuation (RMSF) graphs.

3. Results and Discussion
3.1. Molecular Docking Analyses

The compounds that showed high binding affinity against SARS-CoV-2 proteins
include Rutin (NSP1, NSP3, NSP5, NSP9, NSP12, NSP13, NSP15, ORF3a, S, E, M, ORF6,
ORF7a, N); NADH (NSP1, NSP3, NSP5, NSP9, NSP12, NSP13, NSP15, ORF3a, S, E, M,
ORF6, ORF7a, N); Ginsenoside Rg1 (NSP1, NSP3, NSP5, NSP9, NSP12, NSP15, E, ORF5,
ORF7a and N); Ginsenoside Rb1 (NSP5, NSP12, ORF7a, NSP9, NSP15); Ginsenoside C
(N, ORF6 and NSP1); Spermine (ORF6); Glutathione (NSP13); Ornithine (ORF3a), and
α-tocopherol succinate (E). However, the top-scoring compounds against most of the SARS-
CoV-2 proteins were Rutin (DB01698), NADH (DB00157), and Ginsenoside Rg1 (DB06750)
(Tables 1 and 2).
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Table 1. Activity of drugs against SARS-CoV-2 proteins.

Drug Description Activity against ORFs

Rutin

An existing USFDA-approved drug used for strengthening
weakened capillaries. Additionally, it has a powerful
antioxidant with potential biological effect in reducing
post-thrombotic syndrome, veins insufficiency or
endothelial dysfunction.

NSP1, NSP3, NSP5, NSP9, NSP12, NSP13,
NSP15, ORF3a, Spike, Envelope,
Membrane, ORF6, ORF7a, Nucleocapsid

NADH
NADH plays essential metabolic roles and has been used to
combat chronic fatigue syndrome. It is also being explored to be
used against dementia and improving mental health.

NSP1, NSP3, NSP5, NSP9, NSP12, NSP13,
NSP15, ORF3a, Spike, Envelope,
Membrane, ORF6, ORF7a, Nucleocapsid

Ginsenoside Rg1,
protopanaxatriol

Ginsenoside is a major component of the root and stem of
ginseng plant. It possesses a broad spectrum of
pharmacological properties such as neuroprotection,
anti-inflammation, anti-aging, anti-fatigue and
memory-enhancing properties.

NSP5, Nucleocapsid, NSP1, Envelope,
NSP12, ORF5, ORF7a, NSP3, NSP9,
NSP15

Table 2. Virtual screening results of nutraceuticals against SARS-CoV-2 proteins.

Protein Drug Name Glide Score
(kcal/mol)

GOLD
Score

AutoDock Score
(kcal/mol)

1 Spike (S)
NADH −11.31 80.76 −8.4

Rutin −9.94 95.52 −6.7

2 Main protease (NSP5)

Ginsenoside Rb1 −9.37 132.14 −19.9

Rutin −9.58 96.35 −7.4

NADH −8.65 85.20 −8.5

Ginsenoside Rg1 −8.16 110.03 −10.7

3 Nucleocapsid (N)

Rutin −9.34 87.13 −5.6

Ginsenoside C −8.82 122.35 −12.0

NADH −8.13 70.55 −8.6

Ginsenoside Rg1 −5.17 110.79 −10.7

4 ORF6

Ginsenoside C −7.51 109.10 −13.5

Spermine −7.21 43.27 −6.8

Rutin −6.59 87.57 −5.7

NADH −4.98 60.11 −8.6

5 Leader protein (NSP1)

Ginsenoside C −9.30 107.85 −11.6

NADH −7.38 65.42 −7.7

Rutin −7.09 80.41 −4.7

Ginsenoside Rg1 −5.81 85.13 −9.4

6 Envelope (E)

Ginsenoside Rg1 −8.30 94.13 −11.5

α−tocopherol succinate −8.11 39.97 −16.7

Rutin −3.86 94.13 −11.5

NADH −3.08 68.11 −9.5

7
RNA−dependent RNA polymerase

(NSP12)

Ginsenoside Rb1 −11.00 123.74 −19.6

Rutin −10.98 113.81 −7.0

Ginsenoside Rg1 −10.14 143.41 −12.2

NADH −9.00 77.89 −9.5



Vaccines 2022, 10, 24 5 of 16

Table 2. Cont.

Protein Drug Name Glide Score
(kcal/mol)

GOLD
Score

AutoDock Score
(kcal/mol)

8 ORF 3a

Rutin −11.47 93.67 −7.5

Ornithine −9.10 39.31 −6.3

NADH −3.34 91.53 −10.0

9 Membrane (M)

Ginsenoside Rg1 −9.35 81.77 −9.4

Rutin −7.62 77.90 −5.5

NADH −5.40 58.68 −8.0

10 ORF 7a

Ginsenoside Rb1 −8.70 166.98 −16.8

Ginsenoside Rg1 −7.00 135.96 −10.7

NADH −6.83 78.90 −7.6

Rutin −4.96 126.00 −5.0

11 Papain-like protease (NSP3)

Ginsenoside Rg1 −10.37 103.78 −10.2

Rutin −8.22 91.30 −6.7

NADH −6.63 80.28 −8.0

12 Helicase (NSP13)

Glutathione −10.31 60.00 −6.4

NADH −9.54 87.21 −10.5

Rutin −7.85 85.62 −7.1

13 RNA binding protein (Orf1ab, nsp9)

Ginsenoside Rb1 −7.92 102.08 −20.1

Ginsenoside Rg1 −6.84 91.46 −9.6

Rutin −6.56 70.25 −5.1

NADH −5.66 55.60 −7.9

14 Endoribonuclease (NSP15)

Ginsenoside Rb1 −13.50 110.76 −24.4

Ginsenoside Rg1 −11.00 111.16 −12.5

NADH −9.95 78.94 −9.2

Rutin −9.60 100.05 −7.1

3.2. Simulations Analyses

The RMSDs of Cα atoms for proteins NSP1, NSP3, NSP5, NSP9, NSP12, NSP13, NSP15,
ORF3a, S, E, M, ORF6, and N, in ligand-bound (closed) conformations vis-a-vis unbound (open
in the absence of ligand) structures as a function of the number of conformations acquired by
the proteins during the simulations, was computed after NMA (Figure 1). The graph clearly
shows that large conformational transitions occurred at lower frequency (energy) modes
in the case of all the proteins [19]. Among the 1500 conformations generated during each
NMA run for every protein, the last 900–1500 confirmations represent the transition towards
a closed structure. Upon comparison to ligand-free forms, as shown in Figures 1–14, it is
evident that the proteins (Figures 1A, 3A, 4A, 8A, 9A, 10A, 12A, 13A and 14A) except NSP3
(Figure 2A), NSP12 (Figure 5A), NSP13 (Figure 6A), NSP15 (Figure 7A) and M (Figure 11A),
did not undergo large movements to attain closed conformations.
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Figure 1. Leader protein (NSP1). (A) RMSD plot of unbound and ligand-bound protein (B) RMSF plot
of unbound and ligand-bound protein (C) Superimposition of unbound and ligand-bound protein
(D) Molecular interactions of protein with Rutin (E) Molecular interactions of protein with NADH.
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Similar results were observed in the case of RMSF graphs of Cα atoms for open
and closed structures. The magnitude of residue wise fluctuations was lower in the
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case of protein-ligand complexes, NSP1 (Figure 1B), NSP3 (Figure 2B), NSP5 (Figure 3B),
NSP15 (Figure 7B), ORF3a (Figure 8B), S (Figure 9B) and ORF6 (Figure 12B) in contrast
to the proteins alone pointing towards the stabilizing effects of ligands. The residues in
NSP5, NSP15, S, and ORF6 proteins showed distinctively less degree of fluctuations in the
presence of drugs. Moreover, superimposition of the open and closed conformations of
proteins also revealed noticeably compact and folded proteins in the presence of drugs
(Figures 1–14, panel C). An entire overlap in RMSD (Figure 10A) and RMSF (Figure 10B)
data points for unbound- and ligand-bound protein was observed in the case of E protein.
However, superimposition of open and closed structures showed signs of protein folding
and compactness in the presence of ligand (Figure 10C).

3.3. Protein-Ligand Interaction Analyses

Rutin formed six hydrogen bonds with NSP1 and NSP3, five with NSP5 and NSP9,
twelve with NSP12, ten with NSP13, six with ORF3a, and nine with N protein. NADH
majorly formed hydrogen bonds with NSP1 (seven), NSP3 (nine), NSP9 (twelve), NSP12
(eleven), NSP13 (thirteen), NSP15 (five), M (eight), ORF6 (five), and N protein (eight).
Figures 1–14, panels C and D illustrate the hydrogen bonds and hydrophobic interactions
of NSP1, NSP3, NSP5, NSP9, NSP12, NSP13, NSP15, ORF3a, S, E, M, ORF6, ORF7a, and N
proteins with Rutin and NADH, respectively. Figures 15 and 16 illustrate the binding mode
of Rutin and NADH with the 14 different SARS-CoV-2 proteins.
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S. (J) E. (K) M. (L). ORF6. (M) ORF7a. (N) N Proteins.

Several SARS-CoV-2 proteins with high mutational propensity have been identified,
which further demands multi-targeted inhibitors [20]. Targeting multiple proteins with a
single molecule would reduce the chances of resistance, and this approach will put forward
an attractive model for drug development against COVID-19. Rutin, NADH, and Ginseno-
side Rg1 showed high binding affinity against most of the SARS-CoV-2 proteins. Rutin is a
flavonol glycoside found profusely in several plants and is a key component of nutritional
supplements. Rutin has strong antioxidant properties and has been shown for its neuropro-
tective effect, anticarcinogenic and antidiabetic activities, treatment of cardiological and
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inflammatory diseases, and various other pharmacological activities [21,22]. NADH is a re-
duced coenzyme found extensively in nature and performs significant metabolic activities.
NADH is being explored for its effectiveness in treating cardiovascular diseases, dementia-
related Alzheimer’s and Parkinson’s disease, and chronic fatigue syndrome [23,24]. Several
studies have mentioned Rutin as one of the potential inhibitors of SARS-CoV-2. Xu et al.
2020 showed the biding of Rutin with the main protease and common interaction sites,
Asn142, Cys145, His164, Met165, Gln189, and Thr190 [25,26]. Another study reported
interaction of Rutin with common interacting sites, Thr556, Tyr619, Lys621, Cys622, Asp623,
Asn691, Asp761 of RNA-dependent RNA polymerase (NSP12); and Gly163, Arg166, Glu167,
Asn267, Tyr273, of papain-like proteinase (NSP3) (Rahman et al., 2021). NADH has also
been shown to be a possible inhibitor of the main protease and spike proteins of SARS-CoV-
2 [27,28].
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Ginsenoside Rg1 belongs to the ginsenosides class of compounds found in ginseng
plants and has been used in traditional medicine for a long [29]. Ginsenoside Rg1 has been
known to effect blood, cardiovascular, nervous, and immune systems performing various
biological activities. The drug is also under clinical trials to treat dementia and cognitive
impairments, rheumatic disorders, and stroke [30]. A large number of hydrogen bonding
interactions and a robust hydrophobic network formed by these drugs with the proteins
suggest their inhibitory effect on SARS-CoV-2. The candidate compounds proposed in
the present study can be verified for inhibitory activity against SARS-CoV-2 and blocking
viral-host interactions. This multi-targeted drug design approach will aid in global efforts
to fight this pandemic by expediting drug development against COVID-19.

4. Conclusions

Studies conducted earlier in the development of SARS-CoV-2 have identified several
proteins with a high mutational propensity, making multi-targeting inhibitors desirable.
The present study involved the use of nutraceuticals against 14 different SARS-CoV-2
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proteins, namely NSP1, NSP3, NSP5, NSP9, NSP12, NSP13, NSP15, ORF3a, S, E, M, ORF6,
ORF7a, and N. Both virtual screening and model-based simulations have proved valuable
in the identification of compounds that could be considered for the treatment of SARS-
CoV-2. Consequently, hydrophobic networks and hydrogen bonds were observed between
the protein and ligand as a consequence of the interaction analyses. The findings of this
study will likely expedite the development of anti-COVID-19 drugs, which will contribute
to global efforts to prevent the pandemic.
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