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Abstract

Optic-disc photography (ODP) has proven to be very useful for optic nerve evaluation in

glaucoma. In real clinical practice, however, limited patient cooperation, small pupils, or

media opacities can limit the performance of ODP. The purpose of this study was to propose

a deep-learning approach for increased resolution and improved legibility of ODP by con-

trast, color, and brightness compensation. Each high-resolution original ODP was trans-

formed into two counterparts: (1) down-scaled ‘low-resolution ODPs’, and (2) ‘compensated

high-resolution ODPs’ produced via enhancement of the visibility of the optic disc margin

and surrounding retinal vessels using a customized image post-processing algorithm. Then,

the differences between these two counterparts were directly learned through a super-reso-

lution generative adversarial network (SR-GAN). Finally, by inputting the high-resolution

ODPs into SR-GAN, 4-times-up-scaled and overall-color-and-brightness-transformed

‘enhanced ODPs’ could be obtained. General ophthalmologists were instructed (1) to

assess each ODP’s image quality, and (2) to note any abnormal findings, at 1-month inter-

vals. The image quality score for the enhanced ODPs was significantly higher than that for

the original ODP, and the overall optic disc hemorrhage (DH)-detection accuracy was signif-

icantly higher with the enhanced ODPs. We expect that this novel deep-learning approach

will be applied to various types of ophthalmic images.

Introduction

Optic nerve head (ONH) examination is essential to glaucoma diagnosis and progression

assessment [1, 2]. Optic-disc photography (ODP) has been proven to be very effective for doc-

umentation of optic nerve appearance, as it allows for more detailed scrutinization and subse-

quent comparison for determination of progressive change [3–5]. Furthermore, ODP enables

clinicians to qualitatively assess ONH structures such as detailed neuroretinal rim contours,
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presence of optic disc hemorrhage (DH), parapapillary chorioretinal atrophy (PPA) or vessel

alterations, which is not possible in optical coherence tomography (OCT) [6].

In real clinical practice, limited patient cooperation, small pupils, or media opacities can

limit the performance of ODP [7]. As a result, ODPs can have several limitations, such as

insufficient resolution, low color contrast, and inconsistency of image quality (especially in

cases of media opacity due to cataracts). Even when high-resolution ODPs can be obtained,

red-colored blood vessels and red-orange-colored retina sometimes cause indistinct

pathologies such as small-sized DH to be missed. ODP-quality improvement techniques

that can obviate the limitations of the current imaging acquisition devices are essential,

especially when considering the indispensability of ONH structural evaluation in glaucoma

treatment.

The popularity of deep-learning algorithms offering modeling of high-level abstractions in

data by means of multiple processing layers has exploded in recent years as powerful graphics

processing units (GPUs) have become available. The very intricate process of high-resolution

image estimation from a low-resolution counterpart is known as super-resolution (SR) [8, 9].

For image SR, generative adversarial network (GAN), which is a deep neural net architecture

comprising two nets one pitted against the other (hence “adversarial”), has shown great utility

and potential [10].

In this paper, we propose a modified super-resolution generative adversarial network

(SR-GAN) that is capable not only of up-scaling but also of improving ODPs’ details as well as

the visibility of the optic disc margin and surrounding retinal vessels in computing ‘enhanced’

ODPs. In the present study, we performed a quantitative evaluation to assess enhanced ODPs’

clinical utility for ONH evaluation.

Methods

This study was approved by the Seoul National University Hospital Institutional Review Board

(1805-027-944) and faithfully adhered to the tenets of the Declaration of Helsinki. All of the

subjects provided their written informed consent. Eyes were chosen from subjects examined

for glaucoma at the Glaucoma Clinic, Seoul National University Hospital, between January

and December 2018. All of the relevant data are in the manuscript and its Supporting Informa-

tion files.

Design of generative adversarial network

An ISR’c’ is a super-resolved, compensated image, and an IHR is the high-resolution original

image. The final goal of this study was to obtain ISR’c’ (1536 x 1536 pixels) from an IHR (384

x 384 pixels) for clinical validation (see Fig 1). For that purpose, the differences between the

IHRc (384 x 384 pixels) and ILR (96 x 96 pixels) were learned directly through a modified

SR-GAN. An ILR, which is the low-resolution version of the IHR, was obtained by 1/4 resiz-

ing of the IHR using bicubic interpolation (down-scaled width and height: 1/4W x 1/4H x C)

[11], the IHRc being the high-resolution image manually customized by a post-processing

algorithm. The SR-GAN consists of a GAN and a pre-trained VGG19 (Visual Geometry

Group) network [12].

The GAN includes an additional discriminator for evaluation of the generator’s reliability

[13]. The discriminator makes a judgement on whether a randomly inputted image is a guess

of the generator or a high-resolution measurement. For optimized discriminator judgement,

an adversarial loss is created that iteratively optimizes the discriminator for enhanced deci-

sion-making capability. Also, the adversarial loss, together with the content loss, are used to

optimize the generator in pushing it in the direction in which more perceptually realistic
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outputs can be generated to further fool the discriminator [10]. By this process of adversarial

training, the quality of images from the generator can be improved. The training is terminated

once the generator produces results that the discriminator cannot distinguish from the high-

resolution images [14]. The generator and discriminator network architecture with the corre-

sponding kernel size (k), number of feature maps (n) and stride (s) is shown in Fig 2. We

applied Tensorlayer SubpixelConv2d as a PixelShuffle [15].

Each original ODP (IHR) was transformed into two counterparts: (1) down-scaled ‘low-res-

olution ODPs (ILR, 96 x 96 pixels)’ and (2) ‘compensated high-resolution ODPs (IHRc, 384 x

Fig 1. Principle of enhanced image formation via super-resolution generative adversarial network (SR-GAN). A

modified SR-GAN was used to learn the differences between the low-resolution optic-disc photography (ODP) and the

manually compensated high-resolution ODP. By inputting the high-resolution original ODP into the algorithm, an X4

up-scaled and overall contrast-, color- and brightness-transformed ‘enhanced ODP’ could be obtained.

https://doi.org/10.1371/journal.pone.0239913.g001
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384 pixels)’ produced via enhancement of the visibility of the optic disc margin and surround-

ing retinal vessels using a customized image post-processing algorithm. Then, the differences

between the two were directly learned through the modified SR-GAN. Finally, by inputting of

the high-resolution original ODPs (IHR, 384 x 384 pixels) into the trained SR-GAN, 4-times-

up-scaled and overall contrast-, color-, and brightness-transformed ‘enhanced ODPs (ISR’c’,

1536 x 1536 pixels)’ could be obtained.

Loss functions

Our ultimate goal was to train a generating function G by training a generator network as a

feed-forward CNN GyG
parametrized by θG. Here, θG denotes the weight and bias of the

designed network, and is obtained by optimizing loss function lSR. The sum of loss functions,

lSR, is obtained. For training of image IObtainedn with corresponding ITargetn n = 1, 2, 3 � � �N, the fol-

lowing equation is solved:

cyG ¼
argmin
yG

1

N
PN

n¼1
lSR GyG

IObtainedn

� �
; ITargetn

� �
ð1Þ

First, the pixel-wise Mean Squared Error (MSE) loss was calculated as follows:

LMSE ¼
1

r2WH
PWi;j

x¼1

PHi;j
y¼1ðITargetx;y � GyG

ðIObtainedÞx;yÞ
2

ð2Þ

where Wi,j, Hi,j are the width and height, respectively, of the feature map. MSE loss, widely

utilized for image SR, calculates the squared difference in pixels between the obtained and tar-

get images (the latter being a manually customized high-resolution image) during the training

process. However, MSE optimization results in blurring of the edges of the generated image.

Fig 2. Architecture of generator and discriminator network. The corresponding kernel size (k), number of feature maps (n) and stride (s) are indicated for

each convolutional layer.

https://doi.org/10.1371/journal.pone.0239913.g002
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Therefore, we also adopted VGG loss as defined with the pre-trained (trained with Ima-

geNet) VGG19 Network. VGG loss was calculated as follows:

LVGG=i:j ¼
1

Wi;jHi;j

PWi;j
x¼1

PHi;j
y¼1ð;i;jðI

ObtainedÞx;y � ;i;jðGyG
ðITargetÞÞx;yÞ

2
ð3Þ

where Øi,j indicates the feature maps of the pre-trained VGG19 Network after the jth convolu-

tion and before the ith maxpooling layer. In this study, we employed feature maps of conv4_3

(j = 4, i = 3, Wi,j = 28, Hi,j = 28). VGG loss was used to calculate the squared difference

between the feature maps of the target and generated images via SR-GAN. By using both MSE

and VGG loss, the overall resolution and style of the generated image could be improved [16].

Finally, the adversarial loss function computes the Sigmoid Cross Entropy (SCE) loss by

calculating the difference between the output logits of the generated image (GyG
ðILRÞÞÞ and tar-

get image to fool the discriminator, as follows:

LGen ¼
PN

n¼1
� logDyD

ðGyG
ðILRÞÞ ð4Þ

where DyD
ðGyG
ðILRÞ is the probability of (GyG

ðILRÞÞÞ to be considered as a target image. The

generator tries to fool the discriminator by generating higher-quality images. The final goal of

adversarial loss is the minimization of � log DyD
ðGyG
ðILRÞÞ.

Dataset

ODPs were obtained post-pupil-dilation using a digital fundus camera system (CF-60UVi/

D60; Canon, Inc., Tokyo, Japan). The images were saved in the 384 x 384-pixel digital imaging

and communications in medicine format and stored in the picture archiving communication

system (PACS) of Seoul National University Hospital.

Details on customized image post-processing algorithm

The purpose of this type of processing is to generate an improved ODP image in terms of

both color and spatial contrast. The processing entails the following steps: contrast optimi-

zation, edge enhancement, spatial and frequency filtering, image combining, and noise

reduction. Detailed manual adjustment has to be applied differently according to each

ODP’s image quality. In the present study, all of the image post-processing was performed

using a commercial image-processing tool (Adobe Photoshop CS3, version 10.0.1) by a sin-

gle glaucoma-image-processing specialist (YKK). In detail, the histogram data of the down-

loaded high-resolution original ODPs (384 x 384 pixels) were evaluated to determine

whether an image was over- or underexposed, flat (i.e., of little contrast), and the tonal

range in which image adjustment was required. Then, using the Curves tool (specifically by

clicking on the image Levels curve and dragging on it), the tonal ranges of an image were

adjusted to improve its details and fine structures. Next, the visibility of retinal vessels or

DH was enhanced by adjustment of the contrast and brightness between the blood vessels

and background fundus. With the Selective color tool, red and yellow colors were

completely replaced by green/blue (i.e., the blood vessel color was changed from red to

bright red, and conversely, the background retinal color was changed from red-orange to

light brown in order to maximize the visibility of hemorrhage). Then, with the Contrast/

Brightness tool, the contrast and level were improved, and with the Smarten sharpen tool,

the degree and range of the sharpness were increased (Fig 3). Finally, the ‘compensated

high-resolution ODP’ could be obtained.
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Assessment of clinical implications of enhanced ODPs

For the test, 50 high-resolution original ODPs and 50 paired SR-GAN-enhanced ODPs in two

respective datasets were used. Three glaucoma specialists (AH, JL and KHP) independently

evaluated the original ODPs of the test datasets and confirmed a total of 23 DHs in 23 original

ODPs. Then, 12 general ophthalmologists were asked (1) to assess ODP image quality in 5

grades (excellent, good, fair, poor or bad), and (2) to note, for each of the original ODPs and

enhanced ODPs separately at 1-month intervals, any abnormal findings including DH. In the

process of the image quality grading, ‘excellent’ was defined as a clearly identified optic disc

margin and distinct major vessel structures, while ‘bad’ was defined as unidentifiability of the

optic disc margin. The ranges from good to fair quality and from fair to poor quality were

determined subjectively by each ophthalmologist. The 5 grades were numbered between 1

(‘poor’) and 5 (‘excellent’); then, we performed a mean opinion score (MOS) test to compare

the qualitative assessments in and among the image groups [17]. Fig 4 and S1 Fig. each com-

pare an original ODP image with its enhanced version.

Data analysis

All of the values are presented as means ± standard deviation. Paired t tests were used to deter-

mine the MOS differences between the two image types. The Mann-Whitney test was applied

for comparison of the nonparametric data. The categorical data were analyzed by χ2 test, and a

statistical analysis was performed using the SPSS statistical package (SPSS 22.0; Chicago, IL,

USA.). A 2-sided P-value < 0.05 was considered to be statistically significant.

Hardware specifications

CPU: Intel core i7-7700 3.60Hz x 8

GPU: TITAN X (Pascal) 12GB

RAM: 16GB

Software specifications

Deep-learning libraries:

Tensorflow– 1.14.0 with cuda 10.0 and cudnn 7.6.3

Fig 3. Customized image post-processing algorithm for maximized visibility of hemorrhage. (A) Original ODP. (B) With Selective color tool, red color was

replaced by green/blue and (C) yellow was replaced by green/blue. (D) With the Contrast/Brightness tool, the contrast level was improved, and with the

Smarten sharpen tool, the degree and range of the sharpness was increased. (E) Finally, a compensated high-resolution ODP could be obtained.

https://doi.org/10.1371/journal.pone.0239913.g003
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Fig 4. Representative optic-disc photography (ODP) of eye with optic disc hemorrhage (DH). (A) Magnified image of inferotemporal area in original high-

resolution ODP, (B) Magnified image of inferotemporal area in deep-learning-based enhanced ODP. The enhanced ODP improved the color and spatial

contrast between the DH and the background retinal color.

https://doi.org/10.1371/journal.pone.0239913.g004
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Tensorflow Tensorlayer– 2.1.1

Python libraries (version—3.6)

Numpy– 1.16.4 for model loading and array processing

Scipy– 1.1.0 for image loading, resizing, saving

Scikit-image– 0.15.0 for image transformation (augmentation)

Matplotlib– 3.1.1 for plotting image

Easydict– 1.9 for dictionary values as attributes

Os–for filename load

Pickle–for vgg19 model loading

Random–for train data shuffle

Time–for calculating time for data loading, training, testing time

Optimizer:

Generator: AdamOptimizer–learning rate of 10e-4, beta1 of 0.9

Discriminator: AdamOptimizer–learning rate of 10e-4, beta1 of 0.9

Results

Training loss of modified SR-GAN

Fig 5 depicts the generator and discriminator loss over the course of the training set epochs.

After 800 epochs, the loss of the discriminator decreased and that of the generator increased.

Up to the 800th epoch, the discriminator loss decreased and the generator loss increased for

every 200 epochs, which is ideal for adversarial loss. After every 200 epochs, the generator loss

abruptly decreased and the discriminator loss peaked. This is a characteristic of the Adam opti-

mizer [18]. The value of the Adam optimizer soars when gradients are smaller and the whole

denominator is smaller. Between the 800th and 1400th epochs, the loss values were stabilized.

Accordingly, we trained our model to the 1500th epoch.

Performance of final network

We validated the enhanced ODPs according to Structural Similarity (SSIM) and Peak Signal-

to-Noise Ratio (PSNR) and compared them with other machine-learning or state-of-the-art

deep-learning methods [19]. SSIM is used to calculate the similarity between two images based

on three measurements: luminance, contrast and structure.

SSIM x; yð Þ ¼
ð2μxμy þ c1Þð2σxy þ c2Þ

ðμx
2 þ μy

2 þ c1Þðσx
2 þ σy

2 þ c2Þ
ð5Þ

Here, μx and μy are the averages of x and y, σx2, σy2 are variances of x and y, and σxy is the

covariance of x and y. c1 = (k1L)2, c2 = (k2L)2, where L is the dynamic range of pixel values, k1 =

0.001 and k2 = 0.003.

The optimization target of SR-GAN algorithms commonly is MSE minimization between

the obtained and the targeted image. This is convenient, as minimizing the MSE also maxi-

mizes the PSNR, which is a measure commonly used to evaluate and compare SR algorithms.

MSE ¼
1

mn
Pm� 1

i¼0

Pn� 1

j¼0
½Iði; jÞ � kði; jÞ�2 ð6Þ

PSNR ¼ 10log
10

MAXI

MSE

� �2

ð7Þ
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Here, I(i,j), k(i,j) describe the original image and the target image, respectively. MAXI is the

maximum pixel value of the image, and in the present case, the MAXI value was 255. Also, the

PSNR is calculated as the ratio between the maximum signal power and the noise power.

The S1 and S2 Tables provide validation results for the representative six test image sets (all

384 x 384 pixel size). Both the mean SSIM and PSNR values were lower by our SR-GAN com-

pared with other methods including Bicubic [20], NBSRF (Naive Bayes Super-Resolution For-

est) [21], SR-RF (Super-Resolution Forests) [22], SRResNet (Super Resolution Residual

Network) [10], and SRFBN (Feedback Network for Image Super-Resolution) [23]. Since our

modified SR-GAN was designed to generate images to improve not only the resolution but

also the color and spatial contrast, some of the enhanced images had greatly different color

composition compared with the reference images (S2 Fig). By our modified SR-GAN method,

the SSIM and PSNR values were higher in images #13, #15, and #16 than in images #14, #25,

and #26. In images #13, #15, and #16, the obtained ODPs were similar to the targeted ODPs.

In images #14, #25, and #26, however, the overall background color of the ODPs was trans-

formed from red-orange to green. This might have caused the relatively lower SSIM and PSNR

values, even though they were perceptually convincing images (Fig 6). The MOS test showed

significant gains in perceptual quality using our modified SR-GAN compared with the Bicubic,

NBSRF, SR-RF, SRResNet, and SRFBN methods (S3 Table).

Fig 5. Training curve for deep-learning algorithm. The red line shows the accuracy of the discriminator over the training course,

while the blue line represents the accuracy of the generator. As can be seen, after the 800th epoch, the discriminator’s loss decreases

and the generator’s loss increases.

https://doi.org/10.1371/journal.pone.0239913.g005
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Clinical validation of enhanced ODP by MOS comparison

A total of 1200 responses comprising 12 ophthalmologists’ image quality assessments of 50 orig-

inal and 50 enhanced ODPs were analyzed. The subjects’ demographic and ocular characteris-

tics are provided in S4 Table. The image quality grades were numbered between 1 and 5 (higher

scores indicating better quality), and all of the 50 enhanced ODPs were graded as either ‘excel-

lent’ or ‘good.’ The MOS for the enhanced ODPs was significantly higher than that for the origi-

nal ODPs (4.36 ± 0.38 vs. 3.51 ± 0.88, P< 0.001). The lower the original ODP image quality

score, the larger the difference between the original and enhanced ODPs’ score (Fig 7).

Fig 6. Validation results for representative test image sets. The Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) values were higher

in the upper 3 sets, and the obtained optic-disc photography (ODPs) were perceptually similar to the targeted ODPs (A). In the lower image sets, the

change in background color caused relatively lower PSNR and SSIM values, even though those images were perceptually convincing (B).

https://doi.org/10.1371/journal.pone.0239913.g006
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Comparison of DH-detection accuracy

The 12 ophthalmologists’ assessments of the 50 original ODPs and 50 enhanced ODPs were

analyzed. The overall DH-detection accuracy was 76.3% with the original ODPs and 90.7%

with the enhanced ODPs (P< 0.001). Among the misdiagnosed DHs, the rate of false-positive

detection was 6.2 and 2.7% in the original and enhanced ODPs, respectively (P = 0.003). The

rate of false-negative detection was 17.5 and 6.7% in the original and enhanced ODPs, respec-

tively, and the difference was statistically significant (P< 0.001).

The group with the low original image quality (mean score < 3.0) showed a much

improved DH-detection rate with the enhanced ODPs. The DH-detection accuracy differences

between the original and enhanced ODPs were 29.5 ± 17.6 and 9.0 ± 12.8% in the low- and

high-original-image-quality groups, respectively (P< 0.001).

Discussion

We have presented herein a novel deep-learning approach to ODP enhancement that is capa-

ble of (1) 4-times up-scaling and (2) enhancement of anatomical details by means of contrast,

color, and brightness improvement. We found that the resultant enhanced ODPs significantly

improved general ophthalmologists’ accuracy of DH detection in glaucoma patients. The core

novelty of our method lies in its clinical robustness in constructing image datasets. By applying

a customized manual image post-processing algorithm to the training dataset, our network

could improve both resolution and visibility of anatomical details, which compares favorably

with other deep-learning approaches that focus only on resolution enhancement.

Recently, general image enhancement has achieved state-of-the-art performance, especially

with the development of deep-learning techniques [24–26]. Dai et al. proposed a two-stage

denoising method including fourth-order partial differential equations (PDEs) and a relaxed

median filter for retinal image enhancement [27]. Bandara and Giragama applied a spatially

adaptive contrast-enhancement technique for enhancement of fundus images [28]. However,

some retinal pathologies (e.g., hemorrhages, microaneurysms, and drusen) are mostly only a

Fig 7. Scatter plot of delta mean opinion score (Δ MOS) against MOS of original optic-disc photography (ODP).

The Δ MOS was calculated as the difference between the original and enhanced ODP scores. Note that the lower the

original ODP image quality score, the larger the Δ MOS.

https://doi.org/10.1371/journal.pone.0239913.g007
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few pixels wide, causing them to be easily confused with artifacts of noise. Thus, a fundus

image enhancement method must be able to both suppress the undesired low-quality factors

and preserve the pathological characteristics simultaneously, which requirement general

enhancement techniques cannot satisfy [29]. Zhao et al. applied adversarial loss to blurry reti-

nal images [30]. However, despite its computational efficiency, this method focuses only on

generating photo-realistic images, ignoring lesions significant to clinical applications. Thus, in

our study, we focused on designing an effective deep-learning model for robust images suitable

to the diagnosis of ophthalmic pathologies.

In this study, 74% of the original ODPs were evaluated as ‘better than fair’ image quality

sufficient for detection and diagnosis of pathologic change. However, on those original ODPs,

a large percentage (142/600, 23.7%) of images was misdiagnosed by the ophthalmologists. This

might have been owed to the fact that, even with high-resolution, good-quality ODPs, there is

often limited detectability of small and indistinct pathologies due to insufficient time, fatigue,

and/or lack of experience [7]. We demonstrated that by use of enhanced ODPs, detection

accuracy for ONH pathology can be greatly improved.

We expect that this deep-learning approach for enhanced ODP will see wide application for

accurate evaluation of ophthalmic pathologies and precision assessment of disease progres-

sion. Enhanced ODPs, for example, are expected to more clearly show vessel alterations or

PPA changes associated with glaucomatous damage. Enhanced imaging enables ophthalmolo-

gists to zoom in on a suspect area and examine it in greater detail, without pixel loss. By appli-

cation of this method to fundus photography, minute retinal hemorrhage or subtle

enlargement of retinal nerve fiber layer defect can be more accurately and consistently

detected.

The clinical utility of deep-learning based image enhancement is particularly high in cases

of low-quality images having low resolution and/or low contrast. In eyes with cataract or cor-

neal opacity, enhanced ODPs can be used to improve overall image quality and the accuracy of

glaucoma and retinal disease diagnostics. Moreover, images showing contrast loss due to poor

focus, eye movement or insufficient illumination can be up-scaled. Regarding the examination

results printed on paper in low resolution and transferred from other institutions, applying

our deep-learning method for enhanced ODPs makes possible not only magnification of such

images but also improvement of their structural details, which in turn allows for more meticu-

lous evaluation (Fig 8). Additionally, there is growing interest in the value of using telemedi-

cine for detection, following, and treatment of ophthalmic diseases [31, 32]. In cases of tele-

ophthalmology requiring transmission of acquired low-resolution results [33, 34], transforma-

tion to enhanced images certainly can help to overcome hardware limitations, thereby

enabling ophthalmologists to more closely analyze suspicious regions.

It has been reported that using GAN for super-resolution imaging can incur image artifacts

in fine details [10]. Thus, two glaucoma specialists (AH and YKK) checked each image for the

presence of artifacts, and could confirm that there were no such cases in our dataset. The

underlying reason for this difference in artifact occurrence rate is not yet clear. We speculate

that previous GANs are more vulnerable to artifacts because they utilize a variety of images as

a training dataset, as compared with ours, which consists only of ODPs. However, since arti-

facts in medical applications may affect diagnosis or management of patients, caution needs to

be exercised in any attempts to utilize our network for other image types.

Single-image SR via deep learning recently has attracted significant research attention. In

the present study, a modified SR-GAN consisting of a GAN and a pre-trained VGG19 network

was adopted for image training. A network trained for image classification (like VGG) stores,

in its feature maps, detailed information on the appearance of common objects, thus enabling

an up-scaled image to be made up, to the extent possible, of objects resembling real-world

PLOS ONE Enhanced optic-disc photography via deep learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0239913 October 1, 2020 12 / 17

https://doi.org/10.1371/journal.pone.0239913


ones. A GAN also has additional merits including non-dependence on prior-knowledge, the

lack of any need to design hand-engineered features, and high effectiveness in capturing image

structures. Such underlying advantages render SR-GAN a robust platform allowing for multi-

ple applications to be followed once well-trained SR artificial intelligence is established. In

future studies, we will explore this modified SR-GAN’s results for different datasets.

It is known that deep learning generally requires a large dataset for the training phase [16].

In the current study however, we demonstrated the ability to obtain clinically meaningful

results with only 48 pairs of datasets. We carefully modeled both the image degradation pro-

cess for generation of low-resolution ODPs and the image customization process for produc-

tion of compensated high-resolution ODPs; in this way, we eliminated the need for

complicated alignment of high- and low-resolution pairs. These steps simplified data process-

ing and improved the modified GAN’s robustness. We believe that this example-based method

using standardized low- and high-resolution image pairs can maximize the time efficiency of

the training process.

The present study’s findings must be interpreted in light of its limitations. First, numerical

evaluation of enhanced image quality was unsuitable for some of our dataset [35]. Different

metrics, such as PSNR, SSIM, and multi-scale SSIM, are widely used for quantitative assess-

ment of image restoration quality [36]. These metrics measure reconstructed image quality

with respect to the reference or ground-truth image. Some of our enhanced ODPs had greatly

different color composition compared with the reference image, due to the fact that we had

used compensated ODPs with color-contrast customization in the training process [37]. With

such alterations in color composition, direct comparison by numerical evaluation with other

deep-learning methods that focus only on resolution improvement would be inappropriate

[37]. Furthermore, none of these metrics are known to be well matched with human visual

Fig 8. Example of fundus photography transferred from another institution as printed document. (A) Original document, (B) directly extracted fundus

image, (C) magnified image of optic disc in original fundus photography, (D) deep-learning-based enhanced fundus photography, (E) magnified image of optic

disc in enhanced fundus photography. The enhanced fundus photography improved the structural details of the optic disc, neuroretinal rim margin and vessel

contours.

https://doi.org/10.1371/journal.pone.0239913.g008
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responses to image quality [16]. For these reasons, we focused on the clinical implications of

the use of enhanced ODPs for diagnosis of optic disc pathology. Further numerical evaluation

of enhanced ophthalmic image quality with reasonable metrics should be carried out in future

studies. Second, we applied a customized image post-processing algorithm for optimization of

both the color and spatial contrast of each ODP. This detailed manual adjustment was applied

differently according to each ODP’s image quality. Although this variability in the image-pro-

cessing procedure may incur reproducibility issues, we believe that the core novelty of our

method lies in the customization of image-processing procedures. In real-world clinical prac-

tice, ODPs can have several different limitations other than insufficient resolution, such as low

color and spatial contrast. Based on the customized image compensation process to optimize

the visibility of ophthalmic pathology, we enabled GAN to generate enhanced ODPs with both

higher resolution and improved anatomical details. However, different image post-processing

methods or training strategies might manifest different results. Third, the clinical implications

of enhanced ODP were not evaluated for other optic-disc characteristics such as neuroretinal

rim contours. This was due to the fact that the image-compensation process of the present

study was mainly focused on the enhancement of the visibility of the optic disc margin and

surrounding retinal vessels, not on the rim contours. Therefore, further research is certainly

needed to determine the usefulness of deep-learning-based enhanced ODP in glaucoma diag-

nostics. Fourth, our meaningful training results were based on relatively little data. Further

studies will validate this algorithm using a larger dataset.

The current study demonstrated that deep learning can be applied to create an algorithm

that is capable of producing enhanced ophthalmic images that are 4-times up-scaled and

improved in their structural details. The enhanced ODPs thereby obtained significantly

increased the detection accuracy of optic disc pathology. Further studies exploring the useful-

ness of this algorithm’s deployment in different clinical settings are warranted.

Supporting information

S1 Fig. Representative optic-disc photography (ODP) of eye with tilted optic disc and

parapapillary chorioretinal atrophy (PPA). (A) Original high-resolution ODP, (B) deep-

learning-based enhanced ODP, (C) magnified image of inferotemporal area in original high-

resolution ODP, (D) magnified image of inferotemporal area in deep-learning-based enhanced

ODP. The enhanced ODP enabled image magnification without pixel loss; thus, the details of

the disc margin, PPA border, and small-caliber vessels could be clearly shown.

(TIF)

S2 Fig. Representative optic-disc photography (ODP) reconstruction results and corre-

sponding reference images. From left to right: original high-resolution ODP, bicubic interpo-

lation, SR-RF (Super-Resolution Forests), NBSRF (Naive Bayes Super-Resolution Forest),

SRFBN (Feedback Network for Image Super-Resolution), SRResNet (Super Resolution Resid-

ual Network), and our SR-GAN (super-resolution generative adversarial network) [x4 up-scal-

ing]. (A) SDP of left eye of patient diagnosed with glaucoma suspect, (B) SDP of left eye of

glaucoma patient with tilted optic disc and parapapillary chorioretinal atrophy, and (C) SDP

of right eye of glaucoma patient with inferotemporal optic disc hemorrhage.

(TIF)
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