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Glossary

APOBEC proteins: A family of DNA or RNA cytidine deaminase enzymes that

inhibit retroviruses such as HIV, retrotransposons, and other viruses.

Infectious synapse or virological synapse: These are specialized sites of

immune cell-to-cell contact that direct virus infection. The term infectious

synapse is generally used for the DC–T cell transfer of HIV-1, and the term

virological synapse is used for the transfer of HIV-1 from T cells to T cells.

MVB: Multivesicular body: an endocytic organelle characterized by multiple

internal membranes where internalized receptors are targeted before degrada-

tion.

Tetraspanin: Tetraspanins have four transmembrane domains and regulate

cell morphology, motility, invasion, fusion and signaling in the brain, immune

system, or tumors.
Dendritic cells (DCs), including Langerhans Cells (LCs),
are probably among the earliest targets of HIV infection.
Their localization in mucosal epithelia and in the T cell
areas of lymphoid organs, as well as their crucial role in
capturing antigens and initiating T cell responses, high-
light their potential importance. Studies with cells in
culture have addressed different outcomes of the HIV-–
DC interaction, which include: direct productive infec-
tion of DC; carriage of virus by DC to CD4+ T cells; transfer
of virus between DC and T cells at an infectious synapse;
and immune evasion strategies of infected DC. Here we
review the literature covering these areas, including
current knowledge of underlying mechanisms or path-
ways.

Introduction
Dendritic cells (DCs) are among the first potential targets
for HIV-1 during transmission (reviewed in [1–4])
(Figure 1) owing to their unique localization at mucosal
surfaces, coupledwith their known proficiency in capturing
antigens. In addition, DCs are versatile antigen-present-
ing cells (APCs) that form a pervasive network in the T cell
areas of lymphoid tissues [5,6], where they induce protec-
tive adaptive immune responses, as well as tolerogenic
responses (reviewed in [7]). As a result there has been a
large amount of research on the interaction of DCs with
HIV, and here we review four key questions in this field.

To what extent is there direct HIV infection of DC?
To gain information on the infection of DCs and
Langerhans cells (LCs) during transmission of immunode-
ficiency viruses at a mucosal surface in vivo, Simian immu-
nodeficiency virus (SIV) infection of rhesus macaques
through the vaginal route has been studied. SIV was found
in DCs early after crossing the stratified squamous epi-
thelium of the vagina and exocervix [8,9]. Nevertheless, the
frequency of infected cells was low. In subsequent studies,
performed in the gut-associated lymphoid tissue (GALT),
where CD4+ T cells were present in large numbers, pro-
ductive infection of T cells was more readily detected than
infection of DC ([10,11], and reviewed in [3]). Likewise,
when the lymphoid tissue of SIV-infected monkeys and
HIV-infected humans was examined, it was difficult to find
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DCs that labeled for viral RNA, in contrast to the ready
detection of viral RNA-positive CD4+ lymphocytes [12–14].
However, more research is needed on mucosal-associated
lymphoid tissue, because this is a more robust site for
productive infection [15,16].

In vitro, different sources of DCs and LCs have been
used to detect infection with HIV. These include LCs from
skin [17–20] and vagina [21], different subsets of DCs in
blood [22–24], and DCs generated in large numbers from
monocytes [25–28] or from CD34+ progenitors [29]. In each
case it is possible to demonstrate infection of someDCs, but
again the frequency is low, particularly relative to cultures
of CD4+ T cells. Only several percent or less of the DCs in
the cultures express detectable levels of newly synthesized
viral protein (e.g. HIV gag p24), and immature forms of
DCs are more susceptible to productive infection [25].

Recent in vitro studies addressed some of the potential
explanations for the relatively inefficient productive in-
fection of HIV of DCs and LCs. Several reports have
demonstrated that HIV using CCR5 [chemokine (C–C
motif) receptor 5], R5 HIV, replicates better than HIV
using CXCR4 [chemokine (C–X–C motif) receptor 4], X4
HIV, in DCs and LCs ex vivo [19,25,30,31]. The immature
DCs and LCs might not express CXCR4, [32] which could
provide a simple explanation for the restriction of X4 HIV
replication in DCs or LCs. However, other studies detected
both CXCR4 and CCR5 expression on immature DCs and
LCs [28,33,34]. Two recent reports indicate that the fusion
of HIV using CXCR4 with immature DCs is restricted
irrespective of surface levels of CXCR4 [27,28]. DC matu-
ration also results in downregulation of CCR5, and
TRIM: TRIM proteins are members of a tripartite motif family of proteins (�70

family members), which is defined by the presence of RING finger, B-box, and

coiled-coil domains. TRIM5a has restriction activity against a broad range of

retroviruses, including HIV-1.
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Figure 1. Model of HIV mucosal transmission. Vaginal epithelium is composed of a stratified multicellular squamous epithelium, whereas cervical and rectal mucosae have

a single-layer cellular lining. During and after crossing the mucosal epithelia, HIV infects LCs, DCs and macrophages, as well as mucosal CD4+ T lymphocytes, in the

mucosal and sub-epithelial level. Alternatively, DCs (and potentially LCs) capture virus without being infected and transfer it in trans across an infectious synapse to CD4+ T

cells. The ‘founder’ infected cells amplify virus and migrate to the peripheral lymph nodes where they transfer virus to bystander cells. Viral load increases rapidly when the

virus reaches the GALT.
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decrease in viral fusion with mature DCs (mDCs) [27], as
well as post-integration inhibition of HIV transcription
[35].

Given the difficulty in identifying obstacles toHIV fusion
and entry in DCs, post-entry blocks probably explain the
limited HIV infection of DCs compared with CD4+ T cells
(Figure 2). Two families of cellular restriction factors are
already known to block retroviral infection in human cells:
the APOBEC family and the TRIM family (see Glossary)
[36,37]. Apolipoprotein B mRNA-editing enzyme, catalytic
polypeptide-like 3G, or APOBEC3G (A3G), is a potent host
cytosolic antiretroviral factor that can restrict HIV-1 in-
fection using at least two mechanisms. A3G is a DNA
deaminase and is incorporated into virions during viral
productionandsubsequently inducesmassiveG-to-Ahyper-
mutation in the nascent retroviral DNA [38,39]. This mode
of action is counteracted by Vif, which prevents incorpora-
tion of A3G into virions [40]. A3G can also function in an
www.sciencedirect.com
editing-independent manner (reviewed in [41]). For
instance, A3G operates as a post-entry restriction factor
for HIV during reverse transcription in resting CD4+ T cells
[42], inwhich it resides in a lowmolecular-mass active form.

The restriction factorsAPOBEC3G,and toa lesser extent
APOBEC3F, but not TRIM5a, restrict HIV-1 infection in
monocyte-derived DCs (Figure 2c) [43]. Also, if the small
subset of infectedDCsare isolated from the culture, they are
found to be deficient in APOBEC3G [43].Maturation of DCs
correlateswith an increase in the lowmolecular-mass active
form of APOBEC3G and a decrease inHIV infection [43,44].
Monocytesare resistant toHIV infection, and this resistance
correlates with the strong presence of the low molecular-
mass active form of APOBEC3G [42–44]. Silencing of APO-
BEC3G (but also of APOBEC3A) in monocytes increased
HIV replication [45], indicating that severalmembers of the
APOBEC family might contribute to restriction of HIV in-
fection in monocyte-derived DCs. Thus the presence or



Figure 2. The balance between resistance and infection of DC and LC subsets by HIV-1. (a) The C-type lectin, Langerin, on LCs has recently been reported to decrease

infection of LCs, as well as transfer of HIV infection to CD4+ T cells. (b) The C-type lectin DC-SIGN (and probably other factors) increases HIV infection of DCs, as well as

transfer of HIV infection to CD4+ T cells across an infectious synapse in trans. (c) Direct infection of DCs is limited by entry blocks linked to surface levels of CD4 and HIV co-

receptors (CCR5), limited fusion of HIV with DCs, as well as cytoplasmic restriction factors APOBEC3G/3F. Post-integration blocks limit viral propagation from infected DCs.
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absence of host restriction pathways is a major factor for
understanding the typical resistance of most DC popu-
lations to productive infection with HIV, and probably SIV.

How do DCs carry virus and promote infection in
CD4+ T cells?
In contrast to the difficulties in infecting DCs directly, a
different situation applies to experiments in whichDCs are
first exposed to virus for 1–2 h, washed, and then added
immediately (or even three or more days later) to T cells.
What transpires is a robust infection primarily in the T
cells. By contrast, HIV is labile if it is left in culture
medium before addition to permissive T cells. Transfer
of infection by DCs applies to both R5 and X4 forms of the
virus, whereas infection of DCs or LCs is typically more
vigorous with R5 virus [25,46]. These experiments initially
used DCs and T cells from blood [17,47], and later DCs and
T cells from skin (these were used as a model for the less
accessible cells present in vaginal epithelium) [19,20].
These findings led to the conclusion that DCs can sequester
virus in an infectious form before transfer to T cells they
www.sciencedirect.com
encounter, particularly antigen-specific ones in which the
DCs also trigger T-cell proliferation and increased permis-
siveness to HIV.

The study of HIV transfer from DCs to T cells was
stimulated by the identification of one potential mechan-
ism that involves a lectin, DC-SIGN (DC-specific ICAM-3
grabbing nonintegrin) (CD209) [48]. The initial publi-
cations used monocyte-derived DCs that are rich in DC-
SIGN, but some dermal and mucosal DCs clearly express
this lectin and are active in binding and transferring HIV
[49] (Figure 1). DC-SIGN binds HIV and can also sequester
virus within the cytoplasm before transfer to T cells
[48,50]. In addition to facilitating HIV infection in trans
to CD4+ T cells, [48,51,52] there are reports that DC-SIGN
facilitates infection of DCs in cis [53,54]. Also, if DC-SIGN
is stably transfected into certain cell lines, the cells become
capable of retaining HIV for 3–6 days in culture, after
which the virus can be transmitted to T cells when the
two cell types aremixed [48,50]. This suggests that levels of
expression of DC-SIGN and the cell type under study are
relevant variables for detecting the capacity of this lectin to
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mediate the sequestration and eventual transmission of
HIV to T cells.

Capture ofHIVbyDCs can bemediated byDC-SIGN [48]
as well as DC-SIGN-independent mechanisms [52,55–59].
Althoughmost studies have shown thatDC-SIGNpromotes
transfer of HIV infection in trans [48,50,51,60,61], several
publications have concluded that DC-SIGN is not the only
factor that promotes transfer of HIV infection from DCs to
CD4+ cells [6,52,56,58]. An explanation for this apparent
discrepancy is that initial studies were mainly performed
using B cell lines expressing DC-SIGN [48,50,60,62,63]. In
cell lines, DC-SIGN promotes transfer of HIV infection in a
cell-type-dependent manner that is strictly dependent on
DC-SIGN [48,50,51,60–62]. Studies in primary DCs have
shown a variable contribution of DC-SIGN in the transfer of
HIV infection to CD4+ T cells (i.e. from a minimal to a
significant contribution), perhaps depending on the DCs
used, as well as the experimental conditions. RNA inter-
ference studies of DC-SIGN in immature DCs generated
from bone marrow precursors demonstrated a clear role for
the C-type lectin in the transfer of X4 virus to CD4+ T cells
[51,52]. By contrast, RNA interference of DC-SIGN in DCs
was less effective in decreasing the transfer of CCR5 HIV
from blood DCs to CD4+ T cells [6]. One explanation is that
HIV using CCR5 replicates in DCs, and de novo production
of HIV, rather than DC-SIGN-mediated transfer, is respon-
sible for CD4+ T infection in these conditions, in agreement
with other observations [46]. Another explanation for the
difficulty in blocking transfer ofHIV to T cellswith anti-DC-
SIGN antibodies is that DCs use mechanisms other than
DC-SIGN, including the action of other lectins. Maturation
status of the DC is also a crucial factor when analyzing the
role of DC-SIGN in transfer of HIV infection from DCs to T
cells because DC-SIGN is downregulated during DC matu-
ration, [64] whereas transfer of virus to T cells is clearly
retained and even enhanced [25,52].

Nevertheless, in terms of mechanisms, the DC-SIGN
experiments have generated the concept that in addition to
viral receptors and co-receptors, pathogen-recognition
receptors of the C-type lectin family recognize HIV and
enhance infection of T cells by DCs in trans. DCs express
many different C-type lectins, some of which are selectively
expressed in subtypes of DCs and LCs, and their expres-
sion is further influenced by the state of DC maturation.
For example, the LC type of DC does not express DC-SIGN
but expresses another lectin, Langerin [55,65]. Langerin is
also reported to bind HIV, but in contrast to DC-SIGN, it
might function primarily to degrade HIV following uptake
of low HIV inocula into the LC [66] (Figure 2). Some
Langerin is expressed at the cell surface in LCs residing
in stratified squamous epithelium (in addition to a large
pool within Birbeck granules), but surface expression is
less prominent as the LCsmature [67]. The variables of DC
subsets and DC maturation make it difficult to compare
different populations of DCs that have been studied in the
literature. For example, DC-SIGN is abundant on mono-
cyte-derivedDCs but is not readily detected onmost DCs in
the T cell areas of lymph nodes [6]. Another potential
variable is that lectins are positioned in microdomains
and/or compartments that are enriched in other crucial
receptors, such as CD4 and co-receptors [68].
www.sciencedirect.com
In considering the many different publications, a major
question – as emphasized by Burleigh et al. [48] – is the
extent to which productive infection of DCs, versus non-
productive infection but transfer of virus in trans, contrib-
ute to the vigorous infection observed when DCs are
exposed to HIV encounter T cells. By working out path-
ways for transmission of virus, investigators will have
better criteria to compare different experiments and to
assess in vivo relevance.

Studies of HIV infection of DCs or LCs also have
implications for the field of microbicides. The candidate
microbicides tested to date have not been directed specifi-
cally against HIV-1 [69]. Several newer compounds target-
ing HIV specifically might be more promising, particularly
if they block transmission pathways that are initiated by
HIV-capturing DCs and LCs [70,71]. Molecules targeting
CCR5 seem promising in this respect, and can prevent
mucosal transmission of SIV in animal models [72,73]. By
contrast, microbicides based on mannan seem less prom-
ising because they do not prevent HIV infection of LCs [20]
and rather promote it by inactivating the partial protection
conferred by Langerin [66]. This might explain, in part, the
relatively limited efficacy of mannan in animal models of
SIV mucosal transmission [73].

What takes place during virus transmission at the
DC–T cell infectious synapse?
Themechanisms for the explosive transfer of HIV infection
from DCs to CD4+ T cells observed more than 10 years ago
[17,47] remained unexplained until the description of an
‘infectious synapse’ between infected DCs or LCs and
uninfected T cells ([21,46,52,74], reviewed in [75]). In
the field of immunology, the existence of a structured
molecular architecture at the interface between T cells
and APCs, termed the ‘immunological synapse’, is well
known [76]. By analogy, a stable adhesive junction is
formed between infected DCs and uninfected T cells and
directed transfer of the virus captured by the DCs then
takes place from the effector (infected DC) to the target cell
(uninfected CD4+ T cell). The existence of an infectious
synapse is not limited to DC–T cell contacts. A similar
structure termed the ‘virological synapse’ has been
observed during cell-to-cell viral transfer from infected
CD4+ T cells to uninfected T cells [77,78]. Furthermore,
other pathogens, such as HTLV-1 (human T-lymphotropic
virus 1) [79] and potentially severe acute respiratory syn-
drome (SARS) coronavirus [80], might propagate through a
similar structure.

Some of the mechanisms of HIV capture and transfer
across the DC–T cell infectious synapse are now eluci-
dated. The CD4 HIV receptor and CXCR4 and CCR5 co-
receptors are concentrated on the T cell side of the synapse,
explaining in part the robust transfer of HIV infection
across the infectious synapse [74]. The C-type lectin DC-
SIGN also promotes infectious synapse formation, and
might also facilitate the transfer of HIV infection to
CD4+ T cells [52]. A potential explanation for the role of
DC-SIGN in DC–T cell infectious synapse formation has
been proposed recently. HIV binding to DC-SIGN recruits
the Rho guanine nucleotide-exchange factor LARG, which
increases DC–T cell infectious synapse formation [81].
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Finally, tetraspanins (such as CD81), which are a family of
proteins that participate in antigen presentation and
immunological synapse formation, are enriched in the
DC–T cell infectious synapse [82].

How the virus is captured and then translocated to the
infectious synapse is not clear. Most of the HIV that is
captured by DCs is degraded rapidly [46,82–85]. Again,
DC-SIGN can have a role by interacting with leukocyte-
specific protein, LSP-1, which enhances degradation [86].
A significant 5%–10% fraction of infectious particles
evades this degradation and is protected for up to two
days in an intracellular compartment [50,82,87], which
has also been visualized in monkey DCs, particularly
mature monocyte-derived DCs, exposed to SIV [88]. This
compartment contains multivesicular bodies and is rich
in tetraspanins, such as CD81 or CD9 [82,87]. On contact
with T cells, HIV is rapidly translocated to the infectious
synapse via a trafficking pathway that shares some
similarities with the release of exosomes [87]. A recent
study challenges this view [89] and suggests that HIV is
released mainly (if not only) from the cell surface. In this
study, inhibitors such as pronase or soluble CD4 blocked
the majority of viral transfer from DCs to T cells, which
led the authors to suggest that HIV was mainly trans-
ferred from the cell surface and did not require prior
internalization as suggested by others [50,74,82,87].
However, several other publications have reported
that HIV associated with DCs is protected from trypsin
treatment [48,87,90] and from pronase treatment [58,
59,85,91]. The functional outcome of the DC–T
infectious synapse will require resolution of underlying
pathways (i.e. the compartments in which virus is
sequestered and from which virus is transferred to
CD4+ T cells).

What is the impact of HIV on the function of DC and
CD4+ T cells?
Although HIV seems to infect antigen-specific CD4+ T cells
more efficiently in vitro [34,84] and in vivo [92], and strong
viral replication in activated CD4+ T cells can lead to T cell
death (reviewed in [93]), HIV might evade the immune
system in more subtle ways. The classical function of DCs
in adaptive immunity is for the DC to capture and process
antigens efficiently, and undergo concomitant differen-
tiation or maturation to elicit an adaptive immune
response that is tailored to the environmental stimulus
at hand. In the case of viruses, the maturation stimulus is
delivered either from toll-like receptors (TLRs), particu-
larly TLR7, 8 and 9 (located in the endosomes of some cells,
particularly in plasmacytoid DCs), or through intracellular
sensors termed RIG-I and mda5 (found in the cytoplasm of
most cells) [94]. Whereas maturation via pattern-recog-
nition receptors drives DCs to induce immunity, another
more recently recognized function of DCs is not to induce
adaptive resistance, but instead to induce different forms
of tolerance, either in the steady-state or in the presence of
suppressive cytokines such as IL-10 and TGF-b. Specifi-
cally, immatureDCs in lymphoid tissues can initiate clonal
expansion, but the T cells then die rather than differentiate
or acquire memory [95,96]. In addition, some types of
DC induce the differentiation of regulatory T cells that
www.sciencedirect.com
primarily produce IL-10 [97,98], or are induced to express
the regulatory T cell master control transcription factor
Foxp3 [99]. There is now evidence that HIV influences
these contrasting outcomes of DC function by blocking
maturation required for adaptive resistance and favoring
tolerance.

Whereas viruses can typically mature DCs,
HIV-infection of DCs does not lead to maturation, with a
possible exception taking place when large amounts of
virus are added [26,100,101]. Infected DCs have been
monitored directly using a recombinant HIV-expressing
green fluorescent protein (GFP), and the fluorescent DCs
selectively failed to mature even when a strong microbial
stimulus (lipopolysaccharide) was added [100]. Likewise,
BDCA-1+ DCs in blood undergo maturation in culture, but
this does not take place in the presence of HIV [102]. In
another system, IL-10 was produced in co-cultures of
infected DCs and T cells, leading to immune suppression
[100]. These relatively new findings suggest that HIV
favors immune evasion when it interacts with DCs, that
is, infected DCs are blocked from maturing, and there are
also opportunities formore active immune evasion through
the induction of regulatory or suppressive cells.

HIV also modulates the activation of CD4+ T cells
during contact with APCs, which probably also promotes
viral immune evasion. HIV directly alters the composition
of the immunological synapse formed between infected
lymphocytes and Raji B cells owing to an accumulation
of the TCR and Lck in the recycling endosomes, rather
than at the synapse [103] (reviewed in [93]). The viral
protein Nef seems to have an essential role in this process
[103]. Is there a benefit for the virus partially activating
CD4+ T cells? One possibility is that fully activated CD4+ T
cells die rapidly on encountering HIV. Partial CD4+ T
activation might well be beneficial to the virus because
it would provide the possibility for sustained production
over a longer time period.

Conclusion
As sentinels of the immune system and regulators of
immune responses, LCs and DCs are probably early tar-
gets of HIV infection during mucosal and parenteral trans-
mission. Recent research in tissue culture has provided
insight into the diverse outcomes of

HIV–DC interaction. The infection of DCs or LCs is no
easy task because HIV must overcome cellular obstacles to
its entry and replication, such as the C-type lectin Lan-
gerin on the surface of LCs, or APOBEC3G in the cyto-
plasm of DCs. However, HIV can highjack DCs to
propagate to CD4+ T cells in trans, even in the absence
of replication in DCs, perhaps via the C-type lectin DC-
SIGN and other mechanisms. Transfer of virus between
DCs and T cells at an infectious synapse is also an import-
ant outcome that facilitates HIV transmission. Finally,
HIV-infected DCs might promote immune evasion by
blocking DC maturation and by hampering immune
responses. Future studies on the interaction between
HIV and DCs will be valuable for understanding HIV
transmission and pathogenesis, and should contribute to
the search for novel microbicides and other HIV-preven-
tion technologies and HIV therapies.
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