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Abstract

Horizontal gene transfer (also called lateral gene transfer) is a major mechanism for microbial genome evolution, enabling
rapid adaptation and survival in specific niches. Genomic islands (GIs), commonly defined as clusters of bacterial or archaeal
genes of probable horizontal origin, are of particular medical, environmental and/or industrial interest, as they disproportion-
ately encode virulence factors and some antimicrobial resistance genes and may harbor entire metabolic pathways that confer
a specific adaptation (solvent resistance, symbiosis properties, etc). As large-scale analyses of microbial genomes increases,
such as for genomic epidemiology investigations of infectious disease outbreaks in public health, there is increased appreci-
ation of the need to accurately predict and track GIs. Over the past decade, numerous computational tools have been devel-
oped to tackle the challenges inherent in accurate GI prediction. We review here the main types of GI prediction methods and
discuss their advantages and limitations for a routine analysis of microbial genomes in this era of rapid whole-genome
sequencing. An assessment is provided of 20 GI prediction software methods that use sequence-composition bias to identify
the GIs, using a reference GI data set from 104 genomes obtained using an independent comparative genomics approach.
Finally, we present guidelines to assist researchers in effectively identifying these key genomic regions.
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A tale of genomic islands in bacterial evolution

Bacteria and archaea reproduce clonally, typically by binary fis-
sion/bipartition, but are also able to acquire foreign genetic ma-
terial from other living organisms via horizontal gene transfer
(HGT; also called lateral gene transfer). HGT has played an ex-
tensive role in microbial genome evolution, leading researchers
to tentatively represent their evolution as a ‘Web of Life’ [1] or a
‘Rhizome of life’ [2] rather than a tree reflecting vertical descent.
HGT is a major source of novel microbial genes, providing and
maintaining diversity at the population level [3, 4]. Clusters of
consecutive genes likely acquired by HGT are commonly
described as genomic islands (GIs).

Several types of mobile genetic elements fall within this
broad definition of GIs, including integrons, transposons, inte-
grative and conjugative elements (ICEs) and prophages (inte-
grated phages) [5]. These can be distinguished based on the
mechanism of GI acquisition, mainly conjugation, transform-
ation or transduction, and associated mobile selfish elements
(integrases, transposases and insertion sequences) that pro-
mote GI mobilization and transfer [1, 6]. Once integrated into
the genome, GIs evolve through mutations, genome rearrange-
ments, gene loss or further acquisition of mobile genetic ele-
ments. The ability for a GI to transfer further to other microbial
hosts strongly depends on the type of mobile genetic element,
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the host background and tightly regulated stochastic processes
[6, 7].

Two groups of GIs can be distinguished with different roles:
replacement and additive GIs [3]. Replacement GIs acquired by
homologous recombination maintain the genomic diversity in
the population and can be found conserved in distant relatives
as well as in closely related strains [8]. Additive GIs are acquired
by non-homologous recombination in preferential insertion
sites such as transfer RNAs (tRNAs) or transfer-messenger
RNAs (tmRNAs) or in the vicinity of highly conserved core
genes, commonly leaving behind 16–20-bp direct repeats [9].
Additive GIs enable the bacterium to integrate multiple cas-
settes of different origin in a single genomic region, leading to
their mosaic nature. The resulting genome flexibility enables
rapid transfer of useful phenotypes in bacterial populations
sharing a niche [10].

Genes that provide an advantage in a selective environment
have been found to be associated with GIs, including those of
significant medical interest and ‘novel’ genes (the latter reflect-
ing a large, undersampled gene pool likely associated with these
genomic regions) [11]. The spread of antimicrobial resistance
(AMR) in some cases is the result of such HGT via bacterial con-
jugation [12] or phage transduction [13]. Virulence factors were
also shown to be significantly disproportionately associated
with GIs [14]. In particular, prophages can carry virulence fac-
tors that are often associated with increased bacterial virulence
[15]. A recent study modeled how prophages, through recom-
bination with actively infecting phages, play a key role in main-
taining the phage population and expanding phage types [16].
They promote a diverse phage–host ecosystem with its associ-
ated large pool of genes driving microbial evolution. Indeed,
lysogenic phages represent a major source of GIs [17, 18], as
about 50% of characterized bacteria harbor one to over a dozen
prophages [19].

The gene content of GIs was traditionally used to classify GIs
into several subtypes, for example (i) pathogenicity islands
(PAIs) that encode genes important for bacterial pathogenicity/
virulence [20]; (ii) resistance islands that encode AMR genes [21];
(iii) symbiosis islands, as first coined for strains of
Mesorhizobium meliloti, that are able to form nodules on plants
after the acquisition of a 500-kb element [22];or (iv) metabolic
islands that encode for adaptive metabolic abilities [6], for ex-
ample the degradation of aromatic compound in Pseudomonas
knackmussii [23]. However, the modular evolution of GIs and
their composite nature enable single GIs to encode proteins
with multiple functions. Hence, this simplistic classification
reflects functional types driven by human interests for key gene
functions rather than defined categories of evolutionary and
mechanistic relevance.

As a direct consequence of their origin and evolution, fea-
tures of GIs can include (i) a local nucleotide composition bias
(guanine cytosine (GC) content, GC skew, codon usage, or k-mer
signature), differing from the chromosome average; (ii) the pres-
ence of mobility genes and insertion sequences that can rapidly
decay after GI integration; (iii) a high prevalence of phage-
related genes; (iv) a high prevalence of hypothetical proteins;
and (v) the presence of direct repeats [24].

Computational prediction of GIs

GI detection, capitalizing on the features mentioned earlier, can
be roughly classified into (1) sequence composition-based
approaches and (2) comparative genomics approaches, based
on the two most distinctive features associated with the

horizontal origin of GIs: their sequence composition bias and
sporadic phylogenetic distribution [5]. Despite the presence of
well-known features, GI prediction is challenged by their mosaic
nature and propensity to evolve rapidly through further gene
acquisition that mixes nucleotide bias signatures, gene loss that
can remove mobility genes or genome rearrangements. GI pre-
diction has become an increasingly important component of
bacterial genome investigation, and the development of new,
more accurate tools has attracted major attention in the com-
munity, given the release of several new computational meth-
ods for GI prediction in the past decade (Table 1). Previous
reviews of GI prediction methods have provided a good overall
classification of tools available at the time of publication [5, 25,
26]. Hence, we review here new computational methods and
new releases of existing software, in comparison with older
methods.

Sequence composition-based approaches

Assuming that mutational and selection pressures acting relative-
ly homogeneously on microbial genomes create genome-wide
signatures of nucleotide composition specific to each microbial
species, genomic regions acquired by HGT can be distinguished
from the rest of the genome in some cases by their atypical nu-
cleotide composition. Methods adapted to the analysis of single
genome sequences are generally based on the detection of such
biases in sequence composition, eventually coupled with the ana-
lysis of gene content and further characteristics that are detailed
in Table 2. Available tools usually examine k-mer frequencies or
GC content at the genome or the gene level either using sliding
windows or windowless methods. The wide variety of implemen-
tations, scoring algorithms and refinement methods (Tables 1
and 2) complicates the division of existing methods in intricate
categories. Because of the large number of available methods, we
will summarize here their similarities, advantages and drawbacks
rather than precisely describing algorithms, as offered in previous
reviews [5, 25].

Window-based and windowless methods analyzing genome-level
nucleotide sequence composition
Many methods use sliding windows at the genome level (rather
than analyzing individual genes) to calculate nucleotide com-
position biases, including MTGIpick [27], GI-SVM [28], SigHunt
[29], Centroid [30], INDeGenIUS [31], AlienHunter [32] and
Design-Island [33]. As reviewed in [25], these methods differ in
the size of the sliding window, the scoring scheme as well as
rules for the determination of regions with atypical compos-
ition. AlienHunter and GI-SVM use overlapping windows of
fixed size, whereas MTGIpick, INDeGenIUS and Centroid use
non-overlapping windows. Recently published, MTGIpick
implements a t-test with selection of features to quantify com-
positional differences of tetranucleotides using kurtosis. It was
suggested that it provides much higher recall, but lower preci-
sion, versus other window-based methods [27].

MSGIP [34], MJSD [35], GC-profile [36] and ZislandExplorer
[37] are windowless methods using top-down approaches to de-
termine break points in the genome sequence composition bias.
GC-profile calculates GC content distribution, leaving the deter-
mination of GIs to the user. Its further development, named
ZislandExplorer, refines regions identified using GC-profile by
analyzing the codon and amino acid usage to define potential
GIs. A recursive segmentation method is used by MJSD to iden-
tify changes in genome sequence atypicality, based on meas-
ures of Markov Jensen–Shannon divergence.
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Most of these methods are sensitive but have low precision
because of the limited information used for prediction (also see
the benchmarking of GI predictors later). It is interesting to note
that by further taking into account codon and amino acid usage,
ZislandExplorer achieves a much improved precision compared
with GC-profile. Overall, windowless methods supposedly bet-
ter identify GI boundaries, as they do not rely on any predefined
window size but can in principle determine boundaries as pre-
cisely as a single base. For window-based methods, the bounda-
ries will depend on the size of the window used for
computations. However, most methods do not provide specific

implementations to improve the determination of GI bounda-
ries, except MTGIpick that includes a derived version of MJSD to
refine GI boundaries after an initial prediction step.

Window-based and windowless methods at the gene level
Genes represent an important functional unit of microbial
genomes, which differ in sequence composition from non-
coding regions of the genome, and were, therefore, used to iden-
tify composition biases or to refine predictions in many other
methods (Table 2), including IslandPath-DIMOB, SIGI-HMM and
SIGI-CRF, Wn-SVM, SVM-AGP, PredictBias, GIHunter, GIDetector

Table 1. GI prediction tools listed by descending year of last publication

Predictors Command line,
GUI, webserver,
database

Complete/draft
genome

Input file Year,
reference

Link

IslandPath-DIMOB C (W D) C gbk or embl 2018, [39] https://github.com/brinkmanlab/islandpath
2005, [11]

IslandViewer C W D C / D gbk or embl 2017, [47] http://www.pathogenomics.sfu.ca/islandviewer
2009, [67]

Vrprofile W, D C / D gbk or fna 2017, [55] http://bioinfo-mml.sjtu.edu.cn/VRprofile/
MTGIpick G W C / D fna 2016, [27] http://bioinfo.zstu.edu.cn/MTGI/software.html
Zisland Explorer C G W D C fna (optional ptt) 2016, [37] http://tubic.tju.edu.cn/Zisland_Explorer/
MSGIP C G C fna 2016, [34] https://github.com/msgip/msgip
Islander C D C fna 2015, [44] http://bioinformatics.sandia.gov/islander/

2004, [78]
GI-SVM C C fna 2015, [28] https://github.com/icelu/GI_Prediction
PAI Finder-PAIDBa W D C ffn (specific format) 2015, [58] http://www.paidb.re.kr/
PIPS and GIPSyb C G W C gbk or embl 2015, [54] http://www.bioinformatics.org/groups/? group_id¼1180

2012, [53] http://www.genoma.ufpa.br/lgcm/pips/
GIHunter C D C fna, ptt, and rnt 2014, [43] http://www5.esu.edu/cpsc/bioinfo/software/GIHunter/

http://www5.esu.edu/cpsc/bioinfo/dgi
Sighunt C C fna 2014, [29] https://www.iba.muni.cz/index-en.php? pg¼research–

data-analysis-tools–sighunt
GC-profile C W C fna 2014, [36] http://tubic.tju.edu.cn/GC-Profile/ and http://www.

zcurve.net/
SVM-AGP (HGT)a C embl 2014, [79] http://svm-agp.bioinf.mpi-inf.mpg.de/
GI-POPa W C / D – 2013, [64] http://gipop.life.nthu.edu.tw - deprecated
CGS (HGT)a C C – 2012, [80] available on request
EGID and GISTa C G C fna, faa, ffn, gbk,

and ptt
2012, [52] http://www5.esu.edu/cpsc/bioinfo/software/GIST
2011, [51] http://www5.esu.edu/cpsc/bioinfo/software/EGID

IGIPTa C W C fna/ffn 2011, [81] http://bioinf.iiit.ac.in/IGIPT/
GIDetectora G (C) C fna, ptt, rnt 2010, [42] http://www5.esu.edu/cpsc/bioinfo/software/GIDetector/

index.html
INDeGenIUS C C fna 2010, [31] available on request
MJSD C C fna 2009, [35] http://cbio.mskcc.org/�aarvey/mjsd/
Design-Islanda G C fna 2008, [33] http://www.isical.ac.in/�rchatterjee/Design-Island.htm
PredictBias W C gbk 2008, [66] http://www.bioinformatics.org/sachbinfo/predictbias.

html
RVMa – C – 2008, [41] no implementation available
IslandPickb W D C gbk or embl 2008, [38] http://www.pathogenomics.sfu.ca/islandviewer
DarkHorseb (HGT) C D C / D ffn 2007, [50] http://darkhorse.ucsd.edu/
tRNAcc and

MobilomeFinderb

C W D C fna, tRNA, ptt 2007, [49] http://db-mml.sjtu.edu.cn/MobilomeFINDER/
2006, [48]

Centroid C C ffn and ptt 2007, [30] available on request
Colomboa C G C embl, gbk, fasta 2006, [40] http://www.uni-goettingen.de/en/research/185810.html
SIGI-CRF (HGT) C (G) C embl 2006, [40] http://www.uni-goettingen.de/en/research/185810.html
SIGI-HMM (HGT) C (G) C embl 2006, [40] http://www.uni-goettingen.de/en/research/185810.html
AlienHunter C C fna 2006, [32] http://www.sanger.ac.uk/science/tools/alien-hunter
Wn-SVM (HGT) C C ffn and ptt 2005, [62] available on request
PAI-IDA C C gbk 2003, [63] available on request

aCould not be successfully used for the GI predictor assessment analysis (Supplementary Table S1).
bComparative genomics method and so excluded from the GI predictor assessment analysis.

() are used when the GUI, webserver or database has been published as a separate too.
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and RVM. IslandPath-DIMOB and PredictBias both use a sliding
window of six genes to calculate sequence composition bias,
which essentially smooths the signal and, for example, avoids
the detection of abnormal compositions because of high gene
expression levels of small sets of genes. The use of criteria such
as the presence of mobility genes in addition to sequence com-
position bias was shown to significantly improve the prediction
accuracy of IslandPath-DIMOB by eliminating many false posi-
tives (FPs) [38].

A recently released version of IslandPath-DIMOB, with
improved sensitivity in the score for nucleotide composition
bias as well as novel HMM profiles to detect mobility genes,
showed a highly increased recall with little loss of precision
[39]. SIGI-HMM and SIGI-CRF, available as part of the Colombo
package [40], measure codon usage bias in each gene as a signa-
ture for HGT. Individual genes that are predicted as having un-
usual codon usage using a Hidden Markov Model form potential
GIs when closely positioned on the genome.

Following an assessment of structural features associated
with GIs by Vernikos et al [41], machine learning approaches
were developed, making use of the following GI features to train
the models: insertion point, size of the region, gene density,
presence of repeats, phage proteins, integrases and tRNAs
(Table 2). GIDetector [42], a stand-alone software for Windows,
and GIHunter [43], a Linux-compatible command line equiva-
lent, have shown promising results in their ability to accurately
predict GIs. Machine learning methods are able to integrate
multiple GI features, improving the accuracy of GI predictions
overall, as is observed for GIHunter [43].

Other sequence composition-based approaches
Finally, Islander [44] does not fall within any of the
aforementioned categories, as it uses the presence of tRNA
sequences and a ‘displacement fragment’ to predict the position
of GIs. Further information, including a measure of GC content,
and absence of a tyrosine integrase gene are used to filter out
false positives (FPs). This method therefore only predicts a sub-
set of GIs, though it predicts GI boundaries more effectively for
those it does predict [44].

Comparative genomics approaches

Comparative genomics approaches predict GIs based on the
sporadic distribution of genomic regions acquired by HGT in
closely related bacterial and archaeal genomes. Conversely,
genomic regions conserved in large groups of monophyletic
organisms are less likely to have horizontal origins.
Comparative genomic methods have the advantage of deter-
mining precise GI boundaries based on multiple-sequence
alignments or local alignments. However, they are dependent
on the availability of appropriate closely related reference
genomes used for comparison, and their prediction may vary
according to the set of comparative reference genomes selected.
Furthermore, they may be sensitive to prediction of genomic
regions because of gene loss as well as HGT.

IslandPick [38] is the only method that performs an automat-
ic selection of suitable genomes for comparison. Genomes are
aligned using Mauve [45], and a secondary filter using BLAST
[46] ensures that the predicted GI region is not simply a recent
duplication or genomic rearrangement not aligned by Mauve.
IslandPick predictions were shown to have a higher similarity
to published GIs from the literature than other sequence com-
position-based methods [38], thus demonstrating the high ac-
curacy of this comparative genomics approach. IslandPick is

now available within the IslandViewer 4 webserver, which inte-
grates multiple methods and provides a database of reference
genomes for comparison [47]. IslandPick can also be custom-
ized, allowing a user to manually select the genomes to use for
a comparative genomics-based prediction.

tRNAcc [48] and its webserver MobilomeFinder [49] use
Mauve [45] multiple-sequence alignment to identify strain-
specific regions downstream of tRNA genes that are predicted
as GIs. The method is robust because of the combined require-
ment of a site-specific integration in a tRNA gene and the com-
parative genomic approach. However, it only identifies a subset
of rather canonical GIs and is not able to predict GIs integrated
in other genomic locations.

DarkHorse [50] has been designed to identify proteins likely
acquired by HGT rather than large GIs. Protein sequences are
subjected to BLAST analysis, comparing the sequences against
the NCBI non-redundant database, and assigning a score
reflecting atypical phylogenetic distance between the BLAST
query and subject organisms. The combined approach using
comparative genomics and phylogenetics identifies potential
HGT candidates at different taxonomic levels. The use of amino
acid sequences also enables analysis of more distantly related
organisms, compared with IslandPick or tRNAcc.

Hybrid and composite approaches

The various comparative genomics and sequence composition-
based approaches, with their inherent advantages and draw-
backs, have the potential to identify different regions acquired
by HGT. Therefore, a few methods have implemented compos-
ite or hybrid approaches to improve GI prediction in bacterial
and archaeal genomes (Table 2). The performance of such
methods is tightly linked to the choice of individual tools com-
bined as well as further decision rules for the integration of
predictions.

EGID [51] and its graphical interface GIST [52] combine five
sequence composition-based approaches: AlienHunter,
COLOMBO SIGI-HMM, INDeGenIUS, IslandPath and PAI-IDA.
To ponder the weight of each method, individual results are fil-
tered to form non-overlapping regions in which gene scores ex-
ceed a threshold. These are further used to generate a
consensus GI prediction by merging closely positioned regions.
This composite approach was shown to achieve a balanced re-
call and precision of 0.63 when assessed using a reference data
set identified by comparative genomics [51].

IslandViewer 4 integrates three composition-based methods
(IslandPath-DIMOB, SIGI-HMM and Islander) as well as the com-
parative genomics method IslandPick. Related strains for
genome comparison are automatically selected among the ref-
erence organisms available in the database, but users can also
rerun the analysis using a different set of manually picked
genomes. A database of precomputed genome analyses is also
provided. However, there are some limitations for user-
submitted genome analysis, versus precomputed genome ana-
lysis: IslandPick predictions are at the time of this publication
restricted to the analysis of complete genomes, as the impact of
poorly reordered contigs from draft genomes on its perform-
ance has not yet been assessed. Also, Islander predictions are so
far only available for a subset of precomputed genomes, and not
for custom user-supplied genome analyses. Overlapping predic-
tions of the integrated tools in IslandViewer are merged, yield-
ing a significant increase in recall (0.73) while maintaining good
precision (0.9), thanks to limiting the methods chosen to be
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within IslandViewer as only those with relatively high precision
[5, see also the analysis below].

PIPS [53] and its graphical user interface (GUI) GIPSy [54] de-
termine the genomic signature deviation using custom scripts
and SIGI-HMM, the presence of transposase genes and flanking
tRNA genes and the absence in other organisms of the same
genus or closely related species. A score assigned to each region,
combining the presence of these characteristics, results in pre-
dictions at four levels of confidence. GIs are further classified
into four subtypes based on the presence of factors for viru-
lence, metabolism, antibiotic resistance or symbiosis. This tool
is unique in that it combines sequence composition-based GI
predictions with information on the conservation of genomic
regions in user-provided custom genomes. However, the man-
ual process in the graphical interface is tedious and reference
genomes for comparison cannot be determined automatically,
hindering its use for larger-scale analyses, which are becoming
increasingly common.

VRprofile [55] performs sequence homology searches to a
database of mobile genetic elements MobilomeDB, including
notably prophages, ICEs, integrons and insertion sequences,
taking into account gene order and clusters. It also uses and
merges SIGI-HMM and IslandPath-DIMOB v0.2 predictions.
Homology-based gene cluster and composition-based predic-
tions are integrated, giving priority to gene clusters if they are
larger than predicted GIs, and removing regions smaller than
5 kb. tRNAs and direct repeats are also predicted to better iden-
tify insertion sites and GI boundaries.

Databases of GIs

Several websites hosting webservers and source code of GI pre-
dictors offer the possibility to download precomputed predic-
tions for microbial genomes (indicated by a D in Table 1). As
detailed later, some resources have further developed databases
of predicted or curated GIs in publicly available genome sequen-
ces. Updated in 2015, the Islander [44] website provides 3919 GIs
identified in 2168 prokaryotic genomes. Detailed information is
available for each GI, including the position and sequence of
tRNA integration site, the displaced tRNA fragment associated
with the integration, biases in nucleotide composition and the
gene content highlighting the integrase. Because it focuses on
integrases of the tyrosine recombinase family, the Islander
database also serves as a resource for the study of integrase site
specificity and its evolution.

IslandViewer 4 [47] offers a database of precomputed GI pre-
dictions using three methods (IslandPath-DIMOB, SIGI-HMM
and IslandPick) for 6193 bacterial isolates as well as Islander
predictions for a subset of these isolates. These can be browsed
in its interactive visualization interface, further highlighting the
presence of AMR genes identified using the Comprehensive
Antibiotic Resistance Database (CARD) [56], virulence factors
(curated data set) as well as pathogen-associated genes [57].
Results can be downloaded in various text and graphical for-
mats. The database is updated roughly semiannually, to include
new genome sequences publicly available in RefSeq.

VRprofile [55] offers precomputed predictions for 2428 com-
plete genomes. However, we were only able to download the list
of ‘candidate genes’, including mobility genes, AMR genes and
virulence factors, as well as insertion sequences.

The Pathogenicity Island Database PAIDBv2.0 [58] contains
1331 PAIs and 108 AMR islands from 2673 prokaryotic genomes
collected from the literature. Candidate regions identified using
SIGI-HMM [40] and IslandPath-DIMOB v0.2 [11] are also reported.

For each GI, a graphical and tabular representation of the gene
content, tRNA and insertion sequences/direct repeats provides
direct links to the sequence. The database also lists publications
associated with the discovery of a GI, as well as other genomes
exhibiting sequence similarity to the GI identified.

ICEberg [59] is a database of ICEs in 363 bacterial isolates
with experimental data extracted from the literature (n¼ 211),
predicted by bioinformatics methods (n¼ 219) or directly
extracted from GenBank (n¼ 30). An organism or ICE family-
based browser displays detailed information on 460 ICEs,
including a genome context view, sequence information as well
as related publications.

Finally, the DarkHorse database [60] identifies phylogenetic-
ally atypical proteins probably acquired by HGT with various
degrees of phylogenetic granularity (strain, species and genus)
in 1456 bacterial and archaeal genomes (last updated in 2009).
Results are returned in a tabular format with links to the protein
sequence.

Benchmark of GI predictors

To enable researchers to select the optimal tool for their needs,
it is essential to have large-scale assessments and comparisons
of available methods. In 2008, a first assessment of GI predictors
by Langille et al. [38] using a data set of GIs identified by the
comparative method IslandPick represented a landmark in the
field, as it enabled researchers to compare the performance of
several popular methods for GI prediction. Since then, numer-
ous methods to predict GIs have been published, claiming sig-
nificant improvements in recall and accuracy compared with
existing methods. However, different positive reference data
sets of GIs are used in each publication to demonstrate the pre-
dictor accuracy, precluding a direct comparison of the methods.
A major limitation of most articles is that the reference data set
is often limited to one or only a few genomes to provide a proof
of concept for the new method, which does not represent the
breadth/variety of microbial genomes. To provide guidance for
researchers who need to analyze one to hundreds of bacterial
genomes, we have performed an assessment of GI prediction
tools, using one comparative data set of islands from 104
genomes, as well as a literature data set of six genomes, plus a
negative data set [39].

Among the 37 methods identified for this review (Table 1),
including command line tools, GUI-based tools and webservers,
we could not find the web resources or source code for only two
tools. Eight tools could not be run because of various reasons
(Supplementary Table S1), mostly software errors, some of
which might be linked to our operating systems but given the
number of tools considered here and time constraints could not
all be individually solved. The six tools that include compara-
tive genomics approaches (Supplementary Table S1) have been
excluded from this analysis because their results largely depend
on the genomes chosen as a reference and most tools do not
provide an automatic selection of phylogenetically closely
related genomes for the analysis. Altogether, 20 composition-
based prediction tools were successfully used to predict GIs on a
data set of 104 bacterial genomes described in [39].

Methods

The reference data sets described in [39] comprise a positive
data set of GIs predicted by comparative genomics using
IslandPick combined from Langille et al [38], IslandViewer 3 [61]
and IslandViewer 4 [47] as well as a negative data set of core
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conserved genomic regions [38]. It includes 104 genomes, repre-
senting 22 different bacterial genera and 53 species that cover
several common pathogens and environmental bacteria. Each
genome encodes between 1 and 77 predicted GIs (mean ¼ 17.7,
SD ¼ 16.6), for a total of 1845 GIs. The full data set is available
for download in tabular and fasta format at the following URL:
http://www.pathogenomics.sfu.ca/islandviewer/download/. The
literature positive data set includes curated GIs recovered in the
literature for six bacterial genomes: Escherichia coli O157: H7 str.
Sakai (NC_002695.1), Escherichia coli CFT073 (NC_004431.1),
Salmonella enterica subsp. enterica serovar Typhi str. CT18
(NC_003198.1), Staphylococcus aureus str. MW2 (NC_003923.1),
Streptococcus pyogenes str. MGAS315 (NC_004070.1) and Vibrio par-
ahaemolyticus RIMD 2210633 (NC_004603.1). Recall, precision, ac-
curacy, F-score and Matthews correlation coefficient (MCC)
were calculated as in [39], based on the number of true positives
(TPs) and (FPs) measured as the number of nucleotides in pre-
dicted GIs overlapping with the positive and negative data sets,
respectively, and true negatives (TNs) and false negatives (FNs)
measured as the number of nucleotides outside predicted GIs
overlapping with the negative and positive data sets,
respectively:

Recall ¼ TPR ¼ TP
TPþ FN

Precision ¼ PPV ¼ TP
TPþ FP

Overall accuracy ¼ ACC ¼ TPþ TN
TPþ FPþ FNþ TN

F1 score ¼ F1 ¼ 2TP
2TPþ FPþ FN

MCC ¼ TPxTN� FPxFN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

p

When TP and FP were equal to 0, the precision was counted
as equal to 1 because the software is being conservative making
no prediction. The MCC varies between -1 (complete disagree-
ment between the prediction and the reference data set) and 1
(perfect prediction). An MCC of 0 indicates a prediction no better
than random. MCC was considered as 0 when the denominator
was equal to 0. The code used to assess GI predictors is available
at https://github.com/brinkmanlab/gi_predictor_assessment.

All stand-alone software was installed on Debian 3.2.41
x86_64 machines, CentOS 7 machines for GI-SVM and GCProfile
and Windows 10 for GIDetector and Design-Island. Webservers
were accessed using the URLs in Table 1. Default parameter val-
ues were used for all software, as built into the program, as
described in the readme document or in the corresponding pub-
lication. In the case of MJSD, a significance threshold of 0.99,
segmentation model order of 1 and atypicality assessment
model order of 2 were used, as in the article. In the case of Wn-
SVM [62], parameters -nu of 0.2 and -n of 6 to run the analysis
were used, as suggested by Dr Tsirigos. MJSD [35], PAI-IDA [63],
SigHunt [29], GC-Profile [36] and INDeGenIUS [31] returned a nu-
merical score as a result and thus required a cutoff to distin-
guish GIs. For MJSD, Salmonella enterica strain NC_003198.1 was
analyzed and compared with the results described in the article

[35]. Classifying segments with scores equal or greater than
0.99999 as GIs was found to have the strongest resemblance.
The cutoffs 3.9 and 5 were used for PAI-IDA and SigHunt, as sug-
gested in their respected publications. No recommended cutoff
was available for INDeGenIUS and GC-Profile, as these softwares
produce scores dependent on the composition of the genome
being analyzed. For INDeGenIUS, regions with scores exceeding
2 SDs from the mean were considered GIs. For GC-Profile,
regions with scores beyond 2 weighted SDs from the weighted
mean, in either direction, were classified as GIs. The weights
were based on the length of the genomic regions considered.

Results

GI predictors differ greatly in their ability to accurately predict
GIs, with consistent trends among the 104 genomes used here
in the reference comparative data set (Figure 1). All tools also
show significant variation in their recall, precision and accuracy
among the 104 genomes, stressing the need to use a diverse and
large data set of genomes to assess GI predictors to avoid biases
because of the selection of specific bacterial taxa on which
some tools might perform better. Notably, average values for
some tools (Table 3) can differ greatly from the median
(Figure 1, black horizontal line in the boxes) because of the pres-
ence of a number of outliers.

On average, SIGI-HMM, INDeGenIUS, GI-SVM, Wn-SVM,
Zisland Explorer, Centroid, Islander, PAI-IDA, GC Profile and
MSGIP have rather low (<0.32) recall, whereas IslandPath-
DIMOB, SIGI-CRF and VRprofile show intermediate recall
(0.4–0.47), and IslandViewer 4, GIHunter, PredictBias,
AlienHunter, MTGIpick, MJSD and SigHunt have higher recall
(0.57–0.73). However, when choosing a predictor, researchers
also need to consider the precision, which reflects the software
tendency to make FP predictions. Some tools with very low re-
call to intermediate recall (IslandPath-DIMOB, SIGI-CRF,
SIGI-HMM, ZislandExplorer, VRprofile and Islander) have high
precision, with Islander at the extreme exhibiting a very low re-
call but a constantly high precision thanks to its strict criteria to
predict a subset of GIs integrated in tRNAs or tmRNAs [44].
Several predictors (PredictBias, AlienHunter, MTGIpick, MJSD
and SigHunt) with high recall exhibit a poor precision
(0.46–0.59). Overall, sequence composition-based approaches
working at the gene level generally present more robust predic-
tions than those analyzing genome-level sequences (greater ac-
curacy; P< 0.01), with lower recall but much higher precision
than the aforementioned genome-based methods.

Only IslandViewer 4, a composite method that includes
IslandPick comparative genomic approach, SIGI-HMM and
IslandPath-DIMOB [47], as well as GIHunter, a single method
that incorporates multiple features to build a decision tree for
GI prediction [43], show both a high recall and precision. This is
reflected in the high overall accuracy, F-score and especially
MCC values obtained by those two tools compared with the
others. MCC is widely used for software benchmarking and is
considered a balanced measure of the correlation between the
reference data sets and the observed predictions, robust to dif-
ferent sizes in the confusion table. However, it must be empha-
sized that for some users, high precision is critical, whereas for
others, high recall is essential, and so, a collection of measures
is shown.

The positive data set identified by comparative genomics
comprises many genomes from different bacterial species and
includes some well-known GIs identified in the literature
[38, 39]. However, GIs in this comparative genomics data set
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have not been manually curated. GI predictors were thus also
evaluated using a positive data set of GIs retrieved from the lit-
erature in six bacterial genomes (Table 4). This data set also
allows an unbiased assessment of IslandViewer and avoids the
circularity linked to the use of IslandPick to build the reference

data set and its integration in IslandViewer 4 webserver predic-
tions. The small number of genomes considered here and
their biased representation reduces the statistical significance
of the analysis, and results should be taken with caution.
Nevertheless, note the general congruence of the results
(Pearson’s correlation coefficient of 0.86). Several methods show
highly improved MCC, such as PredictBias, VRprofile, MTGIpick,

Figure 1. Accuracy assessment of genomic island prediction methods. Accuracy of genomic island (GI) predictors was assessed using a data set of GIs identified by

comparative genomics analysis of 104 genomes [39]. Each genome is represented by a value, with the median, and the first and third quartiles represented in the box-

plot as the lower and upper hinges, respectively. Outliers are shown as black dots, if they exceed 1.5 times the interquartile range.

Table 3. Mean GI prediction accuracy (%) assessed using the refer-
ence comparative genomics-based data set listed by descending
MCC

Predictors MCC F-score Accuracy Precision Recall

IslandViewer 4 0.703 0.780 0.880 0.904 0.732
GIHunter 0.645 0.713 0.849 0.934 0.634
IslandPath-DIMOB v1.0.0 0.486 0.554 0.768 0.874 0.469
VRprofile 0.470 0.511 0.774 0.940 0.417
SIGI-CRF 0.441 0.498 0.784 0.920 0.400
SIGI-HMM 0.353 0.374 0.729 0.919 0.264
PredictBias 0.347 0.526 0.715 0.577 0.623
AlienHunter 0.342 0.540 0.734 0.594 0.570
MTGIpick 0.324 0.559 0.704 0.551 0.675
MJSD 0.259 0.497 0.614 0.521 0.638
INDeGenIUS 0.236 0.356 0.699 0.651 0.275
GI-SVM 0.221 0.382 0.685 0.603 0.317
Wn-SVM 0.204 0.354 0.685 0.552 0.286
Zisland Explorer 0.203 0.239 0.688 0.853 0.177
Centroid 0.196 0.292 0.678 0.627 0.217
Islander 0.191 0.204 0.697 0.971 0.140
SigHunt 0.186 0.466 0.619 0.457 0.605
PAI-IDA 0.177 0.220 0.671 0.685 0.149
MSGIP 0.150 0.199 0.678 0.865 0.163
GC-Profile 0.091 0.205 0.620 0.637 0.225

Table 4. Mean GI prediction accuracy (%), assessed using the refer-
ence literature-based data set and listed by descending MCC

Predictor MCC F-score Accuracy Precision Recall

GIHunter 0.734 0.832 0.847 0.981 0.745
PredictBias 0.643 0.838 0.820 0.868 0.817
IslandViewer 4 0.640 0.753 0.788 0.998 0.619
VRprofile 0.574 0.643 0.751 0.993 0.542
IslandPath-DIMOB v1.0.0 0.541 0.669 0.720 0.979 0.521
MTGIpick 0.504 0.775 0.753 0.819 0.744
SIGI-CRF 0.426 0.522 0.689 0.993 0.436
AlienHunter 0.398 0.642 0.705 0.753 0.570
SIGI-HMM 0.359 0.420 0.600 0.998 0.285
MJSD 0.347 0.694 0.653 0.742 0.697
Islander 0.321 0.354 0.560 1.000 0.226
MSGIP 0.306 0.439 0.620 0.947 0.353
SigHunt 0.234 0.649 0.620 0.692 0.624
Zisland Explorer 0.175 0.264 0.520 0.833 0.171
INDeGenIUS 0.152 0.293 0.515 0.716 0.189
GI-SVM 0.150 0.312 0.512 0.721 0.200
Wn-SVM 0.129 0.320 0.499 0.715 0.208
PAI-IDA 0.077 0.118 0.461 0.667 0.067
Centroid 0.075 0.202 0.481 0.636 0.129
GC-Profile �0.015 0.063 0.414 0.667 0.034
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Islander and MSGIP, notably thanks to the much higher recall
observed. The better performance of tools that require the pres-
ence of features of GIs, such as Islander, VRprofile or GIHunter,
which were trained on such a literature data set, could partially
reflect this training, and the tendency to describe large canonic-
al GIs in the literature rather than smaller regions that are
equally well identified by a comparative genomics approach
such as IslandPick. As the negative data set and thus FPs remain
the same as with the comparative data set, changes in precision
are only because of the increase of TPs (also visible from the
increased recall) and the choice of a small number of genomes
in this literature data set. The creation of a larger data set of
literature-based curated GIs, and corresponding negative data
sets, would be key to better benchmark GI predictors and assess
their ability to predict large multi-modular GIs. GIHunter and
IslandViewer 4 remain among the methods with the highest
MCC together with PredictBias, although more closely followed
by other GI predictors using this literature data set for
evaluation.

Ease of use, common issues and solutions

Researchers interested in using some of these GI predictors may
face difficulties accessing the software code and installing it,
obtaining the correct input files and interpreting the results—in
particular when requiring predictions for large numbers of iso-
lates with minimal manual handling. Early GI predictors were
developed as command line software in various coding lan-
guages, with a tendency to publish GUIs, webservers or data-
bases providing an easier access for non-bioinformaticians in
the following years (Table 1). GI predictors developed recently
all include a GUI and/or a webserver as do some other older suc-
cessful predictors and databases with good long-term mainten-
ance such as Colombo [40], PAIDB [58] and IslandViewer [47].
To help researchers access existing and adapted tools for their
needs, we have summarized key features of the software inves-
tigated in Table 1. More detailed information is available in
Supplementary Table S1.

An important criterion for choosing a suitable GI predictor
can be the type of input file required. Whereas, some tools re-
quire simple nucleotide fasta files (.fna and .ffn for genes), or
standard flat file formats from nucleotide repositories such as
GenBank (.gbk, .gbff and .gb) or Embl (.embl), others require
tabular formats that are no longer provided by default in nu-
cleotide repositories (.ptt and .rnt; Table 1). These latter tables
can be inferred from standard flat file formats using custom
scripts, but they therefore require some knowledge of a coding
language.

Also, with the democratization and the popularity of short-
read sequencing, most sequences currently submitted to public
databases are draft/incomplete genomes (i.e. they include sev-
eral contigs). Most tools only accept complete genomes as input,
except (theoretically) five webservers. IslandViewer 4 is one
such tool, which provides the possibility to select a reference
genome for contig reordering before GI prediction [47].
According to its publication, MTGIpick accepts fasta files with
multiple contigs [27], but the corresponding website indicates
that only files with one nucleotide sequence are accepted. PAI-
Finder accepts nucleotide fasta files of genes and can, therefore,
handle unfinished genomes but with a limit of 1000 sequences
per submission [58]. GI-POP, a webserver previously accepting
draft genomes, has not been accessible since publication [64].
Finally, VRprofile website provides a tool called CDSeasy to an-
notate and reorder contigs according to a complete reference

genome that provides a gbk file with a pseudochromosome that
can be used as input to VRprofile [55]. To overcome limitations
and use other GI predictors on draft genomes, a common strat-
egy is to reorder contigs according to a closely related complete
reference genome using tools such as Mauve [45] or ABACAS
[65] and concatenate them in a single pseudochromosome.
Contigs that could not be reordered are generally placed at the
end of the pseudochromosome. Predictions on such pseudo-
chromosomes should be interpreted with caution, considering
the position of gaps between contigs and the possibility that
some smaller contigs belonging to the GI could not be placed
correctly. Indeed, transposases and integrases that are features
of GIs and used by many prediction software are often found in
single small contigs because such mobile elements exist in sev-
eral identical copies in the genome, leading to difficulties in
genome assembly. Finally, the quality of the draft genome
(fewer contigs is better) and the genetic distance with the refer-
ence genome (the closest reference is generally better) may af-
fect the reordering and the quality of GI predictions.

Several predictors have flexible input parameters to perform
the analysis. Although this is desirable, to customize predic-
tions for particular genomes of interest, this can become prob-
lematic when defaults are lacking or recommended parameters
are not clearly stated. Similarly, some GI predictors such as
INDeGenIUS, MJSD, PAI-IDA, SigHunt and GC-Profile return a
numerical score or bias value that needs to be interpreted to
infer the position of GIs along the genome. This flexibility often
comes at the expense of software ease of use—particularly for
larger-scale analyses. Indeed, in the absence of closely related
reference genomes with highly curated GIs from literature that
can be used as benchmark, optimal parameters and cutoffs may
be difficult to choose, given the wide variation in prediction ac-
curacy among different bacterial species. All parameters and
cutoffs used in this analysis (defaults, suggested with the soft-
ware or stated in the publication) are mentioned in
Supplementary Table S1.

Finally, most current microbial genome projects now involve
the sequencing of many isolates. These large-scale analyses re-
quire adapted tools to minimize manual handling time that is
notably usually required for submissions to webservers.
Command line tools, which comprise most methods currently
available, are well adapted to batch submissions for researchers
with some basic knowledge and coding ability. Other tools avail-
able as webservers only, such as PredictBias [66], can be autom-
atized using packages such as Selenium Python, but this
requires more advanced coding knowledge. The recently
released IslandViewer 4 [47] offers an HTTP API for submission
of many genomes and retrieval of results using various coding
languages or simple cURL commands.

Choosing a GI predictor

Given the variety of GI predictors and their diverse features, the
choice of a tool will depend on characteristics of the genome to
be analyzed as well as on requirements of the planned research.
The availability of closely related genomes is necessary to use
methods based on comparative genomics that generally enable
a more precise definition of GI boundaries. Adapted to single
genomes, the numerous methods based on sequence compos-
ition are commonly used. Depending on the research focus,
methods with lower recall but very high precision may be of
interest, to ensure robust predictions, or conversely, high recall
may be desired to reduce the chance of missing predicting a key
GI region. For example, focusing on canonical GIs integrated in
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tRNAs would require software such as Islander [44] or tRNAcc
[49] that use the presence of a tRNA integration site as a require-
ment to issue a GI prediction (Table 2); however, this method
will miss the majority of islands, which are non-canonical.
Depending on the tool, composition-based prediction methods
may have less accurate determination of GI boundaries and will
require careful inspection. In addition, the availability of gen-
ome annotation as well as the status of the genome assembly,
complete or incomplete/draft including several contigs, largely
reduce the choice of possible tools. To facilitate the selection of
an appropriate tool, we have summarized the characteristics of
all tools and provide a multi-entry decision table in Figure 2.

Because of the varying sensitivity and criteria used by GI pre-
dictors, predictions obtained using different tools generally only
partially overlap. As previously observed [5] and used for the de-
velopment of composite methods such as IslandViewer [67],
VRprofile [55] and EGID [51], combining several methods results
in a significant increase in the recall of GIs. In general, the selec-
tion of highly precise methods is advisable to preserve a good
prediction accuracy, as shown earlier for IslandViewer 4 and
VRprofile. Finally, the combination of both composition-based
and comparative genomics methods has the potential to iden-
tify GIs with different characteristics.

GI visualization and future needs

Although there is a notable trend toward providing GUIs and
webservers to enable non-bioinformaticians to run GI

predictions on user-provided genomes, most interfaces only
have limited ability to visualize GIs. GIPSy [54], GC-profile [36]
and PredictBias [66] only provide GIs as tabular results.
PredictBias further displays a tabular list of genes encoded in
the predicted GIs, as well as potential VFs. ZislandExplorer [37]
provides static images with GIs highlighted, whereas Islander
[44] and VRprofile [55] display static graphs of genomic features
as well as tabular results. Che et al. have developed a Cþþ tool
named GIV [68] to plot AlienHunter or GIHunter predictions and
GI-associated features in a circular representation using Circos
[69].

Only a few resources provide more advanced visualization
techniques. According to the publication, MTGIpick [27]
presents a dynamic GI visualization in the form of a circular
representation of genomes with predicted GIs that allow the
user to zoom in and out. However, we were unable to success-
fully run MTGIpick stand-alone version. PAIDB [58] displays lin-
ear views of precomputed GI predictions featuring genes as
arrows on the two strands. Clicking on any arrow displays add-
itional information, including gene function, sequences and
related publications. IslandViewer provides by far the most ex-
tensive, integrated and interactive visualization of GIs and their
genetic content, highlighting virulence factors (VFs), AMR deter-
minants and pathogen-associated genes [47]. Gene content can
be browsed in a pop-up table with direct links to public data-
bases such as NCBI for publicly available genomes, as well as
CARD [56] for AMR, and VFDB [70], Victor’s virulence (http://
www.phidias.us/victors/) and PATRIC [71] for VFs. Since

Figure 2. Summary of GI predictor characteristics with a multi-entry decision table. GI predictors were classified according to their interface and the requirements.

Sensitivity (recall) and precision are color coded using a gradient from low-to-high as assessed using the comparative genomics data set. Methods that were not

assessed (comparative genomics) or that we were unable to assess are shown in white.
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IslandViewer 3 release [61], synchronized circular and linear
views with intuitive zoom and navigation features represent
GIs broken down by a prediction method using GenomeD3Plot
[72]. Moreover, IslandViewer allows the independent visualiza-
tion of two genomes side by side, as a first step to enable GI
comparison between bacterial isolates.

Further development of advanced visualization techniques
is required to facilitate the analysis of the key role of GIs in bac-
terial adaptability. Indeed, integrated views with AMR genes
and VFs are a critical step to investigate bacterial evolution, par-
ticularly in the context of infectious disease outbreaks, which
are now becoming routinely investigated using whole-genome
sequencing (termed genomic epidemiology) [73, 74]. For envir-
onmental strains, automatic identification of metabolic path-
ways or transporters that could enable the microbe to thrive on
different food sources would be valuable. Further identification
and highlighting of interesting features such as phage genes,
mobility genes (integrases, transposases), preferential insertion
sites such as tRNAs as well as bordering direct repeats (when
existing) would facilitate the analysis of the genome dynamic
and the origin of these horizontally acquired genomic regions.
Finally, and perhaps most pressingly, there is a high need to
visualize comparative genomic analyses at a larger scale.
Specific interfaces must be developed to accommodate the
need to smoothly and interactively visualize up to hundreds of
microbial genomes and their GI predictions, identifying clusters
of related islands and rearrangements of potential interest.

Moving toward integrated analyses beyond the
single genome

There has been a resurgence of interest in GIs in recent years, as
large-scale microbial genome analyses, including genomic epi-
demiological analyses, further reveal the importance of GIs in mi-
crobial adaptation to environmental conditions—including
medically relevant adaptations by pathogens. The prediction of
GIs and the analysis of their gene content have become an essen-
tial component of microbial investigations, from genome reports
to detailed comparative genomics studies. In particular, in clinic-
al microbiology and epidemiology, it is increasingly needed to
rapidly identify recently acquired genomic regions that may be
unique to a disease outbreak, or associated with a pathogen
strain that has a particular phenotype of interest, such as
increased persistence, transmissibility, AMR or resistance to sol-
vents used for their control, as investigated for Listeria monocyto-
genes [75], Pseudomonas aeruginosa [76] and E. coli [77]. Many
genomes can now be sequenced daily and made available rapidly
using a single short-read sequencer or certain longer-read tech-
nologies, such that sequence analysis represents the major
bottleneck. Among the many tools currently available to predict
GIs presented in this review, each method has its strengths and
weaknesses depending on the type of genomic data available as
well as research requirements, but a combination of methods is
often most suitable and desirable. Predicted GIs should be manu-
ally checked and their gene content searched for genes of medic-
al or environmental interest, boundaries eventually refined, and
GIs can be further compared using homology searches. Further
analysis of integration sites and GI conservation with further
modular gene acquisition or loss across larger numbers of sam-
ples are desirable to obtain a better picture of bacterial genome
evolution. Tools to predict, analyze and visualize GIs need to ac-
commodate the need for better-integrated evaluation of micro-
bial genomes. The development of more comprehensive

methods to identify GIs, their origin and their encoded features
will enable researchers to implement real-time tracking of micro-
bial genome evolution in answer to changing environmental con-
ditions and selection pressures such as antibiotic use.

Key Points:

• GIs are clusters of microbial genes that were likely hori-
zontally acquired. They are key players in genome
evolution, facilitating microbial adaptability of wide en-
vironmental, industrial and medical interest.

• GI predictors show highly varying levels of recall and
precision with consistent trends across diverse micro-
bial species.

• Benchmarking of new GI predictors should preferably
be performed on large and varied data sets of bacterial/
archaeal isolates.

• More integrated interactive analysis and visualization
of GIs in multiple genomes is now required, as the de-
mand for large-scale analyses increases.

Supplementary Data

Supplementary data are available online at https://academ
ic.oup.com/bib.
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