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Abstract

Introduction

Rickets is a disease of growing bone seen in children and 
adolescents due to deficiency in calcium, phosphate and/or 
vitamin D, leading to inadequate mineralization of osteoid 
tissue in the growth plate and bone matrix (1). The most 
frequent cause of rickets in Turkey, as well as in the rest of 
the world, continues to be nutritional vitamin D deficiency 
(1,2). Genetic causes of rickets (hereditary rickets) are rare: 
accounting for about 13% of total rickets (3).

They can be divided into two groups: vitamin D-dependent 
rickets which is caused by mutations either in enzymes 
involved in the vitamin D biosynthesis or vitamin D receptor 
(4), and hypophosphatemic rickets (HR) which is caused by 
impaired renal tubular phosphate reabsorption or transport 
due to genetic disorders associated with phosphatonins or 
phosphate co-transporters (5).

Calcium is one of the most common minerals in the body and 
it is mainly derived from dietary sources (6). It is essential for 
bone metabolism and various biological functions (6). While 
more than 99% of total calcium is stored in bone tissue as 
calcium-phosphate complex, less than <1% is distributed 

between intracellular and extracellular compartments (7). 
Of the <1% calcium outside bone tissue, 40% is bound 
to proteins, 9% is contained in ionic complexes and the 
remaining 51% is in the form of free Ca2+ ions that are the 
biologically active portion of body calcium (6,8). The ionized 
calcium balances the calcium pool in the intracellular-
extracellular space and plays an important role in bone 
metabolism. This balance is achieved through the collective 
action of several hormones such as parathyroid hormone 
(PTH) and 1,25-dihydroxyvitamin D [1,25(OH)2D] and 
organs such as the kidney, bone and intestinal system (7,8). 
If serum calcium levels decrease, calcium-sensing receptors 
located on parathyroid cells mediate increased secretion 
of PTH, which binds to PTH 1 receptor (PTH1R, expressed 
in high levels in bone and kidney) to promote calcium 
resorption from bone and reabsorption from kidneys. 
PTH also activates 25-hydroxyvitamin D3-1α-hydroxylase, 
leading to increased 1,25(OH)2D synthesis, which promotes 
calcium absorption from intestines and reabsorption from 
proximal tubules of kidney (6,7,8).

Phosphorus is the most common anion in the human 
body. It is found in the form of inorganic phosphate and 
plays an important role in many biological processes such 
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as bone mineralization, cell membrane integrity, nucleic 
acid and energy metabolism, signal transduction through 
phosphorylation of proteins and oxygen transport (9). In the 
adult male human, total body phosphorus is between 15 
mol and 20 mol (12.0 g/kg), 80-90% of which is present 
in bone in the form of hydroxyapatite and the remaining 
10-20% in soft tissue and extracellular spaces (9). 
Approximately two-thirds of dietary phosphate is absorbed 
via the sodium-dependent phosphate transporter 2B (NaPi-
2b, encoded by the SLC34A2 gene), the major transporter 
that mediates phosphate reabsorption in the small intestine, 
predominantly in the jejunum. The expression of NaPi-2b 
is regulated by 1,25(OH)2D, which induces transcriptional 
up-regulation of NaPi-2b in the small intestine and low 
phosphate can activate 1α-hydroxylase in the kidney (10). 
Phosphate in the circulation can be taken up into cells for 
various biological activities or can be stored in the bone 
tissue. Approximately 85% of phosphate is reabsorbed by 
the sodium-dependent phosphate transporter 2A (NaPi-2a, 
encoded by the gene SLC34A1) and the sodium-dependent 
phosphate transporter 2C (NaPi-2c, encoded by the gene 
SLC34A3) both of which are expressed in the proximal 
tubules of the kidney (5,11). 1,25(OH)2D increases intestinal 
absorption of phosphate and tubular reabsorption, whereas 
PTH decreases tubular reabsorption of phosphate (TRP). In 
addition, other molecules that have phosphaturic effects, 
so-called phosphatonins, have significant impact on the 
balance of serum phosphate by reducing TRP (12,13).

Vitamin D is a group of biologically inactive, fat-soluble 
prohormones that exist in two major forms: ergocalciferol 
(vitamin D2) produced by plants in response to ultraviolet 
irradiation and cholecalciferol (vitamin D3) derived from 
animal tissues or 7-dehydrocholesterol in human skin by 
the action of ultraviolet rays present in sunlight with a 
wavelength of 270-290 nm (4). The main source of vitamin 
D is endogenous synthesis. Normally only 0.04% of 
25-hydroxyvitamin D [25(OH)D] and 0.4% of 1,25(OH)2D 
are free in plasma, the remainder being tightly bound to 
either a vitamin D transporter protein (85-88%; high 
affinity) or albumin (12-15%; low affinity) (14). Both forms 
need two-step hydroxylation for activation. The first step 
occurs in the liver where vitamin D is hydroxylated to the 
minimally active 25(OH)D by hepatic 25-hydroxlase. The 
second step occurs mainly in the kidney where 25(OH)D 
is further hydroxylated by 1α-hydroxylase to become the 
biologically active hormone 1,25(OH)2D (calcitriol), which 
binds to its nuclear receptor vitamin D responsive (VDR) 
to regulate gene transcription through heterodimerization 
with one of three retinoid X receptor (RXR) isoforms 
(RXRα, RXRβ, RXRγ) and binds to cognate VDR elements 

(VDREs) in the promoter region of target genes (14,15). 
The renal synthesis of 1,25(OH)2D is stimulated by PTH 
and suppressed by calcium, phosphate and 1,25(OH)2D 
itself with renal 1α-hydroxylase being stimulated by PTH, 
hypophosphatemia or hypocalcaemia. Alternatively, 25(OH)
D and 1,25(OH)2D may be catabolized to 24,25(OH)D and 
1,24,25(OH)2D, respectively, through 24-hydroxylation by 
25-hydroxyvitamin D 24-hydroxylase to maintain calcium 
homeostasis (4,14).

1. Vitamin D-Dependent Rickets

Disorders in the biosynthesis of vitamin D or its receptor 
activity result in vitamin D deficiency [vitamin D dependent 
rickets, type 1A (VDDR1A) and type 1B (VDDR1B)] or 
resistance [type 2A (VDDR2A) and type 2B (VDDR2B)]. 
All of them present similar clinical and biochemical 
manifestations of rickets such as findings related to 
hypocalcemia (irritability, fatigue, muscle cramps, seizures) 
and rickets (craniotabes, delayed closure of fontanelles, 
frontal bossing, enlarged wrists, bowed legs, short stature, 
and bone pain) (Table 1) (1,4).

1.1. Vitamin D-Dependent Rickets Type 1A

This disease, also called hereditary pseudo-vitamin D 
deficiency, was first described by Prader et al in 1961 as 
an autosomal recessive, persistent infantile rickets that 
responded to high dose vitamin D (16). Fraser et al (17) 
later reported that this condition was caused by lack of 
the 1-alpha hydroxylase enzyme. It is now defined as 
VDDR1A, (MIM 264700). VDDR1A occurs as a result of 
mutations in the CYP27B1 (cytochrome P450, family 27, 
subfamily B, polypeptide 1, MIM 609506) that encodes the 
1-alpha hydroxylase enzyme (17,18). As a result, 25(OH)
D cannot be converted to active 1,25(OH)2D, leading to 
clinical findings of rickets and vitamin D deficiency. To date, 
over 100 patients with 72 different mutations have been 
described in the Human Gene Mutation Database (HGMD, 
http://www.hgmd.cf.ac.uk/ac/index.php, accessed Nov 13, 
2017) (4,14,19,20,21). Strikingly, in a genetically isolated 
population of French-Canadians in Quebec, the disease is 
found with the highest global incidence (1/2700) (4). The 
most commonly reported mutation in this region is 958delG, 
the “Charlevoix mutation”.

There is some genotype-phenotype correlation: milder 
phenotype is usually associated with mutations with residual 
enzyme activities (E189G, G102E and L343F) (22,23,24,25). 
Some milder cases may be missed and thus VDDR1A might 
be more common than is reported. 

The disease is clinically similar to the phenotype of 
nutritional vitamin D-deficient rickets. The cases are usually 
normal at birth. However, growth retardation, skeletal 
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deformities, muscle weakness, bone pain, muscle spasms 
and hypocalcemic convulsions may occur in the first year 
of life. The first observed findings in bone and joints include 
deformities such as craniotabes, metaphyseal enlargement, 
prominence of costochondral joints (rachitic rosary), 
delayed closure of the anterior fontanel, Harrison’s grooves 
and thoracic anomalies (1,26).

Similar to cases of nutritional rickets, typical cases with 
VDDR1A present with hypocalcemia, hypophosphatemia 
and increased serum levels of alkaline phosphatase (ALP) 
and PTH (Table 1). In contrast to nutritional rickets, levels 
of 25(OH)D are generally normal and 1,25(OH)2D are low 
(20). Some patients may be misdiagnosed as nutritional 
rickets and thus incorrectly treated with high dose vitamin 
D, leading to very high levels of 25(OH)D. Renal calcium 
excretion is low in these patients. In addition, hyperchloremic 
metabolic acidosis and hyperaminoaciduria secondary 
to PTH elevation can occur (4). Inappropriately normal 
1,25(OH)2D levels in the presence of hypocalcemia can 
also be found in some patients with VDDR1A (20,27). Some 
cases might also be normocalcemic and a misdiagnosis 
of HR might be made before the detection of significantly 
elevated PTH levels (20).

Proper treatment of the disease includes administration 
of calcitriol, 1,25-dihydroxyvitamin D3 or alfacalcidol, 1 
alpha-hydroxy-vitamin D3 in physiological doses (10-20 
ng/kg/day, 2 doses), which will gradually improve clinical, 
biochemical and radiological findings (26). In addition, 
it is recommended to add 50-75 mg/kg/day of elemental 
calcium at the beginning of treatment. On follow-up, 
effective management should result in low-normal serum 
levels of calcium (8.5-9 mg/dL), normal phosphate levels 
and high-normal PTH values (4,26). High-normal levels of 
serum calcium might lead to hypercalciuria and subsequent 
development of nephrocalcinosis. Regular monitoring of 
24-hour urinary calcium excretion and keeping the urine 
calcium excretion below 4 mg/kg/day is recommended 
(4,5,26). The degree of calciuria can also be assessed with 
spot urine calcium/creatinine ratios, for which varying 
normal ranges exist for different age groups: <0.8 mg/mg 
(≤6 months of age), <0.6 mg/mg (7-12 months), <0.53 
mg/mg (1-3 years), <0.39 mg/mg (3-5 years), <0.28 mg/
mg (5-7 years) and <0.21 mg/mg (>7 years ) (28).

1.2. Vitamin D Dependent Rickets Type 1B

VDDR1B (MIM 600081) is an extremely rare autosomal 
recessive disorder, due to 25-hydroxylase deficiency. 
This disease was first described in 1994 by Casella et al 
(29) in two Nigerian siblings of two and seven years old. 
Skeletal deformities compatible with rickets, hypocalcemia, Ta
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hypophosphatemia, markedly elevated ALP and PTH, 
normal 1,25(OH)2D and low 25(OH)D levels were present. 
These siblings were diagnosed with 25-hydroxylase 
deficiency and showed clinical and laboratory improvement 
after high-dose vitamin D2 treatment. The gene encoding 
25-hydroxylase (CYP2R1, MIM 608713) was described 
by Cheng et al (30) in 2003 and a homozygous CYP2R1 
mutation (L99P) was identified in one of the first reported 
Nigerian siblings (31). Currently, only four CYP2R1 
mutations are listed in the HGMD (accessed Nov 13, 2017). 
Apart from CYP2R1, there are five other cytochrome P450 
enzymes (CYP27A1, CYP2J2/3, CYP3A4, CYP2D25 and 
CYP2C11) capable of catalyzing the initial 25-hydroxylation 
step (32). Indeed, a 20-month-old male patient has been 
described recently having hypocalcemic convulsions and 
rickets (33). His mother, maternal grandmother and aunt 
also have a history of hypercalcemic convulsion and skeletal 
deformities related with rickets in childhood. In all cases, 
hypocalcemia, hypophosphatemia, decreased 25(OH)D, 
markedly elevated ALP and PTH are present. Interestingly, a 
CYP2R1 mutation has not been found in this kin, suggesting 
that another gene may be involved in 25-hydroxylation. 
Calcitriol is the only choice of treatment for the disease (10-
20 ng/kg/day, 2 doses).

1.3. Vitamin D Dependent Rickets Type 2A

VDDR2A (MIM 277440), also known as hereditary vitamin 
D-resistant rickets, was first described by Brooks et al (34) in 
1978 in a case who had skeletal findings suggesting rickets, 
short stature, hypocalcemia, elevated ALP, normal 25(OH)
D, and very high 1,25(OH)2D. VDDR2A is an autosomal 
recessive disorder and is characterized by resistance to 
1,25(OH)2D as a result of homozygous or compound 
heterozygous mutations in the vitamin D receptor gene 
(VDR, MIM 601769), which is located in 12q13.11 and 
consists of 11 exons. Patients with this disease usually 
present in infancy or early childhood, but patients with mild 
VDR defects may not be recognized until adolescence or 
adulthood (26). Clinical findings are similar to nutritional 
vitamin D deficiency or VDDR1A or VDDR1B except for 
high level of 1,25(OH)2D in VDDR2A (Table 1). Moreover, 
partial or total alopecia is present in many patients from 
birth or infancy (Figure 1) (35). The relationship between 
vitamin D and the hair follicle is not completely understood. 
However, VDR/RXRα heterodimer formation has been 
suggested to play an important role in the proliferation and 
differentiation of epidermal keratinocytes (36).

It is well known that active vitamin D mediates its biological 
functions by binding to its receptor VDR, which contains 
an N-terminal dual zinc finger DNA binding domain, a 
C-terminal ligand-binding domain and an extensive and 

unstructured region that links the two functional domains 
together (15). After binding of vitamin D, VDR forms a 
ternary structure with RXRα, which binds to a VDRE in the 
promoter region of vitamin D-regulated genes to initiate 
transcription (37,38). Currently, there are 65 different 
mutations listed in HGMD (accessed Nov 13, 2017). 
Inactivating mutations that affect any domain of VDR 
would lead to disease development. Mutations in the DNA 
binding domain that lead to complete loss of function result 
in severe clinical presentations accompanied by alopecia, 
whereas mutations in the ligand binding domain usually 
cause partial loss of VDR functions and a milder phenotype 
without alopecia (35,38). In addition to the genotype-
phenotype relationship, the clinical presentation of the 
disease may improve with age. Serum levels of calcium, 
phosphate and ALP may gradually normalize in some 
pubertal cases and calcitriol/calcium treatment would be 
unnecessary (39,40,41). Intestinal calcium absorption has 
been shown to become less vitamin D-dependent after the 
end of puberty (40).

Hypocalcemia, hypophosphatemia, increased serum levels 
of ALP and PTH, and normal serum levels of 25(OH)D 
are usually found. Hypocalcemia, hypophosphatemia and 
increased PTH lead to activation of 1-alpha hydroxylase 
and inhibition of 24-hydroxylase. Therefore, low levels of 
24,25(OH)2D and high levels of 1,25(OH)2D (300-1000 
pg/mL, normal range: 15-90 pg/mL) are generally present 
(4,26).

High doses of oral calcitriol (1-6 μg/kg/day, 2 doses) 
and calcium (1-3 g/day elementary calcium) are the 
recommended treatment (26,39). Serum calcium, 
phosphate, ALP and PTH levels should be intermittently 
monitored and regular urine calcium excretion and renal 
ultrasonography are suggested because of the risk of 
nephrocalcinosis. Clinical presentation and response to 

Figure 1. Near-total and partial alopecia in two children 
with VDDR2A (From the archives of Division of Pediatric 
Endocrinology, Dokuz Eylül University)
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treatment varies depending on the location of mutations in 
the VDR: patients with alopecia and nonsense mutations in 
the DNA-binding domain frequently exhibit a poor response 
to treatment (35,38). Treatment response may also be poor 
in patients without alopecia (42).

Long-term, high-dose intracaval/intravenous calcium 
(0.4-1.4 g/m2/day) treatment is also effective (38,43,44). 
After successful response to the treatment regimen, it is 
recommended to continue with high dose oral calcium (3.5-
9.0 g/m2/day) (26,45). On the other hand, parenteral calcium 
therapy requires long-term hospitalization and may be 
associated with a number of complications such as cardiac 
arrhythmia, hypercalciuria, nephrocalcinosis, catheter 
related sepsis and extravasation of calcium (45,46). A case 
of VDDR2A without alopecia has been successfully treated 
with enteral administration of elemental calcium (calcium 
chloride) via gastric tube (47). Prolonged serum calcium 
deprivation might lead to secondary hyperparathyroidism 
and, if not managed properly, tertiary hyperthyroidism. 
Cinacalcet is reported to be effective in cases with VDDR2A 
and tertiary hyperparathyroidism (48,49).

1.4. Vitamin D Dependent Rickets Type 2B

VDDR2B (MIM 600785) is an unusual form of rickets due 
to abnormal expression of a hormone response element-
binding protein that interferes with normal function of VDR. 
The disease was first described by Hewison et al (50) in 
1993 in a patient with alopecia, skeletal abnormalities and 
biochemical features classically associated with VDRR2, 
but without VDR mutations (4). The similar clinical and 
genetic features were also found in more than 200 affected 
children from a rural area of southwest Colombia in 1995 
(51). In contrast to VDDR2A, functions of VDR and VDR-
RXR heterodimer formation are normal in VDDR2B (52). 
The main pathology is the overexpression of heterogeneous 
nuclear ribonucleoproteins (hnRNPs) C1 and C2 proteins, 
members of the hnRNP family, that prevent VDR-RXR 
heterodimer binding to VDRE (52,53). Without genetic 
testing, the differential diagnosis cannot be made between 
VDDR2A and VDDR2B (Table 1). The same treatment 
approaches for VDDR2A are used for patients with VDDR2B.

2. Hypophosphatemic Rickets

Hereditary HR is a group of rare, renal phosphate wasting 
disorders with a prevalence of 3.9 per 100,000 live births 
and differential diagnosis often requires genetic testing 
(54,55). It is characterized by renal phosphate wasting, 
leading to subsequent hypophosphatemia and bone 
mineralization defects such as rickets and osteomalacia. 
Hypophosphatemia and normal serum calcium are typical 
biochemical findings (55). 

Serum levels of phosphate are maintained in the main 
by vitamin D and PTH. 1,25(OH)2D increases phosphate 
absorption from the intestine and suppresses the biosynthesis 
and secretion of PTH (5,56). PTH exhibits its phosphaturic 
effect by reducing the expression of NaPi-2a (SLC34A1) 
and NaPi-2c (SLC34A3) phosphate transporter in the renal 
tubules via PTH1R, a member of the G protein-coupled 
receptor family (5). In addition, several molecules [fibroblast 
growth factor 23 (FGF23), secreted frizzled related protein 
4 (sFRP4), matrix extracellular phosphoglycoprotein, and 
FGF7], so-called phosphatonins, have been shown to reduce 
serum phosphate via direct inhibition of renal phosphate 
absorption in the proximal tubule (13). FGF23 and sFRP4 
can also indirectly inhibit 25-OH vitamin D 1-α hydroxylase 
and thus intestinal phosphate absorption (57,58). 

FGF23 is the most important phosphaturic agent and is 
produced from osteocytes and osteoblasts (57). There is a 
close relationship between serum phosphate and FGF23 
levels. In response to elevated or decreased phosphate 
levels, serum FGF23 levels increase or decrease, respectively 
(5,58). FGF23 activates renal klotho/FGF receptor 1 
(FGFR1) receptor heterodimers to inhibit renal phosphate 
reabsorption by down-regulation of NaPi-2a and NaPi-2c 
expression in the renal proximal tubules (58). FGFR3 and 
FGFR4 are also involved in mediating FGF23 activities (59). 
Klotho, a transmembrane protein, is required for FGF23 
function and klotho knockout mice exhibit extremely 
high levels of serum FGF23, most likely due to end-organ 
resistance to FGF23 (60,61). In addition, FGF23 inhibits 25-
OH vitamin D 1-α hydroxylase and activates 25-OH vitamin 
D 24-hydroxylase, resulting in decreased 1,25(OH)2D and 
increased 24,25(OH)2D levels (62).

Another molecule that plays a role in phosphate regulation 
is sodium-hydrogen exchanger regulatory factor 1 (NHERF1) 
(58). NHERF1 has been shown to have two different effects 
on phosphate reabsorption in the proximal tubules. The first 
is to bind to PTH1R to reduce the effect of PTH-induced 
cAMP synthesis and the second is to increase the activation 
of NaPi-2a by interacting with C-terminal region of the 
protein (58,62).

Serum phosphate levels normally vary according to age, 
which needs to be carefully considered when assessing 
whether hypophosphatemia is present or not. Normal 
ranges of serum phosphate are 4.8-8.2 mg/dL for 0-5 days 
of age, 3.8-6.5 mg/dL for 1-3 years of age, 3.7-5.6 mg/dL 
for 4-11 years of age, 2.9-5.4 mg/dL for 12-15 years of age 
and 2.7-4.7 mg/dL for 16-19 years of age (27). In addition 
to hypophosphatemia, decreased TRP, normal or mildly 
elevated serum levels of PTH and markedly elevated serum 
levels of ALP are typically detected. In a study comparing 
serum levels of ALP and PTH in HR, VDDR and nutritional 
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rickets, the highest serum levels of PTH and ALP have 
been found in patients with VDDR and the lowest levels in 
patients with HR (63). 

Renal phosphate excretion can be evaluated using various 
parameters. The most widely used is the TRP defined by the 
formula: 1-(urine phosphate x serum creatinine) / (serum 
phosphate x urine creatinine). Various lower limits for TRP 
are generally used in daily practice ranging from 75-85%. 
However, in the presence of hypophosphatemia, fractional 
excretion of filtered phosphate should be less than 5% (TRP 
>95%) (64). The ratio of tubular maximum reabsorption 
rate of phosphate per glomerular filtration rate (TmP/GFR) 
is a superior method for assessing phosphaturia, which can 
be assessed via the nomogram of Walton and Bijvoet or can 
be calculated as shown below:

For TRP ≤86%: TmP/GFR= TRP x serum phosphate

For TRP >86%: TmP/GFR= (0.3 x TRP) / [1-(0.8 x TRP)] x 
serum phosphate

Low TmP/GFR values in the setting of hypophosphatemia 
points to renal phosphate wasting (65). The normal ranges 
of TmP/GFR (mg/dL) vary with age: Birth, 3.6-8.6; 3 months 
of age, 3.7-8.25; 6 months of age, 2.9-6.5; 2-15 years of age, 
2.9-6.1, and the normal adult range for TmP/GFR is 2.2 to 
3.6 mg/dL (66). 

Laboratory findings such as normal serum calcium, low 
serum phosphate and elevated serum ALP and PTH may not 
always be diagnostic of HR. These can also be seen in rickets 
(especially in stage 2) associated with vitamin D deficiency 
or disorders of vitamin D biosynthesis (20). The distinctive 
finding is that PTH is significantly higher in vitamin 
D-related rickets, whereas normal/mildly elevated PTH is 
expected in HR (26). To date, a variety of genetic causes 
leading to HR have been identified (Table 2) (5,58,62). Some 
of these genetic defects lead to an increase in serum FGF23 
levels (FGF23-related or -dependent HR), while others affect 
phosphate transporters which does not affect serum FGF23 
levels (FGF23-independant HR). Laboratory characteristics 
of several types of HR are summarized in Table 3.

2.1. FGF23-Related Hypophosphatemic Rickets

2.1.1. X-linked Dominant Hypophosphatemic Rickets

X-linked dominant HR (XLDHR, MIM 307800) is the most 
common type of HR with an incidence of approximately 1 
in 20000 live births and is caused by inactivating mutations 
of PHEX (phosphate regulating gene with homologies to 
endopeptidases on the X chromosome, MIM 307800) (55,67). 
XLDHR affects both genders equally in terms of disease 
severity as a result of random X-inactivation in girls (62). 
Skeletal findings of the disease frequently appear in the late 
infantile period and are especially evident by the effect on 

body weight in the period after starting to walk (5). PHEX 
encodes a membrane endopeptidase, which is expressed 
in mature osteoblasts and odontoblasts, and plays a role in 
down-regulation of FGF23 expression (68). Therefore PHEX 
mutations would lead to increased serum levels of FGF23 
(69). Currently, there are 423 PHEX mutations listed in 
HGMD (accessed Nov 13, 2017).

In the Turkish population, PHEX mutation is also the most 
common cause of HR, accounting for 87% cases (55,70,71). 
De novo mutations are frequent and more often occur in 
female patients, likely resulting from mutagenesis of the X 
chromosome in paternal germ cells (70).

Typical clinical findings include short stature, wrist 
enlargement, rachitic rosary, bowed legs, frontal bossing, 
dental abscess and bone pain in children. Osteomalacia, 
bone pain, dental abscess and spinal canal stenosis are 
typical presentation in adult patients. Laboratory findings 
include low serum levels of phosphate, decreased TRP, 
normal/mildly elevated PTH and high levels of ALP with 
normal calcium and 25(OH)D, and inappropriately normal 
or low serum 1,25(OH)2D levels (Table 3). These clinical 
and laboratory findings suggest HR but confirmation of 
diagnosis requires genetic confirmation of PHEX mutations.

2.1.2. Autosomal Dominant Hypophosphatemic Rickets 

Autosomal dominant HR (ADHR, MIM 193100) is caused 
by gain-of-function mutations in the proteolytic cleavage 
domain of FGF23 (R176XXR179, MIM 605380). Mutations 
that alter the arginine (R) residue at the position 176 or 
179 would render the protein resistant to proteolytic cleavage 
and lead to increased serum levels of FGF23 and its activity, 
resulting in hypophosphatemia (61,71,72). It is less common 
than XLHR and 16 different mutations are reported in 
HGMD (accessed Nov 13, 2017).

ADHR exhibits similar clinical and laboratory findings 
as XLHR and also needs genetic testing for diagnosis. 
Differences in the age of onset, severity and a waxing and 
waning course of phosphate wasting (renal phosphate 
wasting can be spontaneously normalized) is related to 
serum FGF23 levels (73,74). This led to the discovery that 
iron deficiency is an environmental trigger, which stimulates 
FGF23 expression and thus hypophosphatemia in ADHR 
(75,76,77). 

2.1.3. Autosomal Recessive Hypophosphatemic Rickets

2.1.3.1. Autosomal Recessive Hypophosphatemic Rickets 
Type 1

ARHR type 1 (ARHR1, MIM 241520) is due to inactivating 
homozygous mutations in the DMP1 gene (dentin matrix 
acidic phosphoprotein 1, MIM 600980) (78). DMP1 is an 
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extracellular matrix protein expressed in osteoblasts and 
osteocytes and acts in the inhibition of FGF23 expression 
(62,68). Inactivating mutations of DMP1 result in an increase in 
serum FGF23 levels and thus leads to HR. Clinical, laboratory 
and radiological findings are similar to those of XLHR and 
ADHR. There are 9 different mutations listed in the HGMD 
(accessed Nov 13, 2017). DMP1 knockout mice have displayed 
increased serum levels of FGF23, hypophosphatemia, skeletal 
and dental anomalies and osteomalacia (79). Unlike other 
HR types, osteosclerosis in the base of skull and calvarial 

bones may occur (62). Haploinsufficiency has been reported 
in heterozygous carriers: mild hypophosphatemia, low TRP 
and focal osteomalacia, without typical skeletal deformities of 
rickets (80). 

2.1.3.2. Autosomal Recessive Hypophosphatemic Rickets 
Type 2 

ARHR type 2 (ARHR2, MIM 613312) is caused by inactivating 
homozygous mutations in ENPP1 (ectonucleotide 
pyrophosphatase/phosphodiesterase 1, MIM 173335) (81). 

Tale 3. Laboratory characteristics of genetic causes of hypophosphatemic rickets

Disease Gene FGF23 TmP/
GFR

Serum 
calcium

Serum 
phosphate 

ALP PTH 1,25 
(OH)2D

Urinary 
calcium/
creatinine

FGF23-dependent HR

X-linked dominant HR PHEX ↑ or N ↓ N ↓ ↑ N or ↑ N or ↓ N

Autosomal dominant 
HR

FGF23 ↑ or N ↓ N ↓ ↑ N or ↑ N or ↓ N

Autosomal recessive 
HR Type 1 

DMP1 ↑ or N ↓ N ↓ ↑ N or ↑ N or ↓ N

Autosomal recessive 
HR Type 2

ENPP1 ↑ or N ↓ N ↓ ↑ N or ↑ N or ↓ N

Osteoglophonic 
dysplasia

FGFR1 ↑ or N ↓ or N N ↓ or N ↑ or N N or ↑ N or ↓ N

McCune-Albright 
Syndrome

GNAS ↑ or N ↓ or N N ↓ or N ↑ or N N or ↑ N or ↓ N

Raine syndrome FAM20C ↑ or N ↓ or N N ↓ or N ↑ or N N or ↑ N or ↓ N

Opsismodysplasia INPPL1 ↑ or N ↓ or N N ↓ or N ↑ or N N or ↑ N or ↓ N

Hypophosphatemic 
rickets with 
hyperparathyroidism

9:13 balanced 
translocation 
affecting KL 
gene 

↑ ↓ N or ↑ ↓ ↑ ↑ N N

FGF23-independent HR

Hereditary HR with 
Hypercalciuria

SLC34A3 ↓ or N ↓ N ↓ N or ↑ N ↑ ↑

Hypophosphatemic 
rickets with 
nephrolithiasis or 
osteoporosis Type 1
Infantile 
hypercalcemia Type 2 
Fanconi renotubular 
syndrome Type 2

SLC34A1 ↓ or N ↓ N or ↑ ↓ N or ↑ N or ↓ ↑ ↑

Hypophosphatemic 
rickets with 
nephrolithiasis and 
osteoporosis Type 2

SLC9A3R1 ↓ or N ↓ N ↓ ↑ N or ↓ ↑ ↑

Dent Disease 1 CLCN5 ↓ or N ↓ N ↓ ↑ N or ↓ ↑ ↑

Dent Disease 2 or 
Lowe syndrome

OCRL1 ↓ or N ↓ N ↓ ↑ N or ↓ ↑ ↑

ALP: alkaline phosphatase, PTH: Parathyroid hormone, N: normal, FGF23: Fibroblast growth factor 23, PHEX: Phosphate regulating endopeptidase homolog 
x-linked, DMP1: Dentin matrix acidic phosphoprotein, ENPP1: Ectonucleotide pyrophosphatase/phosphodiesterase 1, INPPL1: Inositol polyphosphate 
phosphatase-like 1, FGFR1: Fibroblast growth factor receptor 1, FAM20C: Famıly wıth sequence similarity 20, member c, CLCN5: Chloride voltage-gated channel 
5, 1,25(OH)2D: 1,25-dihydroxyvitamin D, GFR: Growth factor receptor
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Interestingly, the majority of ENPP1 mutations (49 mutations) 
have been reported in patients with idiopathic infantile arterial 
calcification or generalized arterial calcification of infancy, 
which is an autosomal recessive disorder and characterized 
by calcification of the internal elastic lamina of muscular 
arteries and stenosis due to myointimal proliferation (82). 
There are only eight mutations reported in patients with 
HR (HGMD, accessed Nov 13, 2017), suggesting a different 
pathway is involved in the generation of ARHR2 (83). 

By generating inorganic pyrophosphate (PPi), ENPP1 plays 
an important role in the regulation of pyrophosphate 
levels, bone mineralization and soft tissue calcification. The 
mineral accumulation in the bones is determined by the 
ratio of phosphate and PPi that is balanced by ENPP1 (84). 
Enpp1 knockout mice show altered bone development and 
an increase in FGF23 expression (84). ENPP1 mutations 
increase serum levels of FGF23. However, the mechanism 
of FGF23 elevation caused by ENPP1 mutation is not 
completely understood (82,83,84).

2.1.4. Hypophosphatemic Rickets with 
Hyperparathyroidism

HR with hyperparathyroidism (MIM 612089) is a very rare 
disease caused by a balanced translocation with breakpoints 
at 9q21.13 and 13q13.1, which is adjacent to the KL gene 
(85). Its product, alpha-Klotho, is implicated in aging and 
regulation of FGF signaling and calcium homeostasis (86). 
The translocation result in increased serum α-klotho, FGF23 
levels and β-glucuronidase activity (85). The disease is 
characterized by hypophosphatemia and elevated serum 
PTH levels, with inappropriate renal phosphate wasting 
(85). Increased levels of FGF23 lead to decreased TRP, 
hypophosphatemia and rickets. Hyperparathyroidism due 
to diffuse parathyroid hyperplasia results in increased levels 
of PTH. It is not clear whether increased levels of α-klotho 
cause parathyroid hyperplasia. PTH levels in this disease 
are much higher compared to other causes of HR and are 
comparable with those in VDDR. Klotho knockout mice, 
deficient for α-klotho, display a phenotype comparable 
with human ageing and are characterized by a mild 
hypercalcemia, hyperphosphatemia, increased levels of 
serum 1,25(OH)2D, decreased PTH and bone abnormalities 
such as increased metaphyseal trabecular bone mass and 
soft tissue calcifications, which are different from the 
phenotype caused by the translocation [hypophosphatemia, 
high PTH, and normal 1,25(OH)2D7] (87,88). Treatment 
includes calcitriol with oral phosphate supplementation.

2.1.5. Other Genetic Causes

2.1.5.1. Osteoglophonic Dysplasia 

Osteoglophonic dysplasia (MIM 166250) is caused by 
heterozygous gain-of-function mutations in FGFR1 

(MIM 136350), a rare autosomal dominant disorder 
characterized by craniosynostosis, rhizomelic short stature, 
maxillary hypoplasia, depressed nasal bridge, mandibular 
pragmatism, dental anomalies, tower-shaped skull, vertebral 
anomalies and bone mineralization defects (metaphyseal 
radiolucent changes) (89). High levels of serum FGF23, 
low levels of serum phosphate and 1, 25(OH)2D, and low 
TRP are present in some patients (89). Increased FGF23 
leads to renal phosphate wasting, hypophosphatemia and 
deterioration of bone mineralization. It has been suggested 
that FGF23 production is stimulated from bone tissue due to 
the effect of activating mutations in FGFR1 (5). Among 197 
mutations in FGFR1, only three are reported in patients with 
osteoglophonic dysplasia (HGMD, accessed Nov 13, 2017).

2.1.5.2. McCune-Albright Syndrome

McCune-Albright Syndrome (MAS, MIM 174800) is caused 
by post-zygotic activating mutations in the Gsα subunit of 
G proteins (encoded by GNAS, MIM 139320), leading to a 
mosaic distribution of cells bearing constitutively active 
adenyl cyclase activity. The disease is characterized by 
the classic triad of polyostotic fibrous dysplasia, cafe-au-
lait skin pigmentation and peripheral precocious puberty, 
but is clinically heterogeneous and usually include 
hyperfunctional endocrinopathies such as thyrotoxicosis, 
pituitary gigantism and Cushing syndrome due to 
autonomous hormonal hyper-production (90). There is 
an association between fibrous dysplasia of bone tissue 
and increase in serum FGF23 level. TRP is decreased in 
50% of cases (91). Therefore, hypophosphatemic rickets/
osteomalacia can be seen in these patients. More than 250 
mutations are listed in the HGMD (accessed Nov 13, 2017) 
and most of them (221 inactivating mutations) are found in 
patients with resistance to PTH (pseudohypoparathyroidism 
or Albright hereditary osteodystrophy, which is different from 
the disease). In all patients reported to date, there are only two 
activating mutations (p.R201H or p.R201C and p.T55A) listed 
in the HGMD (accessed Nov 13, 2017) that is associated with 
McCune-Albright Syndrome. 

2.1.5.3. Raine Syndrome

Raine syndrome (MIM 259775) is an autosomal recessive 
disorder first described in 1989 by Raine et al (92) in a 
case with generalized osteosclerosis of the periosteal bone 
formation and severe craniofacial dysmorphology. The 
disease is caused by mutations in the FAM20C (family with 
sequence similarity 20, member c, also called dentin matrix 
protein 4 DMP4; MIM 611061) and was initially reported to 
be lethal (93). Non-lethal cases have since been found (94). 
FAM20C is mainly expressed in osteoblasts, odontoblasts 
and ameloblasts in skeletal and dental tissues and is a 
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novel FGF23 regulator (95,96). Increased renal phosphate 
loss and hypophosphatemia due to increased serum FGF23 
levels have been reported in Raine’s syndrome (97,98,99). 
HR has been observed in FAM20C knockout mice (96). 
FAM20C can suppress FGF23 production by enhancing 
DMP1 expression and its inactivation causes FGF23-related 
hypophosphatemia by decreasing transcription of DMP1, 
resulting in increased FGF23 levels in patients with Raine’s 
syndrome (98). There are 22 mutations listed in the HGMD 
(accessed Nov 13, 2017).

2.1.5.4. Opsismodysplasia

Opsismodysplasia (OPSMD, MIM 258480) is a rare skeletal 
dysplasia involving delayed bone maturation first described 
by Zonana et al (100) in 1977 and later defined by Maroteaux 
et al (101) in 1982. It is an autosomal recessive disease 
and caused by mutations in the INPPL1 gene (inositol 
polyphosphate phosphatase-like 1, MIM 600829) (102). 
Clinical signs observed at birth include short limbs, small 
hands and feet, relative macrocephaly with a large anterior 
fontanelle and characteristic craniofacial abnormalities 
such as a prominent brow, depressed nasal bridge, a small 
anteverted nose and relatively long philtrum. Abdominal 
protrusion, abnormalities of the extremities, progressive 
bone demineralization, delayed bone maturation and 
hypotonia are commonly reported (103). The main 
radiological features are severe platyspondyly, short long 
bones including squared metacarpals, delayed epiphyseal 
ossification, and metaphyseal flaring and cupping (103). In 
addition to these clinical and radiological findings, increased 
renal phosphate excretion and HR have been reported by 
Zeger et al (104). The serum level of FGF23 was high in one 
of the two patients at three years of age. Currently, there are 
26 mutations listed in the HGMD (accessed Nov 13, 2017).

2.1.6. Treatment of FGF23-related Hypophosphatemic 
Rickets

There is no difference in the management of XLHR, ADHR, 
ARHR and other rare genetic causes of HR. It is a lifelong 
treatment of phosphate and calcitriol replacement to restore 
bone mineralization and improve skeletal deformities. 
Calcitriol is recommended at doses ranging from 25 to 70 
ng/kg/day (2 doses) and elemental phosphate at 30 to 70 
mg/kg/day (4-6 doses) (26). The main goal of treatment is 
to achieve low-normal serum phosphate and high-normal 
serum ALP levels (105). Treatment should not attempt to 
normalize serum phosphate levels by giving aggressive 
phosphate therapy as this might lead to side effects such 
as diarrhea, secondary hyperparathyroidism, increased 
FGF23 synthesis, nephrocalcinosis and renal insufficiency 
(105). In addition, serum phosphate levels should not be 

used alone in evaluating response to treatment, due to rapid 
fluctuations in serum levels. Therefore, reduction in ALP 
levels, improvement in clinical findings and growth velocity 
after treatment are more useful indicators in assessing 
treatment response. Traditional calcitriol and phosphate 
therapy improves bone mineralization, skeletal findings of 
rickets and growth rate. However, despite these treatments, 
skeletal deformities may persist to varying degrees in some 
patients (105).

Phosphate salts (sodium phosphate, potassium phosphate) 
are generally used for phosphate replacement. It can be 
given in tablet or solution form both of which are equally 
effective. Tablet form (Phosphate-Sandoz®) contains a 
high dose of phosphate supplement, consisting of sodium 
phosphate monobasic. Each tablet provides elemental 
phosphate 500 mg (16.1 mmol phosphate), sodium 469 
mg (20.4 mmol Na+), potassium 123 mg (3.1 mmol K+) 
and citric acid-anhydrous 800 mg. “Joulie’s solution” can be 
used for children if the tablet form is not available. Prepared 
with 136 g of dibasic sodium phosphate, 58.8 g phosphoric 
acid and 1000 mL of distilled water, 1 mL of this solution 
contains 30.4 mg of elemental phosphate (106). More 
frequent dividing of phosphate dose avoids a profound 
drop in post-dose serum phosphate levels and reduces the 
frequency of diarrhea, the most common side effect of this 
treatment. 

Patients should be monitored for clinical, anthropometric 
and laboratory characteristics at three month intervals. 
Laboratory assessments include serum calcium, phosphate, 
ALP and PTH levels, as well as urinary calcium and creatinine 
for hypercalciuria. In addition, renal ultrasonography 
should be performed annually, before and after treatment, 
to monitor the development of nephrocalcinosis (105). 
Skeletal X-ray is recommended to be performed annually 
before treatment and during treatment for monitoring of 
skeletal findings (5).

The dosage of calcitriol should be adjusted according to 
serum levels of PTH and the urine calcium/creatinine ratio. 
The main goal is to suppress PTH, maintain serum calcium 
in the normal range and prevent hypercalciuria. Twenty-
four hours of urinary calcium excretion above 4 mg/kg/day 
indicates increased calcium excretion (hypercalciuria) (26). 
In addition, the ratio of calcium to creatinine in the spot 
urine can be used. The normal range varies with age: ≤6 
months of age, <0.8; 7-12 months of age, <0.6; 1-3 years 
of age, <0.53; 3-5 years of age, <0.39; 5-7 years of age, 
<0.28; >7 years of age, <0.21 (28). In the presence of 
hypercalciuria, it is necessary to reduce calcitriol dosage. 
The evening dosage of calcitriol should be higher in order to 
suppress increased secretion of PTH at night (26).
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There is a close relationship between high dose phosphate 
therapy and the development of nephrocalcinosis (107,108). 
The frequency of nephrocalcinosis in HR patients after 
calcitriol and phosphate combined therapy is between 33% 
and 80%, and usually occurs within the first 3-4 years of 
treatment (105,107,108,109). However, long-term follow-
up of cases with nephrocalcinosis has been reported to 
have no significant impairment on renal function (110). On 
the other hand, long-term, high-dose phosphate therapy 
may result in secondary and tertiary hyperparathyroidism 
(105,111,112,113). Cinacalcet can be used in the treatment 
of tertiary hyperparathyroidism in children with HR (111). 
In brief, oral phosphate should be given at the lowest dose 
that is sufficient to improve rickets and patients should be 
monitored for the development of hyperparathyroidism and 
nephrocalcinosis.

Conventional treatment should gradually improve 
biochemical and skeletal abnormalities, however mild 
or moderate skeletal deformities may persist in some 
patients. For these patients, some devices, such as braces, 
are suggested to correct leg bowing. If such devices are 
not tolerated, surgical correction can be considered. In 
children younger than 10 years with XLHR, femoral and 
tibial hemiepiphysiodesis are recommended to correct 
lower extremity deformities, which is a relatively minor 
surgical procedure to allow appropriate growth (114). For 
children older than 10 years of age, osteotomy is suggested, 
a surgical procedure in which a surgeon removes a wedge of 
bone near a damaged joint (26).

Short stature is one of the major findings in the diagnosis 
of HR patients. With appropriate calcitriol and phosphate 
treatment, the skeletal and biochemical findings should 
improve and an increase in height velocity should be 
achieved. However, some patients with XLHR do not achieve 
the desired height velocity despite appropriate treatment 
(115,108). It is suggested that this may be related to delayed 
treatment or deficit in GH secretion (115,116). Recombinant 
human growth hormone (rhGH) treatment, especially in the 
pre-pubertal period, has been demonstrated to significantly 
increase height velocity and positively contributes to final 
height in these patients (117,118,119).

Recent progress in treatment has focused on the pathogenesis 
of HR. It has been shown that pharmacological inhibition 
of FGF receptor signaling ameliorates FGF23-mediated HR 
using NVP-BGJ398, a novel, selective, FGFR inhibitor that 
inhibits FGFR1, FGFR2, and FGFR3 with IC50 of 0.9 nM, 1.4 
nM, and 1 nM, respectively (120). Similar results have been 
achieved using anti-FGF23 antibody (KRN23), a human 
monoclonal KRN23 (121). In a study of 28 adults with XLHR 
who received monthly KRN23, a significant increase in 

serum phosphate, 1,25(OH)2D and maximum renal tubular 
threshold for phosphate reabsorption (TmP/GFR) has been 
observed after four or twelve months of treatment (121). 
The half-life is 8-12 days after intravenous administration 
and longer (13-19 days) after subcutaneous administration. 
The serum levels of phosphate remained higher than 
baseline level for four weeks (122,123). Therefore, it is 
recommended that KRN23 should be given at four weekly 
intervals. Finally, phase III studies of KRN23 in adults and 
children are still ongoing.

2.2. Hypophosphatemic Rickets Accompanied by Hypercalciuria 
(FGF23-independent Rickets)

2.2.1. Hereditary Hypophosphatemic Rickets with 
Hypercalciuria

Hereditary HR with hypercalciuria (HHRH, MIM 241530) 
is an autosomal recessive disease caused by inactivating 
mutations in the SLC34A3 (solute carrier family 34, member 
3, also known as NaPi-2c, MIM 609826) (124). SLC34A3 
plays a role in phosphate reabsorption in the kidney and 
its mutation results in increased renal phosphate loss and 
subsequent hypophosphatemia (5). FGF23 is not involved 
in the disease. The decrease in serum phosphate promotes 
biosynthesis of 1,25(OH)2D, which leads to increase in 
the absorption of intestinal calcium, suppressed PTH and 
development of hypercalciuria and nephrocalcinosis. 
Diagnosis can be made based on skeletal findings of rickets, 
hypophosphatemia, hypercalciuria and nephrolithiasis 
(124,125). There are 33 mutations listed in HGMD (accessed 
Nov 13, 2017) and genotype-phenotype correlation has 
not yet been established (125,126,127). Increased renal 
phosphate wasting, mild hypophosphatemia, increased 
1,25(OH)2D and hypercalciuria without metabolic bone 
disease, can be present in patients with heterozygous 
SLC34A3 mutations, indicating haploinsufficiency (124).

Oral phosphate alone is sufficient for patients with HHRH 
in contrast to patients with XLHR, ADHR or ARHP, who are 
usually treated with high doses of alphacalcidol or calcitriol 
and multiple daily doses of oral phosphate, low-sodium diet 
and hydration are recommended for the disease (5,26). The 
response to treatment is excellent. Phosphate treatment 
results in a decrease in serum levels of calcitriol and, 
consequently, urinary calcium excretion gradually returns 
to normal. The use of calcitriol is contradictory and harmful 
because it can increase hypercalciuria.

2.2.2. Hypophosphatemic Rickets with Nephrolithiasis 
and Osteoporosis Type 1

SLC34A1 (solute carrier family 34, member 1, MIM 182309) 
encodes NaPi-2a, which plays an important role in phosphate 
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reabsorption from proximal tubules and is down-regulated 
by PTH and FGF23 (128). Inactivating mutations in SLC34A1 
can cause three different diseases: HRs with Nephrolithiasis 
and Osteoporosis type 1 (NPHLOP1, MIM 612286) (129,130), 
Fanconi Renotubular Syndrome type 2 (FRTS2, MIM 
613388) (131) and Infantile Hypercalcemia type 2 (HCINF2; 
MIM 616963) (132). NPHLOP1 was originally reported as 
an autosomal-dominant disease. However, multiple groups 
later questioned a single heterozygous mutation in the 
pathogenesis of the disease (131,133,134). The initial cases 
caused by heterozygous SLC34A1 mutations are probably 
represent a milder phenotype characterized by increased 
renal phosphate wasting, hypercalciuria, osteoporosis and 
nephrolithiasis in adults. Currently, there are 25 different 
mutations listed in the HGMD (accessed Nov 13, 2017).

Similar to HHRH, NPHLOP1 is characterized by 
hypophosphatemia and decreased renal phosphate 
absorption with an appropriate elevation in serum 
1,25(OH)2D. Laboratory findings include decreased TRP, 
hypophosphatemia, hypercalcemia, elevated serum 
1,25(OH)2D, decreased serum PTH, hypercalciuria and 
nephrocalcinosis.

The original patients with FRTS2 were adults with clinical 
features of increased renal phosphate and other substance 
wasting (without loss of bicarbonate) and significantly 
increased 1,25(OH)2D leading to severe skeletal 
deformities (HR in children and osteomalacia in adults), 
bone pain, marked hypercalciuria, glycosuria, generalized 
aminoaciduria and tubular proteinuria without renal tubular 
acidosis (135).

HCINF2 is characterized by severe hypercalcemia with 
failure to thrive, vomiting, dehydration and medullary 
nephrocalcinosis. Laboratory findings include decreased TRP, 
hypophosphatemia, hypercalcemia, elevated 1,25(OH)2D, 
suppressed PTH, hypercalciuria, nephrocalcinosis, 
hyperuricosuria and low-molecular-weight proteinuria (136).

The main pathogenesis of all three diseases is increased 
phosphate wasting due to inactivated phosphate 
cotransporter NaPi-2a in the proximal tubules. They 
should be considered as one disease with different clinical 
presentations, probably caused by differences in severity of 
mutations. The mechanism for renal tubulopathy is unclear 
at present.

Treatment is the same as in HHRH. Oral phosphate 
replacement will result in improvement in bone pain, muscle 
strength and radiologic signs of rickets, with normalization 
of urinary calcium excretion and significant decrease in 
1,25(OH)2D. However, the glomerular filtration rate, serum 
uric acid levels and rate of urinary excretion of glucose, 
protein and amino acids will remain unchanged.

2.2.3. Hypophosphatemic Rickets with Nephrolithiasis 
and Osteoporosis Type 2 

HRs with Nephrolithiasis and Osteoporosis type 2 
(Nephrolithiasis/osteoporosis, hypophosphatemic, 2, 
NPHLOP2, MIM 612287) is an autosomal dominant disease 
caused by mutations in the SLC9A3R1 (MIM 604990). It 
encodes NHERF1, an adaptor protein that regulates several 
G protein-coupled receptors, including the PTH1R (58,137). 
It regulates phosphate reabsorption in the renal proximal 
tubules by binding to renal phosphate transporter NaPi-
2a to maintain correct expression at the apical domain of 
proximal tubular cells and PTH1R leading to a decrease 
in PTH-induced cAMP synthesis and phosphate transport 
(128,138). Mutations in the NHERF1 result in reduced NaPi-
2a expression and hypophosphatemia due to increased 
renal phosphate loss. Characteristic clinical features include 
hypophosphatemia, hypercalcemia, elevated serum levels of 
1,25(OH)2D, hypercalciuria, decreased TRP or low TmP/GFR 
value and nephrolithiasis, which cannot be distinguished 
from HHRH or NPHLOP1 without molecular testing. Serum 
levels of PTH and FGF23 are normal. Osteopenia has been 
demonstrated in patients with NHERF1 mutations, although 
rickets has not yet been reported, probably reflecting late-
onset and milder phenotype caused by the gene mutation. 
There are only four different mutations listed in the HGMD 
(accessed Nov 13, 2017).

2.2.4. Dent Disease

Dent disease can be divided into type 1 and type 2. 
Dent disease 1 (MIM 300009, also known as X-linked 
nephrolithiasis, X-linked nephrolithiasis type 2 (NPHL2), 
X-linked recessive nephrolithiasis with renal failure, or 
X-linked recessive nephrolithiasis type 1 (NPHL1), MIM 
310468) is an X-linked recessive disease caused by mutations 
in the CLCN5 gene which encodes chloride voltage-gated 
channel 5 (MIM300008) (139). It is characterized by 
proximal tubular dysfunction and 30-80% of patients can 
progress to chronic kidney disease or renal failure: low 
molecular weight proteinuria, hypercalciuria, glycosuria, 
phosphaturia, aminoaciduria, uricosuria, hematuria and 
nephrocalcinosis (140,141,142). More than 259 different 
CLCN5 mutations are listed in the HGMD (accessed Nov 
13, 2017). The presence of hypophosphataemic rickets in 
Dent disease is variable from 30-50% in patients from US 
and UK, to rare in Japanese patients (142,143,144). Clinical 
presentations and CLCN5 mutations are heterogeneous and 
there is no genotype-phenotype correlation. 

Dent disease 2 (MIM 300555, or Lowe syndrome or 
oculocerebrorenal syndrome, MIM 309000) is also an 
X-linked recessive disease caused by mutations in the OCRL 
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gene (MIM 300535) which encodes inositol polyphosphate-
5-phosphatase (145). Clinical features are similar to Dent 
disease 1 and genetic testing is required to distinguish 
between them. There is a broad phenotypic spectrum of 
OCRL mutations and Dent disease 2 may be a mild variant of 
Lowe syndrome characterized by hydrophthalmia, cataract, 
mental retardation, HR, amino aciduria, proteinuria and 
phosphaturia (146). 

There are 245 different OCRL mutations listed in the HGMD 
(accessed Nov 13, 2017). Approximately 50-60% of cases 
with Dent disease have CLCN5 mutations, 15-20% have 
OCRL mutations and the remaining cases have no detectable 
mutation (140,146). Patients usually respond well to oral 
phosphate for the treatment of hypophosphatemia. In 
addition, some patients may need calcitriol, but it should be 
carefully used as it may increase urinary calcium excretion. 
A sodium-restricted diet to reduce urinary calcium excretion 
may be useful.

Conclusion

Calcium and phosphate, which play important roles in bone 
mineralization, are regulated by various molecules such 
as PTH, 1,25(OH)2D and FGF23. Nutritional vitamin D 
deficiency is the most common cause of rickets due to low 
vitamin D in breast milk, social and economic conditions that 
prevent access to vitamin D from other sources, or climatic 
conditions preventing adequate ultraviolet light exposure. 
Various genetic causes of rickets should be considered to 
avoid delay in diagnosis and treatment. Rickets caused 
by calcium deficiency should also be considered, which 
usually occurs among older toddlers and children due to low 
dietary calcium intake. Although clinical presentations are 
usually similar, differential diagnosis of different types of 
rickets such as nutritional and VDDR (VDDR1A, VDDR1B, 
VDDR2A and VDDR2B) can be made by examining serum 
levels of 25(OH)2D and 1,25(OH)2D, and their responses to 
treatment (calcium, vitamin D or calcitriol) (Table 1). 

The genetic causes of HR can be divided into two groups: 
FGF23-dependent and FGF23-independent groups (Table 2). 
The most common genetic cause of HR is XLDHR resulting 
from PHEX mutations. Although clinical presentations are 
similar, differential diagnosis between these two groups 
can be made by serum FGF23 levels. However, diagnosis of 
individual diseases within each group often require molecular 
testing to confirm diagnosis. The current treatment for 
FGF23-dependant HR is oral phosphate replacement and 
calcitriol which have potential treatment complications 
such as calciuria and nephrocalcinosis. Recent progress of 
targeted therapy against FGF23-mediated HR (NVP-BGJ398 

and KRN23) has produced promising results and may offer 
better therapeutic outcome in the future. In the FGF23-
independent HR group, hypercalciuria and nephrolithiasis 
are major clinical findings and oral phosphate replacement 
alone is sufficient in the treatment. Furthermore, there 
are some HR patients whose genetic defects remain to be 
identified.
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