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Abstract: Asthma is a common respiratory disease worldwide. Cytokines play a crucial role in
the immune system and the inflammatory response to asthma. Abnormal cytokine expression
may lead to the development of asthma, which may contribute to pathologies of this disease.
As cytokines exhibit pleiotropy and redundancy characteristics, we summarized them according
to their biologic activity in asthma development. We classified cytokines in three stages as follows:
Group 1 cytokines for the epithelial environment stage, Group 2 cytokines for the Th2 polarization
stage, and Group 3 cytokines for the tissue damage stage. The recent cytokine-targeting therapy for
clinical use (anti-cytokine antibody/anti-cytokine receptor antibody) and traditional medicinal herbs
(pure compounds, single herb, or natural formula) have been discussed in this review. Studies of
the Group 2 anti-cytokine/anti-cytokine receptor therapies are more prominent than the studies of
the other two groups. Anti-cytokine antibodies/anti-cytokine receptor antibodies for clinical use can
be applied for patients who did not respond to standard treatments. For traditional medicinal herbs,
anti-asthmatic bioactive compounds derived from medicinal herbs can be divided into five classes:
alkaloids, flavonoids, glycosides, polyphenols, and terpenoids. However, the exact pathways targeted by
these natural compounds need to be clarified. Using relevant knowledge to develop more comprehensive
strategies may provide appropriate treatment for patients with asthma in the future.

Keywords: asthma; cytokines; antibodies; interleukin; thymic stromal lymphopoietin; herbs;
natural compounds

1. Introduction to Asthma

Asthma is a common respiratory disease worldwide. It clinically manifests as wheezing, nocturnal
cough, shortness of breath, chest tightness, and variable expiratory airflow limitation [1]. An estimated
300 million people have asthma worldwide [2,3]. In the Unites States, the average annual prevalence
of asthma is approximately 9.5% in children and approximately 7.7% in adults [4]. Asthma is the most
common chronic disease among children. The prevalence of asthma in children showed marked
geographic variation from 2% to 32% in different countries [5]. In 2008, an average of four missed
school days for children and five missed work days for adults because of asthma were noted in
the United States [6,7], which accounts for 10.5 million missed school days and 14.2 million missed
workdays due to asthma attacks [6,7]. It is essential to control asthma, but poverty, inadequate
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health care, culture, and environmental pollutants are barriers to reducing the burden of asthma [5].
Significant progress has been made in understanding asthma. However, the cause of the disease is still
unclear, and more information is needed regarding the complex interrelationship of the immunologic,
genetic, environmental, and pharmacologic factors involved in the disease [8].

1.1. The Molecular and Cellular Basis for Asthma

Asthma is characterized by allergy, airway hyperreactivity, inflammation, remodeling of
the airways of the bronchus, and the number of immune cells increased in the airway [9]. Many immune
cells including dendritic cells (DCs), T cells, B cells, eosinophils, basophils, neutrophils, and mast
cells infiltrate the submucosa of the bronchus and cause a series of immune reactions in asthma [9,10].
The presence of inflammatory cells in the airway results in an altered repair response, with the secretion
of cytokines and growth factors that induce varying structural changes to the airways, which is
termed as airway remodeling [11,12]. Airway remodeling includes elevated numbers of inflammatory
cells, a hypertrophy of submucosal glands, goblet cell hyperplasia, hyperplasia of the airway smooth
muscle, and the deposition of collagen and fibronectin in the subepithelial basement membrane or in
the submucosa around or within airway smooth muscle bundles [9,11,13–15]. Abnormal extracellular
matrix component depositions have crucial roles in the thickness of the airway smooth muscle [16].
The pathogenesis of asthma includes pathways of innate immunity, adaptive immunity, and memory
immunity. Initially, the airway of a fetus does not contain DCs. After birth, microbes and irritants
activate the respiratory epithelium. The main innate immunologic stimuli initiate the ingression of
immature DCs from the bone marrow [17,18]. When airway tissues are damaged or undergo cellular
stress or cell death, respiratory epithelial cells (ECs) express many pattern recognition receptors to
rapidly detect and respond to pathogen-associated molecular patterns or damage-associated molecular
patterns [19]. The overexpression of epithelial pattern recognition receptors leads to the secretion
of cytokines, chemokines, and antimicrobial peptides [19]. Chemoattractants such as chemokine
(C–C motif) ligand 19, 20, and 27 (CCL19, CCL20, and CCL-27, respectively) and the ligands for C–C
chemokine receptor type 6, 7, and 10 (CCR6, CCR7, and CCR10, respectively) direct DCs migration
toward the damaged epithelium and underlying mucosa [17,18]. In response to the damage, airway ECs
release the cytokines of interleukin (IL)-6, IL-8, granulocyte-macrophage colony-stimulating factor
(GM-CSF), eotaxin, and tumor necrosis factor-α (TNF-α) to activate and recruit more immune cells [20].
IL-6 is crucial for DCs to trap allergens and initiate Th2/Th17-mediated airway inflammation and airway
hyperresponsiveness (AHR) in asthma [21]. Cytokines such as thymic stromal lymphopoietin (TSLP),
IL-25, and IL-33 from damaged ECs stimulate myeloid DC maturation and activation [17]. TSLP, IL-25,
and IL-33, which are all EC-derived cytokines and chemokines, play crucial roles in the initiation of
innate immunity. In the human lung, IL-33 is predominantly expressed by bronchial ECs [10]. IL-33
is considered a damage-associated molecular pattern, and it has two major domains—an IL-1-like
domain and an N-terminal nuclear domain—that activate the immune response after cellular injury [22].
After allergen exposure, IL-33 is rapidly released into the airway within one hour, which involves
an increase in its concentration in the bronchoalveolar lavage fluid [22]. IL-33 may stimulate
Group 2 innate lymphoid cells (ILC2) to increase the production of Th2-type cytokines, such as IL-13
and IL-5, in the innate allergic immune response [10]. IL-25 is a member of the IL-17 family and is
similar to IL-33; it is expressed by airway ECs [23]. IL-25 is released when the cell is exposed to
protease-containing antigens, such as house dust mite, and it is released by immune cells such as Th2
cells, mast cells, basophiles, and eosinophils [23,24]. TSLP is a four-helix bundle cytokine that can
activate DCs, NKT cells, mast cells, and eosinophils to interact with cytokines and inflammatory
mediators on the airway smooth muscle of patients with asthma [25]. In an asthma model, TSLP can
upregulate natural killer T cells to increase IL-13 production and decrease airway hyperreactivity [26].
TSLP directly activates mast cells and induces mast cells to release multiple proinflammatory cytokines
and chemokines independent of immunoglobulin E (IgE) [27]. TSLP can stimulate human eosinophils
through the nuclear factor-κB (NF-κB)-dependent signaling pathway and the activation of extracellular



Cells 2019, 8, 685 3 of 24

signal-regulated protein kinase, namely p38 mitogen-activated protein kinase [26]. TSLP-like IL-33
and IL-25 can also stimulate ILC2 to increase the production of Th2-type cytokines [16]. In patients with
asthma, re-exposure to allergens (such as dust mites, animal dander, dust, mold spores, and pollen)
or environmental stimuli can cause an adaptive immune response [25]. Environmental antigens are
immune-regulated, and are recognized by DCs, macrophages, B lymphocytes, and several other cell
types that belonged to antigen presenting cells (APCs) [17]. APCs present antigens to CD4 positive
(CD4+)Th2 cells through the endocytic pathway by processing eight to 10 amino acid epitopes in major
histocompatibility complex (MHC) class II molecules. In allergic asthmatic patients, DCs play a crucial
role in activating naive T cells. TSLP-activated DCs show stronger potential to express the OX40
ligand (OX40L; CD252) and can trigger the differentiation of naive CD4+ T cells into inflammatory
CD4+ T helper type 2 (Th2) cells and the expansion of allergen-specific Th2 memory cells [28].
After this processing, Th2 cells-like mast cells and basophils produce IL-4, inducing B lymphocytes to
switch antibody production and resulting in immunoglobulin class switching from IgM to IgE [29].
IgE binds to high-affinity and low-affinity receptors on mast cells, basophils, and eosinophils, causing
calcium influx and degranulation. These cells release inflammatory mediators such as histamine,
heparin, tryptase, prostaglandin, and leukotriene, which induce airway smooth muscle contraction,
vasodilatation, mucus secretion, and increased vascular permeability. Th2 cells release various
proallergic inflammatory cytokines, such as IL-4, IL-5, IL-13, and GM-CSF, which activate basophils
and eosinophils and increase mucus secretion in the airway in patients with asthma [30]. IL-4 not only
induces IgE production, but also stimulates the differentiation of naive T cells into Th2 cells and initiates
the expression of vascular cell adhesion protein 1 (VCAM-1) to direct the migration of T cells,
monocytes, basophils, and eosinophils to allergic inflammation sites [31]. IL-5 can stimulate eosinophil
production and contribute to the differentiation, proliferation, and survival of eosinophils [32]. IL-13 has
functions similar to those of IL-4, and can increase AHR [30]. Naive T cells can also differentiate into
Th9 cells, Th17 cells, and regulatory T cells (Treg) cells. Th9 cells secrete IL-9 to stimulate mucus
production, goblet cell hyperplasia, and mast cell development [33]. Th17 cells secrete IL-17A to
stimulate eosinophils, and these cells influence airway smooth muscle [17]. Th17 cells overexpress
IL-17A and IL-17F, which may aggravate the neutrophil inflammatory response [34]. Th1 cells secrete
TNF-α and interferon –γ (IFN-γ) to activate neutrophils [17]. Treg cells can inhibit the functions
of TH1, Th17, and Th9 cells, and can secrete IL-10 and transforming growth factor-beta (TGF-β)
to inhibit Th2 cells [17] After the series of immune reactions, some lymphocytes become memory
T or B cells, which show immediate responses to the next allergen exposure. Sensitized ECs also
release the fibroblast growth factor endothelin and TGF-β, which lead to the release of proteoglycans,
glycoproteins, and collagen that cause airway remodeling [35]. A disintegrin and metalloproteinase-33
(ADAM-33), TGF-β, vascular endothelial growth factor, matrix metalloproteinase-9 (MMP-9), IL-5,
IL-13, and IL-14 are key mediators involved in airway remodeling in asthma [35]. In a recent study,
unregulated levels of connective tissue growth factor (CTGF) correlated with the MMP-9 level were
found in the airway remodeling of asthma (Figure 1) [36].

Asthma is believed to be a chronic disease caused by the separate responses of innate and adaptive
immunity to allergens; however, this concept has changed based on reports of ILC2 [37,38]. ILC2
are innate cells that can produce allergic cytokines without the need of adaptive T cell and B cell
products [37,38]. TSLP activates DCs through TSLPR and promotes DCs to cause the differentiation
of naive CD4+ T cells into TH2 cells to secrete Th2 cytokines, promoting the selective expansion of
TH2 cells [39]. TSLP, IL-25, and IL-33 can directly stimulate ILC2 to secrete Th2 cytokines, and they
induce antigen-specific IL-5 CD4+ T cells and promote allergen-induced inflammation independent
of IL-4 [40]. TSLP may play a fundamental role in the innate–adaptive interface in the pathology of
asthma [25].
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1.2. Signaling Pathways Involved in Cytokine Activity during Asthma Development

Although many signaling pathways are involved in the development of asthma, we proposed three
major signaling pathways for these three stages of asthma that we mentioned above. TSLP production by
monocyte-derived DCs requires the integration of signals from dectin-1, the IL-1 receptor, and ER stress
signaling pathways [41]. The NF-κB pathway is the first pathway that involves many epithelium-stage
proinflammatory cytokines. NF-κB signaling is the first pathway in chronic inflammatory airway
disease [42]. Also, the activation of DCs requires induction of the pro-inflammatory transcription factor
NF-κB [43]. In both asthma and chronic obstructive pulmonary disease, oxidative stress contributes to
airway inflammation by inducing inflammatory gene expression. NF-κB is an essential participant
involved in many inflammatory networks involving chemokines (e.g., IL-8, macophage inflammatory
protein 1 alpha (MIP-1α), monocyte chemoattractant protein 1 (MCP1), regulated on activation,
normal T cell expressed and secreted (RANTES), and eotaxin), pro-inflammatory cytokines (e.g., IL-1,
IL-2, IL-6, and TNF-α), adhesion molecules (e.g., intercellular adhesion molecule (ICAM), VCAM),
and E-selectin), and inducible pro-inflammatory enzymes (COX-2 and iNOS), which regulate cytokine
activity in airway inflammation [44]. The T cell development during the second and third stages are
endotype-dependent [45].

The second signaling pathway is the GATA3 and janus kinase/signal transducers and activators of
transcription (JAK–STAT) pathways. Atopic asthma is associated with high levels of Th2 cells. GATA3
controls cellular function and predominantly promotes Th2 differentiation [46]. In the study of Shrine
et al., the identification of the GATA3 and KIAA1109 signals are associated with moderate-to-severe
disease [47]. Th2 cell activation occurs through JAK–STAT signaling. Targeting this pathway through
the inhibition of cytokines (IL-4 and IL-13) and their receptors, JAKs or STATs, has been shown
to have a therapeutic effect on asthma pathology [48]. The major JAK–STAT signaling pathway
involved in the asthmatic response is the IL-4/IL-13/STAT6 pathway [49]. Several studies have
explored the origins of Th17 cells in severe asthma. IL-1β and IL-6, each of which are critical to
Th17 differentiation, are expressed at high levels in the inflamed airways of children with severe
asthma [50]. Transcriptional factors such as RAR-related orphan receptor gamma (RORγt), STAT3,
RAR-related orphan receptor alpha (RORα), and Interferon regulatory factor 4 (IRF-4), -are all involved
in Th17 differentiation.
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The final stage is correlated with Smad2/3-related signaling involving TGF-β. Also, the role of
regulatory T cells (Tr) in this stage is also important.45 TGF-β regulates multiple cellular processes
such as EC growth suppression, alveolar ECs differentiation, fibroblast activation, and extracellular
matrix organization that is closely associated with tissue remodeling in pulmonary fibrosis
and emphysema [51]. The polymorphism of Smad3, which is involved in TGF-β signaling, is
associated with asthma [52]. For the role of Tr, they can also inhibit ILC2s in mouse asthma models via
the production of IL-10 and TGF-β. The suppression of human ILC2s involves the same cytokines [53].

1.3. Cytokines at Different Stages Play Crucial Roles in the Pathogenesis of Asthma

According to the disease manifestation, three allergic development stages can be described:
(1) the epithelial environment stage, (2) the Th2 polarization stage, and (3) the tissue damage stage.
For the epithelial environment stage of asthma (allergic sensitization stage), air exposure to allergens
induces the secretion of proinflammatory cytokines (Group 1) in the airway epithelium, such as TSLP,
IL-6, IL-8, TNF-α, IL-25, IL-33, and GM-CSF. In this stage, therapeutic strategies focus on the suppression
of inflammation. TSLP is a Th2-prone cytokine that induces a Th2 environment. It activates DCs,
and the TSLP-activated DCs develop a Th2-prone microenvironment. Lung DCs are a heterogeneous cell
population that contains conventional DCs (cDCs), plasmacytoid DCs (pDCs), and monocyte-derived
DCs (moDCs) [43]. DCs are professional antigen-presenting cells that shape T helper cell polarization
through different surface molecules and cytokines including IL-12, TGF-β, IL-6, IL-23, and IL-1β [54].
Stage 2 of asthma focuses on T cell priming and allergen restimulation. After the airway environment
is polarized to the Th2-promoting condition, DCs may induce the differentiation of naive T cells into
Th2 cells, which eventually leads to IgE production by B cells. After restimulation with a different
antigen, Th0 cells may differentiate into Th2 cells, Th9 cells, or Th17 cells, and secrete different
cytokines (Group 2), such as IL-4, IL-5, IL-9, IL-13, or IL-17, to activate eosinophils, basophil mast
cells, or goblet cells. Eosinophil and mast cell degranulation at this stage plays a crucial role in
airway hypersensitivity. In Stage 3 of asthma, local inflammation is induced by Group 3 cytokines
such as TGF-βand IL-10 in the bronchus and lung, which leads to tissue repair initiation. TGF-β
contributes to tissue repair and fibrosis. In addition, TGF-β and IL-10 contribute to regulatory cell
development (Figure 2).
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2. Therapeutic Drugs for Asthma

Clinically, the main treatments for asthma are reliever and controller medications [1]. The strategies
for the prevention and alleviation of asthma are complicated. Relievers are divided into three categories
as follows: (1) short-acting inhaled β2 agonist bronchodilators (e.g., salbutamol and terbutaline),
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(2) short-acting inhaled anticholinergics, and (3) low-dose inhaled corticosteroids (ICSs) plus formoterol.
Controllers are divided into four categories as follows: (1) ICSs, (2) ICSs and long-acting β2 agonist
bronchodilators, (3) chromones, and (4) leukotriene modifiers. Add-on controllers are categorized into
four categories as follows: (1) systemic steroids, (2) long-acting inhaled anticholinergies, (3) anti-IgE,
and (4) anti-IL-5 [1]. Corticosteroids are currently the most efficacious drugs used to control and treat
asthma [55]. They can reduce the number of eosinophils, T lymphocytes, mast cells, and DCs during
respiratory inflammation; inhibit proinflammatory cytokine production; and decrease the incidence of
asthma and exercise-induced asthma [56–58]. However, the long-term overuse of systemic steroids
may have many side effects, such as the inhibition of height growth and an increase in the risk of
osteoporosis, adrenal insufficiency, and diabetes [59–62]. Moreover, there are different endotypes
of asthma, and some of these can be treated well with steroids, but there are still many cases with
treatment refractory asthma; therefore, novel therapies are needed. Salmeterol is a long-acting β2
agonist drug that reduces the severity of asthma in children by suppressing TSLP secretion in human
bronchial ECs [63]. The anti-IgE antibody marks the beginning of a new era of monoclonal antibodies
(MAbs) in the treatment of asthma. The humanized anti-IgE antibody omalizumab has been confirmed
to improve the asthma symptom score, reduce the chances of acute asthma attacks, reduce the dosage of
oral or inhaled glucocorticoid, and improve the quality of life of patients with asthma. Omalizumab also
decreases airway wall thickening, decreases the percentage of sputum eosinophils, and increases forced
expiratory volume in one second (FEV1) in asthma [64]. Omalizumab also reduces IgE-stimulated
synthesis and the secretion of the proinflammatory cytokines IL-6, IL-8, TNF–α, and IL-4 by human
airway smooth muscle cells (ASMCs) [65].

3. Clinical and Investigational Cytokine-Targeting Therapy for Asthma

Recently, cytokine-targeting biologics developed by clinicians have become potential therapy for
asthma. In general, cytokine-targeting biologics for the treatment of asthma can be directly targeted
through three mechanisms as follows: soluble receptors, anti-cytokine antibodies, and anti-cytokine
receptor antibodies [66], and antisense approaches [67]. For three anti-asthmatic cytokine strategies,
we summarized the different cytokines involved in each stage, and different stages target different
cytokine candidates (Figure 2).

The potential cytokine-targeting therapies for asthma are discussed as below (Table 1). Group 1
consists of an anti-TSLP antibody, anti-IL-33R antibody, anti-IL-33R antibody, anti-IL-25 antibody,
and anti-IL-6 antibody, which are investigational drugs for asthma. TSLP assists natural helper cells
in inducing corticosteroid resistance in patients with asthma [68]. The anti-TSLP antibody decreases
sputum and blood eosinophils and reduces allergen-induced bronchoconstriction in patients with
allergic asthma [69]. The anti-TSLP antibody also exerts preventive effects on airway structural changes
for smooth muscle thickness in asthma [70]. The human anti-TSLP antibody tezepelumab has decreased
the annualized rate of asthma attacks in patients with uncontrolled asthma who were already being
treated with medium to high doses of inhaled glucocorticoids and long-acting β-agonists [70,71].
The IL-33 trap is a new antagonist of IL-33 that has been proven to inhibit allergic airway inflammation
in an in vitro animal study [72]. AMG 282 and ANB020 has been developed in clinical trials on
asthma, and it is a drug that targets soluble IL-33 [71]. The receptors for IL-33 are expressed on many
cells involved in the allergic response, including TH2 cells, ILC2 cells, macrophages, hematopoietic
stem cells, eosinophils, basophils, mast cells, and fibroblasts. The anti-IL-33R antibody and CNTO
7160 have been studied in asthma, but the final report has remained unpublished [71]. Additionally,
the anti-IL-25 antibody has been studied. The anti-IL-25 antibody significantly reduced the levels
of IgE, IL-5, and IL-13; goblet cell hyperplasia; and eosinophil infiltration, and prevented AHR in
murine asthma models [73]. However, no human clinical study of the anti-IL-25 antibody has been
performed. The anti-IL-6 antibody for granulocytic airway inflammation therapies in asthma has also
been reported [74]. A large number of human clinical trials of anti-IL-6 antibody have been performed.
Group 2 consists of the anti-IL-4Rα antibody, anti-IL-5 antibody, anti-IL-13 antibody, anti-IL-9 antibody,
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and anti-IL-17 antibody, which are the investigational drugs for asthma. The anti-IL-4Rα antibody
is directed against IL-4Rα and blocks the IL-4 and IL-13 pathways; this asthma treatment is under
development [75]. The human anti-IL-4Rα antibody dupilumab increases the forced exhalation volume
in one second, and decreases severe exacerbations in patients with uncontrolled persistent asthma [75].
Patients who received dupilumab had better lung function, asthma control, and significantly lower
rates of severe asthma exacerbation [76]. Dupilumab is still under investigation for use as an add-on
controller in asthma treatment. The anti-IL-5 antibody now is an add-on controller for patients
with severe asthma. The humanized anti-IL-5 antibody mepolizumab improves FEV1 and reduces
the number of eosinophils in the sputum and blood in asthma [77]. The humanized anti-IL-5α antibody
benralizumab showed significant decreases in oral glucocorticoid use and exacerbation rates compared
with placebo [66]. The Food and Drug Administration of the United States approved mepolizumab
and reslizumab as new anti-IL-5 therapies for the treatment of severe eosinophilic asthma [78].
There has been a report on anti-interleukin-5 receptor α monoclonal antibody as an add-on treatment
for patients with severe, uncontrolled, eosinophilic asthma. Benralizumab significantly reduced annual
exacerbation rates and was generally well tolerated for patients with severe, uncontrolled asthma
with 300 cells per µL or greater of blood eosinophils [79]. Although the study treatments were not
connected with any deaths, serious adverse events occurred in some patients (<1%). The Food and Drug
Administration of the United States also approved benralizumab as a new therapy for severe asthma.
The human anti-IL-13 antibody tralokinumab decreased the use of β-agonists and improved lung
function, but no improvement in the Asthma Control Questionnaire 6 score was observed in moderate
to severe asthma cases [80]. The humanized anti-IL-13 antibody lebrikizumab improved lung function
and the rate of asthma exacerbations in patients with moderate to severe asthma [81]. The anti-IL-9
antibody inhibited the pulmonary infiltration of inflammatory cells and decreased the production
of cytokines IL-5, IL-9, and IL-17 in murine asthma models [82]. However, the humanized anti-IL-9
antibody MEDI-528 did not decrease asthma exacerbation rates and did not improve Asthma Control
Questionnaire 6 scores or FEV1 values [83]. The anti-IL-17 antibody decreased oxidative stress,
pulmonary inflammation, and edema in animal models of asthma [84]. The human anti-IL-17 antibody
brodalumab improved Asthma Control Questionnaire scores, with nominal significance noted only for
the high-reversibility subgroup asthma [85]. However, a study of anti-IL17A (brodalumab) in adults
with moderate-to-severe asthma showed no improvement in asthma control [85]. There are still no
Group 3clinical drugs for human: anti-TGF-β cytokine is the one recent anti-cytokine antibody in
this group. In an asthmatic animal model, anti-TGF-βAb treatment prevented the progression of
airway remodeling following allergen challenge, even when was given in a therapeutic model [86].
However, a previous study reported that anti-TGF-β treatment had no effect on airway remodeling
and exacerbated the eosinophilic infiltrate, which led to increased airway hyperreactivity to the house
dust mite-induced allergic disease [65]. Further evaluation is warranted. For the output of selected
clinical trials on antisense drugs related to inflammatory disorders, cytokine antisense approaches on
asthma are focusing on GATA3 [87] and beta subunit (β(c)) of the IL-3, IL-5, and GM-CSF receptors
and the chemokine receptor CCR3; [88] their outcomes are safe and can reduce in allergen-induced
early-phase and late-phase asthmatic responses.
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Table 1. Recent clinical and investigational anti-cytokine Ab for asthma therapy.

Group Anti-Cytokine Ab Drug

Group 1 Anti-TSLP Ab Tezepelumab (Phase 3 clinical trial)

Anti-IL-6 Ab N/A

Anti-IL-25 Ab N/A

Anti-IL-33 Ab AMG 282 (Phase 1 clinical trial)
ANB020 (Phase 2 clinical trial)

Anti-IL-33R Ab CNTO 7160 (Phase 1 clinical trial)

Group 2 Anti-IL-4Rα Ab Dupilumab (Phase 3 clinical trial)

Anti-IL-5 Ab Mepolizumab (US FDA approved)
Reslizumab (US FDA approved)

Anti-IL-5Rα Ab Benralizumab (US FDA approved)

Anti-IL-9 Ab MEDI-528 (Phase 2 clinical trial)

Anti-IL-13Ab Tralokinumab (Phase 3 clinical trial)
Lebrikizumab (Phase 3 clinical trial)

Anti-IL-17 Ab Brodalumab (Phase 2 clinical trial)

Group 3 Anti-TGF-β Ab N/A

FDA: Food and Drug Administration, IL: interleukin, N/A: not available, TSLP: thymic stromal lymphopoietin,
US: United States. Transforming Growth Factor Beta: TGF-β.

4. Cytokine Immunomodulatory Effects of Natural Formula, Herbs, and Natural
Compounds on Asthma

Many ancient countries have acquired knowledge regarding traditional herbal remedies.
Natural formula, herbs, or compounds derived from plants have been found to alleviate asthma
inflammation symptoms. Different groups of natural compounds according to their biosynthetic origin
may be used as supplements for asthma prevention or therapy. According to the specific structures
and bioeffects, anti-asthmatic bioactive compounds can be divided into five types: alkaloids, flavonoids,
glycosides, polyphenols, and terpenoids [89]. Many studies have evaluated the immunomodulatory
effect of these compounds by using the murine asthma model.

Herbal medicines and natural products are now used for integrative therapy and clinical drug
development for asthma. In traditional Chinese medicine, treatment for asthma has been described
earlier in Danxi’s Mastery of Medicine (1347 BC), but the formulas for asthma symptom relief,
namely Xiao-Qing-Long-Tang, were described by Zhang Zhong-Jing in Shanghan Lun (219 BC).
In this article, we summarize the regulation effects of herbal formulas on cytokines in the asthma
model. Regarding formulas, Xiabai powder has been found to inhibit Group 1 cytokine (TNF-α,
IL-1β, and IL-6) expression [90]. The antiasthma simplified herbal medicine intervention (ASHMI)
alleviates asthma symptoms by modulating Group 1 cytokine (inhibition of TNF-α and IL-6) [91]
and Group 2 cytokine (inhibition of IL-17, IL-13, IL-5, and IL-4, and enhancement of IFN-γ)
expression [92,93]. The precursors of ASHMI, MSSM-002, inhibit Group 2 cytokines (the inhibition
of IL-4, IL-5, IL-13, and GATA-2 and the enhancement of IFN-γ expression) to relieve asthma
symptoms [93,94]. The modulators of Group 2 cytokine expression, such as the Sanao decoction, [95]
Buzhong Yiqi decoction, [90] Shengfei Yuchuan decoction, [90] Wheeze-relief formula, [90] Wuwei
Dilong decoction, [90] Bushen Yiqi decoction, [89] STA-1, [96] and modified Mai-Men-Dong-Tang [89]
can be used in patients with asthma. Most formulas exert their beneficial effects by downregulating
Group 2 cytokine expression, whereas only Xiabai powder was found to inhibit Group 1 cytokine
expression [90]. Xiao-Qing-Long-Tang can regulate the expression of the cytokines in groups 1 to
However, Xiao-Qing-Long-Tang exerts its effect only through the enhancement of CD4+ CD25
+ Foxp3 + T cells and Foxp3; no data were found regarding its effect on Group 3 cytokine
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expression [97]. The cytokine inhibitory effects of herb extracts and major active compounds on
asthma are presented in Table 2 [89,98–136]. For example, the herbs Cordyceps sinensis, Thuja orientalis,
Fritillaria thunbergii, Scutellaria baicalensis, Astragalus membranaceus, Curcuma longa, and Alstonia scholaris
show inhibitory effects on Group 1 cytokines, namely IL-1β, IL-6, and TNF-α. However, the herbs
and their active components are more effective at inhibiting Group 2 cytokine expression than
the other two cytokine groups. Group 3 cytokines, namely TGF-β1 and IL-10, can be inhibited
by Propolis, A. membranaceus (Astragaloside IV), Ligusticum wallichii, and Peucedanum praeruptorum
((±)-praeruptorin A). A. membranaceus and Astragaloside IV inhibit the Group 1, 2, and 3 cytokines,
which may mean that the herbs show multifunctional effects on the expression of proinflammatory
cytokines. However, the herb extracts have complex mechanisms of action (MOA) compared with
conventional drugs. The MOA of herbs may involve pro-inflammatory cytokine secretion through
various molecular signaling pathways. Additionally, the quality and consistency of herbs may be
difficult to control, which may limit the use of herbal extracts as integrative therapy for asthma.

Table 2. Relationship of cytokines with single herb and components. GM-CSF: granulocyte-macrophage
colony-stimulating factor, IgE: immunoglobulin E, TNF-α: tumor necrosis factor-α.

Group Components Cytokines * Ref.

Group 1

Cordyceps sinensis CS-19-22 fraction IL-1β, TNF- α, IL-6, IL-10 (–)
(LPS-activated BALF cells)

[98]

Astragalus membranaceus Astragaloside IV IL-1β, TNF- α, GM-CSF (–)
(Der p 1 activated human blood
eosinophils)

[99]

Curcuma longa Curcumin IL-1β, TNF- α, IL-6, IL-2 (–)
(DRA-challenged mice/ LPS-stimulated
macrophages)

[100,101]

Thuja occidentalis Extract IL-6, TNF-α (–)
(LPS-stimulated macrophages)

[102]

Fritillaria thunbergii Extract IL-6, TNF-α (–)
(Human mast cell line-1 for childhood
asthma)

[89]

Scutellaria baicalensis Extract TNF-α (–)
(compound 48/80-induced HMC-1 cells)

[103]

Alstonia scholaris Total alkaloid TNF-α, (–)
(LPS-induced airway inflammation in rats)

[104]

Group 2

Astragalus membranaceus Extract IL-4, IL-5, IL-13 (–), IFN-γ (+) [105,106]

Astragaloside IV IFN-γ (+), IL-4, IL-5, IL-13 (–) [107,108]

Asparagus cochinchinensis Saponin-enriched extract IL-4, IL-13 (–) [109]

Peucedanum praeruptorum Coumarins IL-4, IL-5, IL-13 (–), IL-10, IFN-γ (+) [110]

(±)-praeruptorin A IL-4, IL-5, IL-12, IL-13 (–) [111,112]

Victis fructus Pyranopyran-1, 8-dione IL-4, IL-5, IL-13 (–)
(Cockroach allergen-induced mice)

[113]

Glycyrrhiza uralensis Isoliquiritigenin 7,
4’-DHF, liquiritigenin

IL-4, IL-5, IL-13, GATA-3 (–), IFN-γ (+)
(effector memory Th2 cells D10
and OVAsensitized/challenged mice)

[114]

Ilex chineses Protocatechuic acid IL-4, IL-5, IL-13 (–) [115]

Rheum officinale Emodin IL-4, IL-5, IL-13 (–) [116]

Lithonspermum erythrorthizon Shikonin IL-4, IL-5, IL-13, TNF-α (–)
(OVA/TSLP-induced BM-DCs maturation)

[117]
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Table 2. Cont.

Group Components Cytokines * Ref.

Group 2

Ganoderma tsugae Triterpenoid-rich extracts IL-4, IL-5 (–) [118]

Thuja orientalis Extract IL-4, IL-5, IL-13 (–)
(LPS-stimulated macrophages)

[102]

Ligusticum wallichi Ligustrazine IL-4, IL-5, IL-13, IL-17, TNF-α (–) [119]

Armeniacae amarum Water extract IL-4 (–) [120]

Morus alba Kuwanon G IL-4, IL-5, IL-13 (–) [121]

Pinellia ternate Water extract IL-4, IL-5, IL-13, TNF-α (–) [122,123]

Mentha haplocalyx Ethanol extract IL-5 (–) [124]

Platycodon grandiflorum Water extract IL-4, IFN-γ, IL-5, IL-13, TNF-α (–) [125]

Saponins IL-4, TNF-α (–)
(IgE antibody-induced RBL-2H3 cell)

[126]

Scutellaria baicalensis Skullcapflavone II IL-4, TNF-β1 (–) [127]

Echinodarus scaber Hydroethanolic extract IL-4, IL-5, IL-13 (–) [128]

Propolis Caffeic acid phen-ethyl
ester

IL-4, IL-5, TNF-α (–) [129]

Tripterygium polyglycosid Extract IL-5 (–) [130]

Triptolide IL-5, IL-12, TGF-β1 (–)
(LPS-stimulated MPM and human MDC)

[131,132]

Propolis IL-10, IFN-γ, IL-5, IL-6 (–), [133]

Cordyceps sinensis CS-19-22 fraction IFN-γ, IL-12 (+)
(LPS-activated BALF cells)

[98]

Curcuma longa FLLL31 (derivative of
curcumin)

IL-17 (–)
(DRA-challenged mice and LPS-stimulated
macrophages

[101]

Anoectochilus formosanus Extract IL-4, TNF-α (–), IFN-γ, IL-12 (+) [134]

Gynostemma pentaphyllum Extract IFN-γ (+) [135]

Group 3

Astragalus membranaceus Astragaloside IV TGF-β1 (–), IL-10 (+) [136]

Ligusticum wallichii Ligustrazine IL-10 (+) [119]

Peucedanum praeruptorum (±)-Praeruptorin A TGF-β1 (–) [111]

Tripterygium polyglycosid Triptolide TGF-β1 (–) [132]

* The cytokine regulation in Table 2 are measured by OVA animal model, the special results measured by other
cell or animal model were noted in the table. LPS: lipopolysachride; BALF: Bronchoalveolar lavage fluid; DRA:
triple allergens (dust-mite, ragweed, and Aspergillus); OVA: Ovalbumin; MPM: malignant pleural mesothelioma
and MDC: myeloid dendritic cells (mDC)).

Natural products can be divided into many types according to their molecular structures
and different bioactivities. In this article, we discuss five major types: flavonoids, triterpenoids
and glycosides (saponins), alkaloids, polyphenols, and other compounds, namely triptolide; they exhibit
unique activity for pro-inflammatory cytokine expression in patients with asthma. The effect
and mechanism of these compounds are provided in detail in Table 3 [100,106,107,116,126]. The target
pathways of these compounds are still unclear. However, some immunomodulatory mechanisms have
been clarified. Flavonoids are powerful antioxidants that inhibit chemical mediators initiating Th2-type
cytokine synthesis, and they also inhibit other mechanisms that involve mast cells and basophils.
Flavonoids block IL-4-induced signal transduction and influence the differentiation of T cells through
the aryl hydrocarbon receptor [137]. The target signaling pathway affected by polyphenols is the NF-κB
signaling pathway [138]. Polyphenols suppress T helper 2 activation and promote the development of
regulatory T cells (Tr) [139]. Flavonoids can also modulate DC functions either by dampening MHC-II



Cells 2019, 8, 685 11 of 24

and the costimulatory molecule expression or by inhibiting cytokine production, thus hampering
the antigen presentation process [140]. Triterpenoids and their glycosides. (saponin) also affect
the NF-κB signaling pathway, and they function as anti-inflammatory agents [141]. Alkaloids affect
STAT6 and the forkhead box P3 (Foxp3), NF-κB, and mitogen-activated protein kinase (MAPK)
signaling pathways to modulate pro-inflammatory cytokine expression.

Table 3. Relationship of cytokines with the compounds. NF-κB: nuclear factor-κB.

Type Compound Cytokine * Mechanisms Ref.

Flavonoids

Chrysin Gr1: IL-1β, IL-6 (–)
Gr2: IL-4, TNF-α (–)

Inhibition of the NF-κB signaling
pathway and caspase-1

[142]

Kaempferol Gr2: IL-4, IL-5, IL-13 (–)
(A23187-stimulated KU812 cells)

Inhibition of the NF-κB signaling
pathway

[143,144]

Fisetin Gr2: IL-4, IL-5, IL-13, TNF-α (–)
(A23187-stimulated KU812 cells)
Gr 1: IFN-γ, IL-8, IL-1β (–)

Inhibition of the MyD88 and NF-κB
signaling pathways

[144–146]

Quercetin Gr1: IL-1β, IL-6 (–)
(A23187-stimulated KU812 cells)
Gr2: IL-4, IL-5, TNF-α, IFN-γ (–)
Gr3: IL10 (+)
(BV-2 LPS-stimulated microglia cells)

Inhibition of protein kinase C θ

phosphorylation
inhibition of the NF-κB signaling
pathway

[144,146–148]

Skullcap-flavone II Gr2: IL-4, IL-5, IL-13 (–)
Gr3: TGF-β1 (–)

Acting on TGF-β1/Smad signaling
pathways

[127]

Morin Gr1: IL-1β, IL-6 (–)
Gr2: TNF-α, IL-4, IL-13 (–)

up-regulated SUMF2
mRNA expression
and down-regulated Leukotriene B4
receptor 2 (BLT2)/NF-kB
mRNA expression

[149]

Myricetin Gr1: IL-6, IL-8, TNF-α (–)
(Human umbilical cord blood-derived
cultured mast cells)

Inhibition of protein kinase C θ

phosphorylation
[147]

Cyanidin Gr1: IL-17A (–) Inhibition of
the IL-17A/IL-17RA interaction

[150]

Tangeretin Gr1: IL-6 (–)
Gr2: IFN-γ (+), IL-4, IL-5, IL-13,
IL-17A (–)

Modulate PI3K/Akt and Notch
signaling and Th2/Th1 and Th17
cytokine levels

[151]

Rutin Gr2: IL-4, IL-5, IL-13, IL-17A (–),
IFN-γ (+)
Gr3:IL-10 (+)

Inhibition of the NF-κB signaling
pathway

[152]

Kaempferol glycosides Gr2: IL-5, IL-13 (–) Inhibition of IL-4-induced
transcription factor STAT6 activation

[143]

Baicalin Gr1: IL-6 (–)
Gr2: IL-17A (–)
Gr3: IL-10 (+)

Suppression of STAT3 expression
and promoted FOXP3 expression

[153]

Naringenin Gr2: IL-4, IL-13 (–) Inhibition of the NF-κB signaling
pathway

[146,154]

Esculento-side A Gr2: IL-4, IL-5, IL-13 (–) Nrf-2 activation [155]

Genistein and Daidzein Gr1: IL-1β, TNF-α (–) Inhibition of STAT-1 and NF-κB
pathways

[156]

Pinitol Gr2: IFN-γ (+), IL-4, IL-5 (–) Blocking the transcription factor
GATA binding protein 3 (GATA 3)

[157]

Flavocoxid Gr2: IL-13 (–) - [158]

Apigenin Gr1: IL-6, TNF-α (–)
Gr2: IL-17A (–), IL-4 (–)

Blocking the transcription factor
GATA 3

[146,159]

Luteolin-7-O-glucoside Gr2: IL-4, IL-5, IL-13 (–) Downregulation of T helper 2
cytokine transcript

[146,160]

Triterpenoid
and glycosides

Astragaloside IV Gr2: IL-4 (–), IFN-γ (+)
Gr3: IL-10 (+)

Inhibition of the synthesis of
GATA-3-encoding mRNA and protein
in addition to increasing the synthesis
of T-bet-encoding mRNA and protein
in both lung tissues and CD4+ T cells

[107,108]

α-Hederin Gr2:IL-13, IL-17A (–), IL-2 (+) Th1 cells (increases the Th1/Th2 ratio) [161,162]
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Table 3. Cont.

Type Compound Cytokine * Mechanisms Ref.

Triterpenoid
and glycosides

Diosgenin Gr1: TNF-α, IL1-β, IL-6 (–) Enhancing the expression of
glucocorticosteroid
receptors, SLPI, GILZ, and MKP-1,
and inhibiting the expression
of HSP70

[163]

Jujuboside B Gr2: IL-4, IL-5 (–) - [164]

Ganoderic acid C1 Gr1: TNF-α (–)
(RAW264.7 cells and peripheral
bloodmononuclear cells (peripheral
blood mononuclear cells; PBMCs)
from asthma patients)

Downregulation of NF-κB expression,
and partial suppression of MAPK
and AP-1 signaling pathways

[165]

Lupeol Gr1: TNF-α, IL-1β (–)
Gr2: IL-4, IL-5, IL-13 (–)

A mechanism distinct of
glucocorticoids,

[166,167]

Boswellic acid Gr2: IL-4, IL-5, IL-13 (–) Decreasing the expression of pSTAT6
and GATA-3

[168]

Celastrol Gr1: TNF-α, IL-1β (–)
(LPS-stimulated BV-2 cells)

Inhibition of extracellular
signal-regulated kinase 1 and 2
(ERK1/2) phosphorylation
and NF-κB activation

[169]

B-Escin Gr2: IL-5, IL-13 (–) - [170]

Lupeol Gr2: IL-4, IL-5, IL-13 (–)
(LPS-treated marcophages)

- [167]

Alkaloids

Sinomenine Gr2: IL-4, IL-5, IL-13 (–)
Gr3: TGF-β (–)

Inhibition of TH2 immune response,
apoptosis of airway ECs and airway
remodeling

[171]

Chelidonine Gr2:, IL-4, IL-13 (–) STAT6 and Foxp3 pathways [172]

Protostemonine Gr2: IL-4, IL-5, IL-13, IL-33 (–)
(dust mites, ragweed
and aspergillus-induced asthma)

Inhibition of STAT6, KLF4, and IRF4 [173]

Ligustrazine Gr2: IL-4 (–), IFN-γ (+) Modulating key master switches
GATA-3 and T-bet

[174]

Ambroxol Gr2: IL-4, L-13 (–) Inhibiting IgE-dependent basophil
mediator release and p38 MAPK
activity

[175]

Berberine Gr1: IL-1β, IL-6 (–)
Gr2: IL-4, IL-5, IL-13, IL-17 (–)

Inhibition of the NF-κB signaling
pathway

[176]Polyphenols

Epigallocatechin-3-gallate Gr1: TNF-α (–)
Gr2: IL-5 (–)
(Toluene diisocyanate-induced
asthma model)

Activation of the 5’ AMP-activated
protein kinase (AMPK) signaling
pathway

[177]

Curcumin Gr1: TNF-α, IL-1, IL-6 (–)
Gr2: IL-2, IL-12 (–)

Inhibition of the NF-κB signaling
pathway

[101]

Ellagic acid Gr2: IL-4, IL-5, IL-13 (–) Inhibition of the NF-κB signaling
pathway

[178,179]

Resveratrol Gr2: IL-4, IL-5 (–) Inhibition of the NF-κB signaling
pathway

[180]

Apocynin Gr1: TNF-α (–)
Gr2: IL-4, IL-5, IL-12, IL-13 (–)

Inhibition of the NF-κB signaling
pathway

[181]Others

Triptolide Gr2: IL-2 (+)
Gr3: TGF-β1 (–)

TGF-β1/Smad pathway [182]

Andrographolide Gr2: IL-4, IL-5, IL-13 (–) Inhibition of the NF-κB signaling
pathway

[183]

Honokiol Gr1: TNF-α, IL-6 (–)
Gr2: IL-12, IFN-γ (+), IL-13, IL-17(–)
Gr3: IL-10, TGF-β (+)

γ-Aminobutyric acid type
A-dependent manner

[184]

Thymoquin-one Gr2: IL-4 (–), IFN-γ (+) - [185]

Shikonin Gr1: TNF-α (–)
Gr2: IL-4, IL-5, IL-13 (–)
(OVA + TSLP-induced BM-DC
maturation,
OVA-sensitized/challenged mice)

- [117]

Gr1: Group 1; Gr2: Group 2; Gr3: Group 3; (+): upregulation; (−): suppression; −: no mentioned the detailed signal
pathway. * The cytokine regulation in Table 3 are measured by OVA animal model, the special results measured by
other cell or animal model were noted in the table.
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5. The Side Effect and Specific Outcomes in Asthma of Herbal Compounds

Most herbal formulas can alleviate AHR and late-phase inflammation for asthma.
Especially, Sanao decoction and Xiao-Qing-Long-Tang can modulate the Gr 3 reaction. In the clinical
trial, ASHMI, Ding Chuan Tang, STA-1, and Mai-Men-Dong-Tang have been evaluated; the outcomes
are safe and improve lung function [186]. However, Ephedra sinica derivated from Shengfei Yuchuan
decoction, Wuwei Dilong Decoction, and Xiao-Qing-Long-Tang have side effects on the cardiovascular
system [90]. The bioeffect of a single herb for asthma treatment has been evaluated by the OVA animal
model; otherwise, some study used an allergen-animal model to evaluate its bioeffect. Among them,
Tripterygium polyglycosid and a major active component, triptolide, have side effects included hematologic
abhormalities, gastriointestinal intolerance, infection, and infertility [84]. In the markets, natural
products claimed multiple contents for multiple bioeffects, and the knowledge from biocompounds will
apply to the new drug development field. We conclude that the natural component divided in Group 1
can provide preventive effects at the early stage of asthma development; the natural components
divided into groups 2 and 3 have therapeutic potency. However, balance is key: too much of any of
them has no benefit for prevention or treatment at all.

6. Conclusions

The pathophysiology of asthma disorders is complex. Cytokines play a crucial role in the immune
system and inflammatory responses in asthma. Many inflammatory cytokines are involved in
innate and adaptive immunity in asthma. Therefore, anti-cytokine antibodies/anti-cytokine receptor
antibodies are potential therapy for patients who do not respond to standard treatments. Except for
asthma, the efficacy and safety have been proven for cardiovascular, cancerous, respiratory, hematology,
autoimmune and infectious diseases. As of March 2017, the Food and Drug Administration (FDA)
has approved approximately 60 therapeutic MAbs until March 2017 that are currently under evaluation
in various phases of clinical trials. Adverse reactions have been reported, including immune regulation
disorder, other immune-related adverse reactions such as dermatologic, gastrointestinal, and endocrine,
and reactions related to alterations in the immune balance, including undesired effects related to
the target antigens and cytokine release syndrome [187]. No single cytokine is responsible for
the entire pathogenesis of asthma. This is the challenging aspect of MAbs for asthma therapy.
Therefore, the evaluation of anti-cytokine antibodies/anti-cytokine receptor antibodies for different
phenotypes of asthma is essential.

In accordance with ancient pharmacopoeias, many medicinal plants show immunomodulatory
potential and anti-asthmatic effects from the beginning of allergen sensitization to Th2 polarization,
pulmonary inflammation, and fibrosis. An evidence-based study of natural medicinal herbs in treating
asthma suggested that in addition to alleviating airway syndromes, many natural products have
immunomodulatory effects, including modulating inflammatory cytokine expression and regulating
the activity of inflammatory cells. Further research is warranted to explore the detailed immunomodulatory
molecular mechanisms of these natural compounds to elucidate the in vitro and in vivo mechanisms of
these active ingredients and ascertain their therapeutic management in asthma. Although these natural
compounds, which have existed for a long period of time, can be used for preventive or therapeutic
purposes, the precise dosage of natural medicinal compounds for patients with asthma still needs
further evaluation. Traditional herbal products, especially formulas and single herbs, are widely used in
asia. Although many studies have proved their biofunction, the standardized preparation, dosage use,
and drugs interaction, and other side effects all need more effort to achieve safe delivery and efficacy [188].
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