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Abstract: We consider the problem of heat transport by vibrational modes between Langevin ther-
mostats connected by a central device. The latter is anharmonic and can be subject to large tem-
perature difference and thus be out of equilibrium. We develop a classical formalism based on
the equation of motion method, the fluctuation–dissipation theorem and the Novikov theorem to
describe heat flow in a multi-terminal geometry. We show that it is imperative to include a quartic
term in the potential energy to insure stability and to properly describe thermal expansion. The
latter also contributes to leading order in the thermal resistance, while the usually adopted cubic
term appears in the second order. This formalism paves the way for accurate modeling of thermal
transport across interfaces in highly non-equilibrium situations beyond perturbation theory.

Keywords: nanoscale thermal transport; anharmonicity; phonons; heat current; transmission;
thermal conductance

1. Introduction

Transport theories of non-interacting quantum systems based on the Keldysh formal-
ism, which treats non-equilibrium flow of charge or heat carriers in a one-dimensional (1D)
geometry have been developed in the past. To the best of our knowledge, the first such
development was performed in 1971 by Caroli et al. [1] where a Green’s function formalism
was used to describe dynamics of electrons in a 1D crystal. Following the seminal work of
Caroli et al., many other groups worked on similar formalisms and proved a formula for
the transmission through the system, now widely used for both non-interacting electrons
and phonons. The equilibrium version of it, namely T = Tr[GΓLG†ΓR] , where G and Γ are,
respectively, the retarded Green’s function and the escape rates to the leads, was established
by Meir and Wingreen [2] and in a similar form by Pastawski [3] in 1991. This formula
holds for a non-interacting (or harmonic, in the case of phonons) system near equilibrium,
meaning the chemical potential or temperature gradients are to be infinitesimally small.
These assumptions might not always be realistic, especially in small (mesoscopic) systems
subject to temperature differences over fractions of a micrometer, and a formulation for
non-equilibrium situations and interacting systems is preferable for the sake of testing the
domain of validity of the equilibrium formulas and more accurate description in the case
of large interactions and large driving fields.

The general and practical problem of interest is the description of the heat transport
across interfaces between different materials; however, to keep it more general, we adopt a
multi-probe geometry where the system in which scatterings occur is connected to multiple
energy reservoirs, which impose their temperature, and cause the flow of heat carriers (see
Figure 1). This model is used for mesoscopic systems where the carrier mean free path could
be on the order of the system length, implying Ohm’s law of addition of resistances in series
does not necessarily hold, and coherence can play an important role. The geometry of the
reservoirs is fundamentally one-dimensional (1D), and if there is translational symmetry
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perpendicular to the current flow, one can use Bloch’s theorem to decouple the 3D system
into many non-interacting 1D systems, each labeled by a quantum number, which is
the transverse momentum. So in what follows, we assume such decoupling has been
performed and we will be dealing with strictly 1D semi-infinite harmonic leads, although
the central device is arbitrary in shape and structure and maybe connected to multiple 1D
probes, assumed to be Langevin thermostats and assumed to be isothermal.

For simplicity, we will use a classical description. A generalization to the quantum case
will be inferred at the end. So in our classical treatment, the frequency ω is just frequency
of vibrational modes and not the energy of phonons. This classical formalism avoids
fancier mathematics involving commutation relations, and concepts such as time-ordered
or contour-ordered Green’s functions. It will only involve “retarded” or causal Green’s
functions, which help us solve a differential equation in the frequency domain. In the high-
temperature limit both theories lead in principle to the same results. To model interfacial
thermal resistance, typical considered geometries will be identical to a non-equilibrium
molecular dynamics (NEMD) setup where the two ends of the system are attached to two
thermostats at different temperatures, and one is interested in measuring the established
heat flow as a result of the temperature difference (see Figure 1).

Figure 1. (Top) a general “molecular” multiprobe geometry where the device defined by atoms
within the ellipse are connected to 4 reservoirs imposing a temperature or measuring a current.
(Bottom) the 2-probe geometry. Atoms in each lead are connected to a harmonic thermostat at fixed
temperature TL and TR. In the Buttiker probe, also called the self-consistent reservoirs geometry, to
measure the “local” temperature, each layer of the central device may also be weakly connected to a
fictitious thermostat at a temperature to be (self-consistently) determined so that the net heat flow
from that probe to the device is zero.

The non-equilibrium anharmonic phonon problem has been addressed in the past by
Mingo [4] and separately by Wang [5] in 2006. They used the many-body perturbation
approach of non-equilibrium quantum systems based on the Keldysh formalism, (also
called the Non-Equilbrium Green’s Function or NEGF method) and derived a lowest-
order approximation for the transmission function. Dai and Tian [6] recently implemented
this rigorous formulation to calculate the effect of cubic anharmonicity on the phonon
transmission function through an ideal interface, applied to Si/Ge and Al/Al with two
different masses. A similar model, which explicitly incorporates transverse momentum
dependence, was also developed recently by Guo et al. [7], based on previous work by
Luisier [8]. Polanco has a recent review of these methods based on NEGF [9]. These NEGF-
based models, although fully quantum mechanical, do not include anharmonicity beyond
cubic order nor any thermal expansion effects. Other calculations of the transmission
in the non-equilibrium regime [10] based on the Green’s function method, have been
based on the self-consistent reservoirs (also called Buttiker probe method), which was first
proposed by Bolsterli et al. in 1970 [11]. In this method, as shown in Figure 1, every layer
is connected, with a very weak coupling, to a fictitious probe at a given temperature with
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which it becomes into equilibrium. The probe temperature, which is also the assigned
temperature of that layer, is obtained from the constraint that the net heat current from
the system to the added fictitious probe should be zero. Note that the system could be
out of equilibrium, so that a temperature is not really well-defined at a given layer. This
shortcoming is also present in NEMD simulations where the assigned “temperature” of a
layer is just the average kinetic energy of atoms in that layer, although there is no evidence
of local thermal equilibrium. So even though non-equilibrium effects are included through
this Buttiker probe method, it does not include anharmonicity. We should mention at
this point that there is numerical evidence of absence of equipartition in the vibrational
modes near the interface [12,13], implying that a definition of local temperature is not
really justified near an interface. In another work, based on the MD simulation, which
fully includes anharmonicity, Saaskilahti et al. [14] extended the harmonic formulation of
the transmission function based on the actual MD trajectories by Chalopin et al. [15,16],
to include anharmonic corrections. In the actual calculation, arguing that the anharmonic
part of the current is usually small, they only used its harmonic formula but with velocities
and positions coming from the full anharmonic atomic trajectories, in order to deduce
the interfacial thermal conductance. The advantage of this approach over NEMD is that
the heat current and thermal conductance can be decomposed in the frequency domain.
Approaches based on MD trajectories, while including full anharmonicity, suffer from noise
and would require a large number of simulations in order to perform proper ensemble
averaging, whereas many-body approaches might be inaccurate if a perturbative expansion
in powers of anharmonicity is used, but otherwise do not suffer from noise and treat
ensemble averaging analytically. In this work, we try to overcome these limitations by
adopting a non-perturbative many-body approach by fully including in the current the
effect of anharmonic terms introduced in the Hamiltonian, without using Buttiker probes.
Furthermore, using a classical method to derive an expression for the heat current, we
argue that to leading order, it is necessary to include quartic terms in the Hamiltonian,
in order to properly describe both the thermal expansion and the dominant temperature
dependence effect in the heat current.

2. Dynamics

We start by defining our model and the assumptions. A multiprobe geometry is as-
sumed as shown in Figure 1 in which a central region, also called the “device” is connected
to many semi-infinite one-dimensional (1D) leads, playing the role of thermostats imposing
a temperature at the boundaries of the system. We will not be concerned with tempera-
ture drops in the thermostats, which are assumed to be harmonic and follow Langevin
dynamics. If needed, parts of the leads can be incorporated in the device region to illustrate
the temperature drops near the interface. The device (D) Hamiltonian is a fourth-degree
polynomial in powers of atomic displacements, and it is harmonically coupled to the lead
α is represented by Equation (2):

HD = ∑
i∈D

p2
i

2mi
+ ∑

ij∈D

1
2!

φij ui uj + ∑
ijk∈D

1
3!

ψijk ui uj uk + . . . (1)

Hα,D = ∑
i∈D

∑
l∈α

Wα,il ui ul (2)

The dynamical variable ui(t) refers to the displacement of atom i about the zero-temperature
equilibrium position (the force on atom is zero for u = 0). The leads labeled by α are semi-
infinite harmonic chains. After the standard change of variables to xi(t) =

√
miui(t),

and to

Φij =
φij
√mimj

=
1

√mimj

∂2HD
∂ui∂uj

(u = 0)
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Vα,il = Wα,il/
√

mimlα and Φα,ll′ = φα,ll′/mlα we arrive at the following equation of
motion for atoms in the central region:

d2x
dt2 = −Φ x−∑

α

Vα xα + a (3)

Note we have used capitalized Greek letters (Φ, Ψ, . . .) for mass-rescaled force constants,
and lower-case Greek letters (φ, ψ, . . .) for the bare potential energy derivatives. The letter
α refers to the leads, and the dynamical variable x = (x1, . . . , xN) can be thought of as
an array containing the displacements of all the atoms in the central region (also called
device), Φ as the force constant matrix between such atoms, and Vα as the force constant
matrix connecting atoms of the lead α to atoms in the device. Finally, a = −1/2Ψx2 + . . . is
the anharmonic part of the force, which, for now, we keep as a for brevity. The dynamics
of atoms in the lead is of Langevin type [17], where a set of identical coupled harmonic
oscillators are subject to damping γα and noise ζα. The equation of motion for atoms with
displacements xα is as follows:

d2xα

dt2 = −Φαxα −VT
α x− γα

dxα

dt
+ ζα (4)

where the superscript T stands for transpose. Here again all atomic degrees of freedom
are stored in the array xα = (x1α, x2α, . . .). The force constants Phiα can be thought of as
effective FCs at the temperature of interest, so that we do not need to introduce anhar-
monicity in the leads, which merely play the role of absorbing phonons from the device
and reinjecting thermalized phonons into the device. We will proceed by eliminating the
lead variables xα in Equation (3) using the Green’s function method. To this end, we start
by taking the Fourier transform of the above two equations according to:

X(ω) =
∫

dt x(t) eiωt; x(t) =
∫ dω

2π
X(ω) e−iωt (5)

In the frequency domain, the equations of motion (3) and (4) become:

−ω2X = −ΦX− ΣαVα Xα + A (6)

−ω2Xα = −ΦαXα −VT
α X + iωγαXα + ζα(ω) (7)

Note that the frequency-domain variables are represented with capitalized letters, and
the transient part of the solution will be omitted as we are interested in the steady-state
solution. Now that the differential equations are transformed to algebraic ones, one can
easily proceed to eliminate the lead degrees of freedom in the main equation of motion by
using Green’s functions. Let gα(ω) be the retarded (causal) Green’s function associated
with the lead α. The positivity of the damping factor γα insures causality. The solution to
Equation (7) after the transients have decayed to zero, can be written as:

Xα = gα(ω) (ζα −VT
α X) (8)

where
g−1

α = [−ω2 − iωγα + Φα] (9)

In Equation (6) we need −VαXα, which we can obtain from Equation (8):

−VαXα = ηα + σαX, (10)
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Here ηα(ω) = −Vαgα(ω)ζα(ω), and σα = Vα gαVT
α . Likewise, defining the retarded Green’s

function of the central region as G−1 = [−ω2 + Φ−∑α σα(ω)], we can write the solution
to the central region as:

X(ω) = G(ω)
[
∑
α

ηα(ω) + A(ω)
]

(11)

The function σα(ω) = Vα gα(ω)VT
α is traditionally called the self-energy of lead α, and

shows the effect of this lead on the spectrum of the device, which is given by the poles of G.
Its real part provides a correction to the eigenvalue spectrum ω2, and its imaginary part,
divided by 2ω, gives the inverse lifetime of an excitation of the central region caused by
interactions with the lead. It is the rate at which the excitation leaks into the lead. Omitting
the transient contribution of the initial conditions, this is the solution to the equations of
motion, which depend on the stochastic functions ηα = −Vαgαζα.

3. Physical Observables

The equations of motion we derived are deterministic for every realization of the
random forces. To simulate the real thermodynamical behavior of the baths, so that
a temperature can be assigned to them, one needs to perform an “ensemble” average,
denoted by 〈. . .〉 over all realizations of the forces subject to the constraint imposed by the
fluctuation–dissipation (FD) theorem [17]:

〈ζi,α(t)〉 = 0

〈ζi,α(t)ζ j,α′(t
′)〉 = 2γαkBTα δ(t− t′)δα,α′δij (12)

The noise is white and different sites i, j of leads α, α′ are uncorrelated with each other.
Physical observables are then obtained after an ensemble average is performed over forces.
This is where irreversibility is introduced in this deterministic formalism, as a result of
which, entropy is generated in the device. The latter can be understood as the log of the
distribution function of the device as the random forces are varied within the constraints
imposed by the FD theorem.

3.1. Entropy Generation Rate

An important quantity of interest is the entropy generation rate in the device, which
can be expressed as: Ṡ = −∑α〈jα〉/Tα. This quantity results from the interaction between
the device degrees of freedom and the random noise due to Langevin thermostats. It in-
volves the thermostats temperature and the incoming currents which will be discussed next.

3.2. Heat Current

The main quantity of interest is the heat current. The heat from lead α can be defined
as the net rate at which energy is flowing into the device from that lead. It is the work
performed from lead α on the device’s degrees of freedom per unit time, which is the
product of the velocity degrees of freedom of the device times the force from lead acting on
them: jα(t) = Tr[ẋ (−Vαxα)T ], where the trace is taken over the device degrees of freedom.
Substituting the expressions for x and xα from Equations (10) and (11) we can obtain the
final expression of the current in the frequency domain. Since the current depends on the
stochastic functions η, we will take its ensemble average to find the response of the system
to an applied temperature difference. We will start by taking the Fourier transform of jα(t)
and call it Jα(Ω). Note due to time integration, we must have 〈Jα(Ω = 0)〉 = τ〈jα〉, where
τ → ∞ is the time integration window. Finally the static DC current is given by:

〈jα〉 =
∫ dω

2πτ
ω Tr

[
=〈X(ω)η†

α(ω)〉 − 〈X(ω)X†(ω)〉 Γα(ω)/2
]

(13)
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where we used the notation Γα = −i(σα − σ†
α ) = 2=(σα) for twice the imaginary part of

the lead α self-energy. The DC response is found by taking the Ω → 0 limit. Note that
because we are interested in the DC response, only diagonal terms of correlations (Ω = 0)
are needed here. Thus the calculation of the heat current is reduced to the calculation
of the two correlation functions and the so-called lead self-energy σα(ω), followed by a
frequency integration. Note that this current from lead α is the sum of two terms: the
first one, proportional to Zα = 〈X(ω) η†

α(ω)〉, is the work per unit time of the stochastic
forces on the device, while the second one 〈X(ω) X†(ω)〉Γ†

α, proportional to a displacement
autocorrelation, is the work of the lead dampers trying to reabsorb some of the excess
energy injected from the device in order to re-establish thermal equilibrium in the lead.

The average denoted by 〈〉 is an average over the stochastic forces in the thermostats
that have white noise characteristics. When it is performed over the device degrees of
freedom, the leads being at different temperatures, it becomes a non-equilibrium average
and can only be calculated using the equation of motion (11) and the statistical properties
of the Langevin thermostats, i.e., the fluctuation–dissipation theorem. For anharmonic
interactions involving higher powers of displacements in A, the calculation of current will
lead to a hierarchy of equations, each containing higher powers of displacements, and has
so far been computed using different approximations [4,5,18].

4. Constraints

Before proceeding to the calculation of the correlation functions, we recall two con-
straints that the heat current needs to satisfy. The first is the detailed balance relation, which
states that if all leads are at the same temperature T, the net current 〈jα〉 should be iden-
tically zero for all leads α. The second constraint is that of current conservation, which in
steady state Ω → 0, and under no additional heat generation in the device, reduces to
Σα〈jα〉 = 0. This is also known as the Kirchhoff’s law in the context of electrical circuits.
Note that AC components of the current need not satisfy this constraint as they reflect
the information on transient currents during the relaxation process, and depend on the
heat capacity of the system. Any physically correct description of transport should exactly
satisfy these two constraints.

5. Thermal Expansion

As the temperature of a system is raised, there can be thermal expansion due anhar-
monicity. The equilibrium position of the atoms is shifted, and this will also cause a change
in the force constants as bond lengths have changed. To take these effects into account,
while simplifying the notations, we will slightly modify the formalism as follows: the
displacement variable X is changed to Y(ω) = X(ω)− 〈X〉 or y(t) = x(t)− 〈x〉 which
has zero average by construction. The resulting nonlinear equations satisfied by 〈X〉 are
derived by taking the average of the equation of motion (11) or equivalently setting the
average force on each atom to zero (see Appendix B for more details).

〈∂V/∂x〉 = Φ〈x〉+ Ψ〈xx〉/2 + . . . = 0 (14)

The resulting equations will depend on correlations such as 〈YiYj〉, 〈YiYjYk〉 and higher
powers. Accordingly, the potential energy derivatives will be evaluated at the zero of Y,
and will be denoted with a bar sign on top of them (Φ→ Φ̄ etc. . . ). While the variable X
satisfies the equation of motion:

−ω2X = −∂V/∂X−∑
α

VαXα ,

the new variable Y satisfies:

−ω2Y = −∂V/∂X + 〈∂V/∂X〉 −∑
α

VαXα
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Next we will linearize the forces with respect to y:

−∂V
∂y

= −
(∂V

∂y
)

y=0 −
(∂2V

∂y2

)
y=0 y + a(y) = −Φ̄y + a(y)

where we have set ( ∂V
∂y )y=0 = 0 to define the thermal expansion 〈x〉 = x0 (see Appendix B).

As we will show, the effect of temperature will be to renormalize the FCs, not only through
thermal expansion but also due the thermal fluctuations as we will show using the non-
equilibrium mean-field approximation (NEMF) also detailed in Section 6. Next, we define
a renormalized Green’s function using renormalized force constants Φ̄ =

(
∂2V
∂y2

)
y=0 as

G−1 = [−ω2 + Φ̄−∑
α

σα] (15)

With this GF, the displacements Y satisfy

Y = G(∑
α

ηα + A) (16)

Note one can add any constant λ to the force constant Φ̄ in the above GF, provided λY is
also added to the anharmonic force A. We will make use of this freedom in the next section
to further simplify the formalism.

6. Force Constant Renormalization

Given the form of the above equations, we can add −Y〈 ∂A
∂Y 〉 to A and add −〈 ∂A

∂Y 〉 to
1/G so that now the renormalized GF becomes:

G−1 = G−1 − 〈∂A
∂Y
〉 = [−ω2 + Φ̄− 〈∂A

∂Y
〉+ ∑

α

σα] (17)

while the renormalized anharmonic force now becomes A = A − Y〈 ∂A
∂Y 〉 in the right

hand side of Equation (16). This renormalization of harmonic force constants captures
a major part of anharmonicity (because 〈∂A/∂Y〉 = 0), and is in spirit very similar to
the lowest-order self-consistent phonon theory, which in the past has been applied to
equilibrium systems. The advantage of this renormalization is that, as we will see, the
lowest anharmonic correction in Zα disappears by construction since 〈∂A/∂Y〉 = 0, leading
to the smallest variance and higher moments of ∂A/∂Y.

We will refer to this choice of the reference GF as the Non-equilibrium mean-field ap-
proximation (NEMF). With this choice, the equation of motion for Y becomes:

Y = G(∑
α

ηα +A) (18)

The Feynman diagram associated with the new Green’s function G is shown in Figure 2.

Figure 2. Feynman diagram associated with G represented by thick dashed lines. The phonon
Green’s function G is shown with thin solid lines, and the quartic vertex χ with the solid square.
The thick line with opposite arrows represents the displacement autocorrelation C(ω1). Internal
frequency ω1 is integrated over.
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7. Displacement-Noise Correlations

One can see from Equation (13) that the calculation of the heat current requires the
calculation of the displacement-noise correlation Zα and displacement autocorrelations C.
We proceed to the calculation of these quantities first within the harmonic approximation,
and then in the presence of anharmonic forces of the form a = −ψ y2/2− χ y3/6.

Let us start with the noise autocorrelation, which will appear in the calculation
of displacement-noise correlation Zα. In the frequency domain, using the fluctuation–
dissipation theorem Equation (12), one can derive (see Appendix C.2):

〈ηα(ω)η†
α(ω)〉 = Γα(ω)

kBTα

ω
τ = Γα(ω) fατ (19)

where, for brevity, we have replaced the “occupation factor” kBTα/ω by fα, and τ represents
the integration time which goes to infinity and cancels the τ in the expression for the current
jα = Jα/τ. With a Factor of h̄ in the denominator of fα, the latter would be a real Bose-
Einstein occupation factor taken to the classical limit.

In the case of a white noise, we show in Appendix C.2 that the result will not depend
on the thermostat damping parameter γ, and thus we adopt this type of noise for the
thermostats.

Next, we need to calculate displacement-noise correlations: Zα = 〈Yη†
α〉. Since −iωY

is a velocity, ω=(Zα) is the power exerted by the random force η on the device and therefore
can be interpreted as the heat injected per unit time and unit frequency (mode) from lead α into
the device.

In the harmonic case (A = A = 0; G = G = G), using the equation motion (18), this
expression is simplified to:

ZH
α (ω) = G〈ηα η†

α〉 = GΓα fατ (20)

For non-zero anharmonicity, the three GFs are different, and adopting G as the reference
GF, we have the NEMF approximation to the displacement-noise correlation function as:

ZNEMF
α (ω) = G〈ηα η†

α〉 = GΓα fατ (21)

To go one step further and include the effect of anharmonicity in Zα, we will use the
Novikov–Furutsu–Donsker identity [19] (for a proof also see Appendix D), which states
that for any functional of the white noise f [η], we have

〈 f [η] η†
α(ω)〉 = 〈 δ f [η]

δηα
〉〈ηα η†

α〉 (22)

It has the advantage of lowering the powers of η in f . Using this theorem, we have:
〈Yη†

α〉 = 〈 ∂Y
∂ηα
〉〈ηα η†

α〉.
From the equation of motion Equation (18) and the chain rule, we find

∂Y
∂ηα

= (1−G∂A
∂Y

)−1G = G+G∂A
∂Y

G+G∂A
∂Y

G∂A
∂Y

G+ . . .

so that finally,

Zα = 〈Yη†
α〉 = 〈

∂Y
∂ηα
〉〈ηα η†

α〉 = 〈
(
1−G∂A

∂Y
)−1〉 ZNEMF

α (23)

=
(
1 +G〈∂A

∂Y
G∂A

∂Y
〉+G〈∂A

∂Y
G∂A

∂Y
G∂A

∂Y
〉+ . . .

)
ZNEMF

α (24)

Note that, by construction, the first term involving 〈∂A/∂Y〉 is identically zero. This
justifies the choice of G rather than G as the reference Green’s function.
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In the language of many-body theory, this is the expanded form of Dyson’s equation
involving thermal average of powers of the anharmonic force derivatives. This exact
result cannot be calculated, because the average of the inverse of powers of Y cannot be
calculated exactly, and instead one may add the power series term by term provided the
sum is convergent.

This is one of the main results of this paper, providing a more accurate and likely
convergent expression for the displacement-noise correlations, and leading to a simple
calculation of heat currents if cubic terms are to be neglected (using the NEMF reference
Green’s function G).

The next-order correction consists in adding the effect of anharmonicity to second
order, i.e., writing the displacement-noise correlation function as:

Zα ≈
(
1 +G〈∂A

∂Y
G∂A

∂Y
〉
)

ZNEMF
α (25)

with A = A− Y〈 ∂A
∂Y 〉 = −

1
2 Ψ̄YY − 1

6 χ(YYY − 3Y〈YY〉) and ∂A
∂Y = ∂A

∂Y − 〈
∂A
∂Y 〉 = −Ψ̄Y −

1
2 χ(YY − 〈YY〉). We can note that the major part of the quartic anharmonicity has been
removed, and the expansion is in powers of ∂A/∂Y which is centered at zero and has
therefore the smallest higher moments. When raised to the second power in the above
formula for Zα, cubic and quartic terms become decoupled if we neglect averages of terms
of odd power in Y which are expected to be small if non-zero. At low-temperatures or
weak anharmonicity, the dominant contribution to the second-order terms can be written
as:

Zα ≈
(
1 + 〈GΨ̄YGΨ̄Y〉

)
ZNEMF

α (26)

An explicit form of this equation is provided in the following section and in Appendix C.3
Equation (A17).

8. Displacement Autocorrelations

Finally, the last correlation function needed is C(ω) = 〈YY†〉. Note the autocorrelation
matrix C is Hermitian. The function ωC(ω) can be interpreted as the (non-equilibrium)
number of excitations of frequency ω present in the device due to its contact with the leads.
If all lead temperatures are equal, we recover the equilibrium occupation times the total
DOS, G(ΣαΓα)G† = 2=(G), which is the total (equilibrium) number of excitations in the
device. In the heat current, this term appears as −ωCΓα/2 and can be interpreted as the
heat current going from (because of the negative sign) the device into this lead as Γα/2ω is
the escape rate into the lead α.

Similar to the treatment of Zα, we will start with the equation of motion, Equation (18),
and the FD theorem, Equation (19), to write C as:

C(ω) = 〈Y(ω)Y†(ω)〉 =

G(ω)
[
Σα

(
〈ηαη†

α〉+ 〈Aη†
α〉+ 〈ηαA†〉

)
+ 〈AA†〉

]
G†(ω) (27)

The first term is the NEMF contribution and is reduced to a known result, with now
the renormalized Green’s function G being used instead of the standard harmonic one (G
or G), in order to include thermal effects to some extent:

CNEMF(ω) = GΣα〈ηαη†
α〉G† = Σα (GΓαG†) fατ (28)

The NEMF approximation, which consists in using G and neglecting the contributions
of anharmonicity included in A, is very similar to the harmonic approximation. Within
this approximation, where C ≈ CNEMF and Zα ≈ ZNEMF

α , the transmission becomes
Tr [GΓLG†ΓR], very similar to the harmonic result (see Appendix E), but with the GF
substituted by the renormalized G, and includes the effect of (quartic) anharmonicity to
the lowest order.
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Linear terms in A lead to terms similar to Zα, which has already been discussed. The
only remaining difficulty is with the 〈AA†〉 terms, which do not explicitly contain any noise
term, but have higher powers of displacements. Such terms can only be calculated approxi-
mately as the use of the equations of motion will involve higher powers of displacements.
To have a second-order approximation consistent with that used for Zα in Equation (26),
we have to use:

〈AA†〉(3) = C(3) =
1
4

Ψ̄2 ∑
ω1

C(ω−ω1)C(ω1)

It can be shown that this approximation, taken to a self-consistent level satisfies
current conservation, meaning ∑α jα = 0, however the spectral components of the current:
=Zα(ω) − C(ω)Γα(ω)/2 do not necessarily lead to zero when summed over all leads.
Including for completeness both the cubic and quartic components of the anharmonic
forces to second order, the self-consistent set of equations to be solved with the reference
Green’s function G are:

Zα = ZNEMF
α +G(Σ(3) + Σ(4))Zα

Σ(3)(ω) = 2Ψ̄2 ∑
ω1

G(ω−ω1)C(ω1)

Σ(4)(ω) =
3
2

χ̄2 ∑
ω1,ω2

G(ω−ω1 −ω2)C(ω1)C(ω2)

C = ∑
α

(δZα G† +G δZ†
α) + CNEMF +GPG†

δZα = Zα − ZNEMF
α

P = C(3) + C(4)

C(3) =
1
2

Ψ̄2 ∑
ω1

C(ω−ω1)C(ω1)

C(4) =
1
6

χ̄2 ∑
ω1,ω2

C(ω−ω1 −ω2)C(ω1)C(ω2) (29)

The equations for Zα and C can also be represented using Feynman diagrams as shown in
Figures A1 and A2 in Appendices C.3 and C.4. More explicit forms of these equations are
also reproduced in this appendix as Equations (A17) and (A18).

Starting inputs for C and Zα could be their NEMF values in the right-hand sides of the
above equations, and the latter can be solved iteratively until convergent. Note that while
the term Zα requires ∂A/∂Y, the terms C require A itself, but these equations contain only
second powers of A and ∂A/∂Y. Once iterations converge, the obtained C and Zα functions
can then be inserted in Equation (13) to compute the heat currents from each lead.

These equations would be the same as the ones obtained from the many-body
non-equilibrium Keldysh formalism with the difference that the “occupation factors”
fα = kBT/ω are classical ones, instead of Bose–Einstein functions. In this sense, they
can directly be compared to results from classical non-equilibrium MD simulations, which
are exact in anharmonicity but have inherent statistical noise in them.

Another interesting feature to note is the increase in the overall conductance with the
temperature (if ∆T is held small). This is in agreement with previous MD simulations [13,14].

9. Conclusions

To summarize, we developed a self-consistent approximation for transport in anhar-
monic systems out of equilibrium in the high-temperature (classical) regime. There is
therefore no factors of h̄ in the formalism and ω is to be interpreted as frequency only, not
energy. Although the set of derived equations for the current Equation (13) the equation of
motion Equation (18), and the Equations (24) and (27) defining the correlation functions,
were formally exact, one has to develop approximations to solve the Dyson’s Equation (24)
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and the Equation (27) defining C. One, because the anharmonic force A is an infinite
Taylor expansion and is usually truncated, and two, because its derivative appears in the
denominator of Equation (24), which cannot be exactly inverted. In this work, we truncated
the Taylor expansion of A up to quartic terms and only included up to second powers of A
and ∂A/∂Y in Equations (24) and (27).

We showed that thermal expansion needs to be included using both cubic and quartic
terms (to avoid any divergence) and it has the effect of renormalizing FCs as T is increased.
The reference GF to work with, G, has two corrections: one due to thermal expansion
implying changes in bond length and strength (Φ̄ instead of Φ), and the other due to
thermal fluctuations about the average position (〈∂A/∂Y〉, which usually involves the
quartic term and the autocorrelation C), similar in spirit to the self-consistent phonon
theory, except that one is not at thermal equilibrium. This is the leading-order anharmonic
correction, and cubic anharmonicity contributes to second-order correction terms as shown
in the self-consistent equations (29).

Non-equilibrium averages were possible to calculate with the use of the fluctuation–
dissipation theorem (Equation (19)), the equations of motion (Equation (18)) and the NFD
theorem (Equation (22)).

An alternative approach to investigate non-equilibrium effects at and near interfaces
would be to perform a non-equilibrium molecular dynamics simulation (NEMD) of the
system attached to thermostats at different temperatures and sample the atomic trajectories
in the phase space to find the distribution functions and the position averages—this,
however, has inherent noise in it.

One way to extract the effective force constants is to fit from the knowledge of the
forces on atoms and their positions in each MD snapshot, the forces to a linear model
FNEMD

i ≈ FHarmonic
i = −Φ̄ijyj in order to extract the effective (non-equilibrium) har-

monic force constants Φ̄. The remainder can then be defined as the anharmonic force:
FNEMD

i = −Φ̄ijyj + ai(y), and the present results may be used. Despite the approximations
used in this work, the advantage of this formalism over MD simulations, which includes
anharmonicity to all orders, is that it is analytical and therefore fast and free of simulation
noise, although reaching self-consistency can be challenging for some model systems. It
would be desirable to make a comparison of the results with NEMD to validate these
approximations for a given system. The accuracy also relies on the force field and strength
of higher-order terms: sources of divergence would be in the denominator of Equation (24)
if G〈∂A/∂Y〉 ≈ 1, signaling resonances, in which case the Taylor expansion in Equation (24)
is not appropriate.

Applications to nanoscale systems will appear in future publications.
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Appendix A. Calculation of Time Averages

When calculating time average of a product such as a(t)b(t) in terms of their Fourier
transform, some care needs to be taken:

〈〈a(t)b(t)〉〉 = 1
τ

∫ τ/2

−τ/2
〈a(t)b(t)〉 dt; (τ → ∞)

where one set of brackets is for time averaging and the second set is a thermodynamic
average over different initial conditions. To simplify the notations, we have however used
only one set of brackets.

In terms of their Fourier transform, we have

〈〈a(t)b(t)〉〉 =
∫ τ/2

−τ/2

∫ dω

2π

dω′

2π
e−i(ω+ω′)t dt

τ
〈A(ω)B(ω′)〉

However,

〈e−iωt〉 =
∫ τ/2

−τ/2
e−iωt dt

τ
=

sin ωτ/2
ωτ/2

→
τ→∞

δω,0(= 1 or 0)

On the other hand, taking τ → ∞ in the boundaries of integral of e−iωt leads to 2πδ(ω)
which should cancel the τ in the denominator in order to give 1. This means, when taking
time averages, one simply needs to take the convolution of the Fourier transforms at Ω = 0:

〈a(t)b(t)〉 = 1
τ

∫ dω

2π
〈A(ω)B(−ω)〉 (A1)

When calculating diagonal terms of autocorrelations, such as in 〈ζ(ω)ζ†(ω)〉 = 2γkBTτ,
the result is proportional to the integration time τ. The latter cancels the τ in the de-
nominator coming from time averaging. Loosely speaking, 2πδ(ω)/τ = 1 or 0. As an
example, to calculate the average (DC) current one simply needs to take the diagonal terms
in frequencies, omitting factors of τ appearing in the correlation functions:

〈jα〉 = lim τ→∞
Ω→0

〈Jα(Ω)〉
τ

= <
∫ dω

2π

(−iω)

τ

[
〈Y(ω)η†

α(ω)〉+ 〈Y(ω)Y†(ω)〉 σ†
α (ω)

]
(A2)

Appendix B. Change of Position Variables Due to Thermal Expansion

As the temperature of a system is raised, there can the thermal expansion due to
anharmonicity. The equilibrium position of the atoms is shifted, and this can also cause
a change in the force constants as bond lengths have changed. To take these effects into
account, we will slightly modify the formalism as follows:

Let us Taylor-expand the interaction potential in the device in powers of rescaled
atomic displacements x =

√
m u, about the zero temperature equilibrium positions:

V(x1, . . . , xn) = V(0, . . . 0) +
1
2!

Φij xi xj +
1
3!

Ψijk xixjxk +
1
4!

χijkl xixjxkxl + . . . (A3)

where, for brevity, we omitted the summation sign over repeated indices, and where the
residual force on atom i is zero because one starts from a fully relaxed configuration. The
coefficients of this expansion can be obtained from a zero-temperature DFT calculation for
instance [20,21].
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One way, and actually the correct way to compute the non-equilibrium average of the
force constants, is to perform a non-equilibrium molecular dynamics (NEMD) simulation in
which the system is subject to two or more thermostats at different temperatures and zero
pressure. Average positions 〈x〉maybe computed from the runs, and then one may fit the
forces with an effective harmonic model as we will describe below. In a thermally expanded
system where 〈x〉 is non-zero, we Taylor expand the potential about the “non-equilibrium”
values 〈x〉 instead of zero. This leads to a change in the force constants. The new dynamical
variables are chosen so that their average is zero, i.e., they oscillate about the new thermal
non-equilibrium positions:

y(t) = x(t)− 〈x〉 => Y(ω) = X(ω)− 2πδ(ω)〈x〉; 〈y〉 = 0

The average position is defined to be the solution of the average force being zero. In terms
of these new variables, and up to the second order in powers of displacements, the force
on atom i can be written as:

− ∂V
∂xi

= Fi = Fi(x = 〈x〉) +
( ∂Fi

∂yj

)
x=〈x〉

yj +
1
2

( ∂2Fi
∂yjyk

)
x=〈x〉

yjyk + . . . (A4)

The first term, the residual force, will be used to define the thermal expansion 〈x〉 (by
setting the residual or average force to zero: Fi(x = 〈x〉) = −( ∂V

∂yi
)x=〈x〉 = 0), which is the

Equation (14) in the main text. The second term is the effective, or temperature-dependent,
harmonic force, and the last term is the effective anharmonic force. In the case where the
potential energy is Taylor-expanded up to quartic order such as in Equation (A3), one
can explicitly work out the equation satisfied by 〈x〉, and derive explicit expressions for
the effective harmonic and anharmonic FCs. The expression for the force in this case is
as follows:

− ∂V
∂xi

= Fi = −Φijxj −
1
2

Ψijkxjxk −
1
6

χijkl xjxkxl − ΣαVα xα

= −Φij〈xj〉 −
1
2

Ψijk〈xj〉〈xk〉 −
1
6

χijkl〈xj〉〈xk〉〈xl〉 −Φijyj

− 1
2

Ψijk(yjyk + yj〈xk〉+ 〈xj〉yk)

− 1
6

χijkl (yjykyl + 3yjyk 〈xl〉+ 3yj〈xk〉〈xl〉)− ΣαVα xα

where use was made of the symmetry of Ψ and χ under permutation of their j, k, l indices.

Appendix B.1. Thermal Expansion

To find the average positions 〈x〉, we set the average force on each atom i, 〈Fi〉 =
−〈
(
∂V/∂xi

)
x=〈x〉〉 to zero, and 〈xα〉 = 0 (leads are harmonic and will not thermal-expand),

and solve for 〈x〉. Thus, the coupling term with the leads, which is linear in lead degrees of
freedom and has zero average, will vanish, and we have the following set of non-linear
equations in 〈x〉 in terms for force constants and averages of 〈yy〉 and 〈yyy〉:[

Φij +
1
2

χijkl 〈ykyl〉
]
〈xj〉+

1
2

Ψijk 〈xj〉〈xk〉+
1
6

χijkl 〈xj〉〈xk〉〈xl〉

= −1
2

Ψijk 〈yjyk〉 −
1
6

χijkl 〈yjykyl〉 (A5)

Appendix B.2. The New Force Constants

The new force constants are simply defined to the be potential derivatives evaluated
at the new average positions. Up to quartic order, they are defined as:
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Φ̄ij =
( ∂2V

∂xi∂xj

)
〈x〉

= Φij + Ψijk 〈xk〉+
1
2

χijkl 〈xk〉〈xl〉

Ψ̄ijk =
( ∂3V

∂xi∂xj∂xk

)
〈x〉

= Ψijk + χijkl 〈xl〉

χ̄ijkl = χijkl

Finally, the average positions can be re-expressed in terms of the new force constants as:

Φ̄ij 〈xj〉 −
1
2

Ψ̄ijk 〈xj〉〈xk〉+
1
6

χ̄ijkl 〈xj〉〈xk〉〈xl〉 = −
1
2

Ψ̄ijk 〈yjyk〉 −
1
6

χ̄ijkl 〈yjykyl〉 (A6)

These coupled set of non-linear equations (for all i) in (〈x〉, Φ̄, Ψ̄, χ̄ must be solved in
terms of 〈yy〉 and 〈yyy〉 covariance matrices, to find the average positions and effective
force constants. It requires a self-consistent iterative solution as the 〈yy〉 correlations will
in turn depend on 〈x〉.

Appendix B.3. New Equations of Motion

Finally, changing to new dynamical variables y(t) and new force constants, the equa-
tion of motion for y becomes:

d2yi
dt2 = −

( ∂2V
∂yi∂yj

)
y=0

yj −
1
2

( ∂3V
∂yi∂yj∂yk

)
y=0

yjyk

− 1
6

( ∂4V
∂yi∂yj∂yk∂yl

)
y=0

yjykyl − . . .− ΣαVα xα

= −Φ̄ij yj −
1
2

Ψ̄ijk yjyk −
1
6

χ̄ijkl yjykyl − ΣαVα xα (A7)

Adopting this change of variable, the GF keeps the same form with Φ substituted
by Φ̄, and anharmonic forces in the right-hand side of the equation of motion become
by definition:

a def
= −1

2
Ψ̄ijk yjyk −

1
6

χ̄ijkl yjykyl (A8)

Appendix C. Explicit Form of the Correlation Functions including the Atomic and
Cartesian Indices

In this section, we will give explicit formulas for the correlation functions needed in
the average heat current expression in Equation (A2). First let us label by roman letters
i, j, k the dynamical degrees of freedom in the device. If there are N atoms in the device
in three dimensions, each of these labels refers to an atom and one of the three Cartesian
components of its displacements. It therefore varies from 1 to 3N. As a result the matrices
C, σα and Zα are 3N × 3N matrices. Taking their trace in Formula (A2) gives the heat
current, which is a scalar. Note that since transport is along the length of the leads,
which are one-dimensional, in principle the components of the power perpendicular to
the lead direction should yield zero. More specifically, if the current in lead α is given by
Jα = 〈ẋFx + ẏFy + żFz〉, and the lead is infinite along the z direction for instance, then we
should have Jα = 〈żFz〉 and 〈ẋFx〉 = 〈ẏFy〉 = 0. So in each lead, one may take three partial
traces along and perpendicular to the lead direction and confirm these relations. The total
trace should still yield the correct result. One final note is the matrices of Φ̄ij and Ψ̄ijk are
invariant under permutations of their indices.

Appendix C.1. Lead Self-Energies σα and Escape Rates Γα

The surface Green functions of the leads were defined by an inverse, as stated in
Equation (9). The self-energy for lead α is accordingly defined as σα,ij(ω) = Vα,ik γα,kk′(ω)Vα,jk′
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where the two indices (k, k′) refer to the lead degrees of freedom. Note the matrices Vα

connecting the device to lead α need not be square.
The escape rates were defined by:

Γα,ij = −i(σα,ij − σ†
α,ij) = 2=(σα,ij) (A9)

For Langevin thermostats with white noise, these results do not depend on the thermostat
damping factors γ.

Appendix C.2. Noise Autocorrelation Functions

Let us start with the noise autocorrelation that will appear in the calculation of
displacement-noise correlation Zα. This autocorrelation can be obtained from the fluctuation–
dissipation theorem, a relation that has to hold if the noise is such that the leads are to
behave as a Langevin thermostat at temperature T:

〈ζα(t)ζT
α′(t
′)〉 FD

= 2γαkBTα δ(t− t′)δα,α′

The noise is white and different sites are uncorrelated with each other. This relation
implies that in the frequency domain the autocorrelation of ζ and that of η satisfy the
following relations:

〈ζα(ω)ζT
α′(ω

′)〉 = 2πδ(ω + ω′) δα,α′ 2γαkBTα (A10)

〈ηα(ω) ηT
α′(ω

′)〉 = Vαgα , 〈ζαζT
α′〉 gT

α′V
T
α′ (A11)

= 2πδ(ω + ω′)δα,α′ kBTα [Vαgα (2γα) gT
α VT

α ] (A12)

In the above, gα is a diagonal matrix of size equal to the number of degrees of freedom in
the lead α (which is infinity!) At this point, we will use a convenient identity satisfied by
any Green’s function G. If G−1 = a + ib, with (a, b) real matrices, then

i(G− G†) = iG(
1

G† −
1
G
)G† = G (2b) G† (A13)

Since =(g−1
α ) = −ωγα we can write the η-autocorrelation as:

〈ηα(ω) ηT
α′(ω

′)〉 = −iVα(gα − g†
α)V

T
α × 2πδ(ω + ω′)δα,α′

kBTα

ω

= −i(σα − σ†
α )× 2πδ(ω + ω′)δα,α′

kBTα

ω
= Γα × 2πδ(ω + ω′)δα,α′

kBTα

ω
(A14)

where we used the notation Γα = −i(σα − σ†
α ) = 2=(σα) for twice the imaginary part of

the lead α self-energy. Alternatively, the diagonal elements in frequency can be written as:

〈ηα(ω)ηT
α′(−ω)〉 = Γα × δα,α′

kBTα

ω
τ (A15)

where τ is the integration time which goes to infinity. Dhar and Roy [22] have shown that
in the quantum limit, when taking a semi-infinite harmonic lead and averaging over all
possible initial conditions sampled from a canonical ensemble, the quantum noise term has
an autocorrelation given by

〈ηα(ω)ηT
α′(ω

′)〉 = hΓαδ(ω + ω′)δα,α′
(

1 + f (h̄ω/kBT)
)

where f (x) = [ex − 1]−1 is the equilibrium Bose–Einstein distribution function, which, in
the classical (high-temperature) limit, reduces to kBT/h̄ω. Our classical result based on
properties of Langevin thermostats is thus consistent with the quantum one.
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We can note that the explicit dependence on the damping factor γα has been replaced
by twice the imaginary part of the lead self-energy Γα, which one may interpret as 2ω
times a “rate”. For the adopted white noise, the dependence on its damping factor has
gone away! Furthermore, in the calculation of Zα, the notation 〈ηη†〉 implies the diagonal
terms ω′ = −ω must be taken. Using the Novikov–Furutsu–Donsker (NFD) identity (see
Appendix D) we can see that 〈Aη†〉 ∝ 〈ηη†〉 and therefore only diagonal terms in fre-
quency will appear in the frequency integral of the heat current, and assuming thermostat
temperatures are steady, the heat current can only have a DC (Ω = 0) component. Note
that this component is infinite the way we defined it: Jα(Ω = 0) =

∫ ∞
−∞〈jα(t)〉 dt. To

find the average heat current, we have to divide this by the integration time τ, and then
take the limit τ → ∞. This division cancels the τ appearing in the numerator of noise
autocorrelations. This issue is further discussed in the Appendix A, Equation (A2). Final
results do not depend on τ.

The factor 2πδ(ω + ω′)/τ can now be excluded from the current as it is essentially 1
for the diagonal terms, and zero otherwise.

〈ηα(ω)η†
α(ω)〉 = Γα(ω)

kBTα

ω
τ = 2=(σα(ω))

kBTα

ω
τ (A16)

Appendix C.3. Noise-Displacement Correlations Zα

Using the equation of motion (18), the expression defining this correlation function
to second order in ∂A/∂Y can be derived to satisfy Equation (25). After substitution, the
explicit relations become:

Zα,ij(ω) = ZNEMF
α,ij (ω) +Gik(ω)

(
Σ(3)

kk′ + Σ(4)
kk′

)
Zα,k′ j(ω)

ZNEMF
α,ij (ω) = Gik(ω) Γα,kj(ω)

kBTα

ω

Σ(3)
kk′ (ω) = 2Ψ̄klm Ψ̄k′ l′m′

( ∫
1
Gll′(ω−ω1)Cmm′(ω1)

)
Σ(4)

kk′ (ω) =
3
2

χ̄klmn χ̄k′ l′m′n′
( ∫

1,2
Gll′(ω−ω1 −ω2)Cmm′(ω1)Cnn′(ω2)

)
(A17)

where, as usual, the summation over repeated indices is implied.

Figure A1. Feynman diagrams associated with Zα up to second order in anharmonic forces. Dashed
lines represent the phonon Green’s function G, the circle represents Γα, the triangle represents the
third-order vertex Ψ̄ and the square the fourth-order vertex χ. The thick line with opposite arrows
represents the displacement autocorrelation C(ω). Frequency must be conserved at each vertex.
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Appendix C.4. Displacement Autocorrelations C(ω)

These functions, whose trace represents the number of excitations in the device, are
defined via Equation (27). The static distortion in 〈x〉〈x〉 does not contribute to the current
and will thus be omitted. To the second order in A, the expression for C is given by:

Cij(ω) =CNEMF
ij (ω) + ∑

α

(Zα,ik − ZNEMF
α,ik )G†

kj +Gik(Zα,kj − ZNEMF
α,kj )†

+Gik

(
C(3)

kk′ + C(4)
kk′

)
G†

k′ j

CNEMF
ij (ω) = Σα (Gik Γα,kk′ G†

k′ j)
kBTα

ω

C(3)
kk′ (ω) =

1
2

Ψ̄klm Ψ̄k′ l′m′
( ∫

1
Cll′(ω−ω1)Cmm′(ω1)

)
C(4)

kk′ (ω) =
1
6

χ̄klmn χ̄k′ l′m′n′
( ∫

1,2
Cll′(ω−ω1 −ω2)Cmm′(ω1)Cnn′(ω2)

)
(A18)

Figure A2. Feynman diagrams associated with C(ω) up to the second order in anharmonic forces.
Conventions are the same as in Figure A1.

Appendix D. Statement and Proof of the Novikov–Furutsu–Donsker (NFD) Relation

The Novikov–Furutsu–Donsker relation [19,23–25] relates the correlation function of
any functional A[η] of the noise η to the noise–noise correlation times the expectation value
of the derivative of that functional:

〈A[η] η†
α(t)〉 = ∑

β

∫
dt′〈ηβ(t′)η†

α(t)〉〈
δA[η]

δηβ(t′)
〉 (A19)

implying that in the frequency domain, we have

〈Ai[η] η†
jα(ω)〉 = ∑

l,β
〈 δAi[η]

δηl,β
(ω)〉〈ηl,β(ω)η†

j,α(ω)〉 (A20)

Proof of the NFD relation: Let η be a random variable with Gaussian distribution of mean
0 and variance σ2. Consider the average S = 〈A[η]η〉 where A is a functional of η. By

definition, S =
∫ +∞
−∞ dη e−η2/2σ2

√
2πσ2 ηA(η). After performing an integration by parts, we find:

S =
∫ +∞

−∞
−σ2 1√

2πσ2
d(e−η2/2σ2

)A(η) = σ2
∫ +∞

−∞

1√
2πσ2

e−η2/2σ2 dA(η)

dη
dη

= σ2〈dA(η)

dη
〉 = 〈ηη〉〈dA(η)

dη
〉 (A21)
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This can easily be extended to higher dimensions where η is an array:

〈A[η]ηi〉 = ∑
j
〈 ∂A

∂ηj
〉〈ηjηi〉

Appendix E. Heat Current within the Harmonic Approximation

For a harmonic system (G = G = G), we have derived the following expressions:

ZH
α (ω) = 〈Yη†

α〉 = GΓα
kBTα

ω
τ; (A22)

CH(ω) = 〈YY†〉 = Σβ(GΓβG†)
kBTβ

ω
τ (A23)

The frequency in the denominator will cancel the frequency in the current coming
from the time derivative of positions, so that the harmonic current becomes:

〈jH
α 〉 = kB

∫ dω

2π
Tr
(
=(G) ΓαTα − Σβ(G ΓβTβ G†)

Γα

2

)
Below we will show that this current satisfies both detailed balance and current

conservation.
Detailed balance: If all leads are at the same temperature, using Equation (A13),

we have
Tr Γα =(G) =

1
2

Tr ΓαΣβ(GΓβG†) (A24)

Making this substitution for =(G) in the heat current formula, we end up with:

〈jH
α 〉 =

kB
2

∫ dω

2π
Tr Γα G

(
ΣβΓβ(Tα − Tβ)

)
G† (A25)

This is equation manifestly shows detailed balance as it is linear in temperature differences.
It is also easy to see that this harmonic part of the heat current satisfies current conservation,
due to the antisymmetric (under exchange of α and β) form of the following sum:

Σα〈jH
α 〉 =

kB
2

∫ dω

2π
Σαβ (Tα − Tβ)Tr

[
Γα G ΓβG†

]
= 0 (A26)

In a two-terminal device geometry (β = R; α = L), the expression for the current
reduces to the well-known formula:

〈jH
L 〉 =

kB
2
(TL − TR)

∫ dω

2π
Tr [ΓL G ΓR G†] = −〈jH

R 〉 (A27)

In general, Tr [Γα G Γβ G†] maybe interpreted as the harmonic transmission from lead α to
lead β. We see that even in the non-equilibrium regime (large ∆T), the harmonic approxi-
mation leads to the same transmission function regardless of how large the temperature
difference is.

A simple extension to quantum case: Given the correspondence between the quantum
and classical versions of noise autocorrelation, to recover the quantum limit, one may re-
place f = kBT/ω by h̄(1+ fBE(h̄ω/kBT)). The constant term 1 is irrelevant and disappears
due to the principle of detailed balance, and the temperature difference is replaced by
the difference in the distribution functions times the phonon energy: kB(Tα − Tβ) <=>
h̄ω( fα − fβ).
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