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Abstract

The biological function of proteins is closely related to its structural motion. For instance,

structurally misfolded proteins do not function properly. Although we are able to experimen-

tally obtain structural information on proteins, it is still challenging to capture their dynamics,

such as transition processes. Therefore, we need a simulation method to predict the transi-

tion pathways of a protein in order to understand and study large functional deformations.

Here, we present a new simulation method called normal mode-guided elastic network inter-

polation (NGENI) that performs normal modes analysis iteratively to predict transition path-

ways of proteins. To be more specific, NGENI obtains displacement vectors that determine

intermediate structures by interpolating the distance between two end-point conformations,

similar to a morphing method called elastic network interpolation. However, the displace-

ment vector is regarded as a linear combination of the normal mode vectors of each interme-

diate structure, in order to enhance the physical sense of the proposed pathways. As a

result, we can generate more reasonable transition pathways geometrically and thermody-

namically. By using not only all normal modes, but also in part using only the lowest normal

modes, NGENI can still generate reasonable pathways for large deformations in proteins.

This study shows that global protein transitions are dominated by collective motion, which

means that a few lowest normal modes play an important role in this process. NGENI has

considerable merit in terms of computational cost because it is possible to generate transi-

tion pathways by partial degrees of freedom, while conventional methods are not capable of

this.

Introduction

Proteins are essential components of living cells. Each protein has its own biological function,

which is accompanied by conformational change of the protein. Therefore, studying this con-

formational change is necessary to understand the underlying mechanism of its biological

functions. Various experimental methods have been developed as part of this effort.
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Specifically, NMR [1,2], Raman spectroscopy [3,4], electron cryo-microscopy [5,6], atomic

force microscopy [7,8], and terahertz time-domain spectroscopy [9,10], as well as time-

resolved methods such as x-ray scattering [11,12], the transient grating method [13–15] and

light scattering [16] have expanded our understanding of the relationship between structure

and function in biomolecules. Although the local vibrational movement of a protein in meta-

stable states can be relatively easily captured by those experimental methods, it is still challeng-

ing to observe its global dynamics experimentally. This is due to the existence of a high-energy

barrier between two conformational states, and also because capturing a very dynamic transi-

tion state is difficult with current experimental techniques. Thus, various computational

attempts have sought to find intermediate structures from the known stable structures.

Molecular dynamics (MD) simulation [17,18] is a representative computational method

that can be used to analyze the dynamics of proteins in atomic detail. However, the conven-

tional MD simulation is inappropriate for predicting large-scale transitions due to its compu-

tational cost, despite recent efforts to overcome time limitations [19–21]. Instead, the

prediction of transition pathways based on a simplified potential function, called the elastic

network model (ENM), has flourished in recent years. Unlike MD simulation, which integrates

an empirical potential function, ENM exploits a Hookean potential function and can signifi-

cantly reduce the computational cost. The ENI first attempted to find intermediate structures

by interpolating the distance between two end-point conformations of a target protein [22–

24]. This transition pathway generation technique was already implemented on an online

morph server called KOSMOS [25]. The mixed elastic network model (MENM) was also

developed to study large-scale conformational transitions [26]. In the MENM method, the

Boltzmann-weighted Go potentials for the end-point structures are combined into a smooth

potential function, which interpolates conformation. The interpolated ENM (iENM) was pro-

posed by constructing a double-well potential function from the ENMs of two end-point struc-

tures [27]. To improve conventional coarse-grained ENM-based methods without the loss of

physical reality, the hybrid ENI considers the rigidity information of conformation when gen-

erating transition pathways [28]. In addition, the ANMPathway used two end-point ENMs

and constructed two-state potential resulting in a cusp hypersurface [29]. The minimum

energy conformation on this cusp hypersurface is regarded as the transition conformation.

Meanwhile, normal mode analysis (NMA) based on coarse-grained modeling has addressed

predicting collective motions at low frequency and succeeded in explaining biological func-

tions in terms of the collective motion [30–34]. Since the transition process mostly shows the

large collective motion, there have been efforts to employ low-frequency mode shapes pre-

dicted by NMA to the transition pathway. Firstly, collective MD iteratively obtains the transi-

tion pathways by combining NMA based on ENM, which guides the collective dynamics with

MD evaluating local dynamics and atomic interactions [35]. The optimized torsion-angle nor-

mal modes in internal coordinates generated more accurate transition pathways than the Car-

tesian modes [36]. Next, in the anisotropic network model-Monte Carlo (ANM-MC) method,

normal modes are also used for describing intermediate structures on transition. Then, MC

algorithm is applied to minimize their conformational energy in order to predict the transition

pathway successfully [37]. Such NMA-based transition pathway prediction tools were also

addressed through online web servers. NMSim reproduces the feasible transition pathways

using rigid-cluster NMA in Cartesian coordinates [38], while iMODS performs the pathway

generation based on NMA in internal coordinates [39].

In this work, we present a new simulation method based on ENM, which is called the nor-

mal mode guided elastic network interpolation (NGENI). This method can generate pathways

on a large-scale transition process by iteratively performing NMA. The conventional ENI

method generates conformational pathways between the initial and the final conformations by
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obtaining displacement vectors iteratively toward a direction which linearly reduces root-

mean-square deviation (RMSD) between the two given structures [22–24]. On the other hand,

the displacement vectors in NGENI are composed of a linear combination of normal mode

vectors. Because of this methodological difference, NGENI generates theoretically more reli-

able pathway than ENI of which the pathway doesn’t take into account any physical aspects

such as the intrinsic thermal vibration, but only complies with the given topological con-

straints in Cartesian space. As the existing morphing methods such as MENM, iENM and

ANMPathway also utilize either topological constraints or potential energy landscape for pre-

diction of large-scale transition pathways, our method is expected to be a new solution consid-

ering both aspects in a balanced way. In addition, NGENI is able to adjust degrees of freedom

in the simulation by determining the number of normal modes to be used. This enables us to

reduce the computational cost. The validity of NGENI has been verified with extensive testing

by comparing NGENI to ENI.

Materials and methods

A set of proteins

In this work, we choose a set of 8 proteins for which two end-point structures are available at

the Protein Data Bank (PDB). The RMSD between the two end-point structures was more

than 3 Å for all tested proteins. Such a topological difference is enough to test whether a pro-

tein undergoes conformational changes that cause its own biological functions. The informa-

tion about these proteins is listed in Table 1.

Outline of NGENI

The purpose of the NGENI method is to construct a pathway between two end-point struc-

tures based on low-frequency modes, which are most relevant to biological function. The path-

way comprises consecutive displacement vectors between an intermediate structure and the

next one. To obtain these vectors, we established an objective function in which potential

energy linearly decreases with respect to the RMSD value by interpolating the distance

between spatially close residues (more detailed description on RMSD calculation is given in S1

Text). Here, the coordinates are collected from the position of the alpha carbon atoms (Cαs),

Table 1. Fundamental information about a set of 8 large-scale transition proteins.

Protein PDB ID

Aa
PDB ID

Bb
No. of residues (n) RMSD (Å) No. of iterationsc (s) Resolutiond (Å)

T4 lysozyme 178L 256L 162 3.4 34 1.80

Maltodextrin binding protein 1OMP 1ANF 370 3.8 38 1.67

D-allose binding protein 1GUD 1RPJ 288 4.5 45 1.70

LAO binding protein 2LAO 1LST 238 4.7 47 1.80

5’-nucleotidase 1OID 1OI8 525 5.5 55 2.10

Ribose-binding protein 1BA2 2DRI 271 6.2 62 1.60

Adenylate kinase 4AKE 1AKE 214 7.1 71 2.00

Ribonuclease III 1YZ9 1YYO 438 7.3 73 2.10

a Initial conformation of each protein.
b Final conformation of each protein.
c The number of iterations (no. of iterations) is simply determined by multiplying the RMSD value by 10 since NGENI generates the intermediate

conformations, which have an RMSD of 0.1 Å to the previous step at each iteration.
d The smaller resolution value between the two conformations of each protein is selected as a representative here.

https://doi.org/10.1371/journal.pone.0185658.t001
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and spatially close residues are connected by linear springs based on the ENM concept [40,41].

The key idea of the NGENI is to generate transition pathways based on normal mode vectors.

A linear combination of normal mode vectors yields the corresponding intermediate structure.

By adjusting the contribution weighting of each mode vector, we can define the vector set that

satisfies the desired value of potential energy. Iteratively, a series of these displacement vectors

are obtained from the initial to the final conformation to create a possible transition pathway.

Here, the number of iterations is preset by multiplying the RMSD value between the two end-

point structures by 10 in order to get a smooth transition pathway with the RMSD increment

of 0.1 Å every iteration step. The overall scheme of NGENI is shown in Fig 1 and more details

about the proposed objective function are also described in the following chapter.

Cost function

For a protein composed of n residues (e.g., Cαs based on coarse-grained ENM), the coordi-

nates for the two end-point structures are denoted by {xi} and {yi}, respectively. When we use

the m lowest normal modes in the simulation, we can define the displacement vector for the ith

residue as follows

di ¼ c1vi;1 þ c2vi;2 þ � � � þ cmvi;m ¼ ViCw 2 R3; ð1Þ

where vi,m is the mth normal mode vector of the ith residue and cm is a weighting constant of

the mth normal mode. Thus, we can define

Vi ¼ ½vi;1; vi;2; � � � ; vi;m� 2 R3�m ð2Þ

Fig 1. Schematic of the proposed NGENI method. (A) A flow chart of NGENI. If the total number of iterations is s, then k increases

iteratively from 1 to s-1. (B) A schematic description of a large-scale transition pathway. Specifically, the left figure labeled ‘Start’ refers to an

initial structure, the right one labeled ‘End’ refers to a final structure, and the center one labeled ‘kth’ indicates an intermediate structure at the

kth step.

https://doi.org/10.1371/journal.pone.0185658.g001
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and

Cw ¼ ½c1; c2; � � � ; cm�
T
2 Rm: ð3Þ

Here, we introduce a cost function as follows

CðCwÞ ¼
1

2

Xn� 1

i¼1

Xn

j¼iþ1

ki;jfkxi þ ViCw � xj � VjCwk � li;jg
2
; ð4Þ

where ki,j is an element of the linking matrix which contains binary information about virtual

spring connection in ENM. The value of li,j is the desired distance between the ith residue and

jth residue at a certain intermediate state. The value of li,j can be determined as

li;j ¼ ð1 � aÞkxi � xjk þ akyi � yjk; ð5Þ

where α is a scale factor that interpolates between the initial distance kxi − xjk and the final one

kyi − yjk. It ranges from 0 (i.e., initial) to 1 (i.e., final) with an increment of 1/s. Again, s is the

total number of iterations here.

We simplify the cost function in Eq (4) in order to obtain the optimum solution of Cw.

First, we define Ci,j as a part of the cost function

Ci;j ¼
1

2
ki;jfkxi þ ViCw � xj � VjCwk � li;jg

2
: ð6Þ

This equation can be simplified into a quadratic equation in terms of Cw by using a Taylor

series approximation for small values of ViCw and VjCw.

kx þ VCwk � kxk þ
x � VCw

kxk
þ

1

2

ðVCwÞ
TAðxÞVCw

kxk
; ð7Þ

where

AðxÞ ¼ E3 �
xxT

kxk2
; ð8Þ

and E3 is the 3 by 3 identity matrix.

Then, we write Eq (6) as

Ci;j ¼
1

2
ki;jðC

ð1Þ

i;j þ Cð2Þi;j þ Cð3Þi;j Þ; ð9Þ

where

Cð1Þi;j ¼ ðViCw � VjCwÞ
T E3 � li;j

Aðxi � xjÞ

kxi � xjk

" #

ðViCw � VjCwÞ; ð10Þ

Cð2Þi;j ¼ 2 1 �
li;j

kxi � xjk

 !

ðxi � xjÞ
T
ðViCw � VjCwÞ; ð11Þ

and

Cð3Þi;j ¼ ðxi � xjÞ
T
ðxi � xjÞ � 2li;jkxi � xjk þ l2

i;j: ð12Þ
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In Cð1Þi;j in Eq (10), we define Pð1Þi;j 2 R3�3 as

Pð1Þi;j ¼ E3 � li;j

Aðxi � xjÞ

kxi � xjk

" #

: ð13Þ

Then, we can rewrite

Cð1Þi;j ¼ ðViCw � VjCwÞ
T Pð1Þi;j ðViCw � VjCwÞ: ð14Þ

Considering all the spring connections, we can obtain the following equation

1

2

Xn� 1

i¼1

Xn

j¼iþ1

ki;jC
ð1Þ

i;j ¼
1

2
Cw

TL
ð1ÞCw; ð15Þ

where Λ(1) 2 Rm×m is defined as

L
ð1Þ
¼
Xn� 1

i¼1

Xn

j¼iþ1

ki;j VT
i Pð1Þi;j Vi � VT

i Pð1Þi;j Vj � VT
j Pð1Þi;j Vi þ VT

j Pð1Þi;j Vj

� �
: ð16Þ

Next, for Cð2Þi;j in Eq (11), taking Pð2Þi;j 2 R1�3 as

Pð2Þi;j ¼ 2 1 �
li;j

kxi � xjk

 !

ðxi � xjÞ
T
: ð17Þ

Then,

Cð2Þi;j ¼ Pð2Þi;j ðViCw � VjCwÞ: ð18Þ

We can also simplify the term such that

1

2

Xn� 1

i¼1

Xn

j¼iþ1

ki;jC
ð2Þ

i;j ¼
1

2
L
ð2ÞCw; ð19Þ

where Λ(2) 2 R1×m is

L
ð2Þ
¼
Xn� 1

i¼1

Xn

j¼iþ1

ki;jP
ð2Þ

i;j ðVi � VjÞ: ð20Þ

Lastly, let Λ(3) be a constant such that

L
ð3Þ
¼
Xn� 1

i¼1

Xn

j¼iþ1

ki;jC
ð3Þ

i;j : ð21Þ

Consequently, we can derive a quadratic form of the cost function by substitution of Eqs

(16), (20), and (21) into (9).

CðCwÞ ¼
Xn� 1

i¼1

Xn

j¼iþ1

Ci;j �
1

2
Cw

TL
ð1ÞCw þ

1

2
L
ð2ÞCw þ L

ð3Þ
: ð22Þ

Our goal is to determine the value of Cw, which minimizes Eq (22). To do that, the Cw has

Normal mode-guided transition pathway generation
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to satisfy the following equation

@CðCwÞ

@Cw
¼ L

ð1ÞCw þ
1

2
ðL
ð2Þ
Þ

T
¼ 0: ð23Þ

Through this computation, we can obtain the optimum weighting constant Cw and deter-

mine the optimum displacement vectors from an intermediate state to the next one. Iteratively,

this process can generate a conformational transition pathway between the given two end-

point structures. From a computational point of view, the whole process can be divided into

two parts: NMA and the main computational part from Eqs (9) to (23). First, the time com-

plexity of NMA is O(nm2) when using the “eigs” function in MATLAB. This function is well

designed to find the largest/smallest magnitude eigenvalues of sparse matrix efficiently using

Krylov subspace methods including Lanczos and Arnoldi algorithms [42,43]. Next, in the

main computational part, the most computational effort is required to construct the cost func-

tion in Eq (16) with the time complexity of O(nm2). Consequently, the overall time complexity

of optimum-NGENI can be expressed as O(n) when m is a constant. On the other hand, in

ENI, the computation time is mainly consumed by multiplication/inversion of large and sparse

matrix with the time complexity of O(n2) (see S2 Text for further details).

Results and discussion

Verification of NGENI by using the full degrees of freedom

We first evaluated the performance of NGENI with all normal modes (full-NGENI) by com-

paring it with the conventional ENI pathways [22–24] in terms of average RMSD values. For 8

large-scale transition proteins, we obtained average RMSD which is the average of RMSD val-

ues between two corresponding intermediate conformations generated by full-NGENI and

conventional ENI for all iteration steps. As a result, the negligibly small RMSD values indicate

that the full-NGENI generated similar pathways to those of conventional ENI for all cases

(Table 2). This is because the full normal mode vectors can take the complete set of degrees of

freedom (DOF) into account. Mathematically speaking, this is nothing more than a different

representation of the bases that constitute the given topological space. Therefore, we con-

firmed that the full-NGENI could generate reliable pathways for a large-scale transition pro-

cess based on the fact that the conventional ENI pathway has already been verified elsewhere

[22–24].

Table 2. Comparison between the full-NGENI and the conventional ENI pathways.

Protein Resolution (Å) Average RMSDa (Å)

T4 lysozyme 1.80 0.0879

Maltodextrin binding protein 1.67 0.0296

D-allose binding protein 1.70 0.0012

LAO binding protein 1.80 0.0002

5’-nucleotidase 2.10 0.0021

Ribose-binding protein 1.60 0.0031

Adenylate kinase 2.00 0.0029

Ribonuclease III 2.10 0.1620

a It indicates the averaged RMSD value between the full-NGENI and the conventional ENI pathways. Here,

all the ENI pathways are automatically generated through KOSMOS online server [25].

https://doi.org/10.1371/journal.pone.0185658.t002
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Potential of NGENI with partial degrees of freedom

As low frequency modes dominantly show collective motion, one can significantly reduce

computational cost without loss of generality of the pathway by using only those modes. Here,

we define another NGENI with partial DOF, called optimum-NGENI, and test whether the

optimum-NGENI is still able to generate reasonable transition pathways. Fig 2 illustrates this

concept, in which each curved line represents a transition pathway inside a cylindrical space

spanned by corresponding normal modes. The smaller search space of the optimum-NGENI

enables us to dramatically reduce the computational cost. The size of the searching space can

be easily adjusted by the number of normal modes taken in the optimum-NGENI, but it has

not been determined whether this optimum number satisfies all general cases.

To determine the optimum number of lowest normal modes used in the optimum-NGENI,

the quality of the optimum-NGENI pathway was evaluated using RMSD between intermediate

conformations and the final given structure for every iteration step. If these RMSD values are

less than its experimental resolution, then the proposed optimum-NGENI with a particular

number of lowest normal modes is considered to satisfy the convergence condition. Although

the optimal number of normal modes may be different in each case, 30 lowest normal modes

seem to be sufficient to generate reliable pathways, as shown in Table 3.

For further assessment of this convergence condition, Fig 3 presents the transition path-

ways of two proteins: adenylate kinase and D-allose binding protein. Adenylate kinase cata-

lyzes the transfer of a phosphoryl group from ATP to AMP [44] and undergoes rigid body

motions of the NMPbind and LID domains with two pairs of hinges connecting each domain to

CORE domain [45]. Fig 3A (upper) includes an actual simulation result showing that the opti-

mum-NGENI successfully generates the rigid body movements of adenylate kinase. In addi-

tion, both full-NGENI and optimum-NGENI pathways are compared to each other in Fig 3A

(lower). Unlike full-NGENI, the error of the optimum-NGENI pathway is accumulated at the

end and obviously caused by the missing DOF. However, this error is acceptable compared to

the experimental resolution of the adenylate kinase structure. This result suggests that only a

small portion of the lowest normal modes is sufficient to predict transition pathways without

Fig 2. A schematic of different NGENI pathways in terms of degrees of freedom. A cylindrical tube

represents the searching space for a transition pathway depicted by a curved line. The optimum-NGENI is

shown in blue, while the full-NGENI is shown in red. Both pathways are generated from the same initial and

target structures.

https://doi.org/10.1371/journal.pone.0185658.g002
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loss of generality because this portion has enough information to comprehend biologically

important collective protein motion. Fig 3B also confirms similar results for D-allose binding

protein, which has three hinge points between two domains [46]. The upper figure in Fig 3B

shows that the generated pathway demonstrates the hinge movement without difficulty, and

the lower one verifies that the pathway of optimum-NGENI meets the convergence condition.

Furthermore, their reverse transition pathways (from closed to open form) were also generated

by optimum-NGENI. They not only satisfy the convergence condition but also preserve realis-

tic geometry during the reverse transition (see S3 Text).

Table 3. Convergence of the optimum-NGENI.

Protein Resolution (Å) Convergence condition, ma

5 10 20 30 40 Full

T4 lysozyme 1.80 O O O O O O

Maltodextrin binding protein 1.67 X O O O O O

D-allose binding protein 1.70 O O O O O O

LAO binding protein 1.80 O O O O O O

5’-Nucleotidase 2.10 X X X O O O

Ribose-binding protein 1.60 O O O O O O

Adenylate Kinase 2.00 O O O O O O

Ribonuclease III 2.10 X O O O O O

If the convergence condition is satisfied, it is marked ‘O’. If not, it is marked ‘X’.
a The number of lowest normal modes used in the optimum-NGENI test. The full-NGENI case is also listed in the last column as a reference.

https://doi.org/10.1371/journal.pone.0185658.t003

Fig 3. RMSD comparison between the optimum-NGENI and the conventional ENI pathways for adenylate kinase and D-allose

binding protein. (A) Adenylate kinase, (B) D-allose binding protein. The upper figures show rough transition pathways of proteins using

representative intermediate structures. The lower graphs show changes in RMSD between the final structure and intermediate

conformations generated by two different methods: full-NGENI (dashed red) and optimum-NGENI (solid blue). The black dotted line

represents experimental resolution of each protein.

https://doi.org/10.1371/journal.pone.0185658.g003
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Availability of optimum-NGENI for large proteins

Thus far, we have defined optimum-NGENI as the NGENI using only the first 30 lowest nor-

mal modes through the evaluation of convergence condition of generated transition pathways.

Now, we test if optimum-NGENI is still able to generate transition pathways for relatively

large proteins such as group II chaperonin. The detailed structural information of group II

chaperonin is provided in Table 4.

As shown in Fig 4A, the optimum-NGENI pathway successfully describes the hinge-bend-

ing motions of the intermediate domains which play a key role in the folding mechanism of

the group II chaperonin. Moreover, RMSD values of optimum-NGENI and ENI are compared

to each other in Fig 4B. Although the optimum-NGENI pathway shows higher RMSD error at

the end stage, it can still converge below the experimental resolution. Lastly, the bond lengths

and bond angles are measured for evaluating physical reality of the proposed pathway (Fig

4C). We have also confirmed that difference with the two end-point structures is negligible for

bond length (less than 0.03Å).

Table 4. Structural information of group II chaperonin.

Protein PDB ID

A

PDB ID

B

No. of residues (n) RMSD (Å) No. of iterations (s) Resolution (Å)

Group II chaperonin 3IYF 3J03 3928 15.4 154 4.80

https://doi.org/10.1371/journal.pone.0185658.t004

Fig 4. The optimum-NGENI pathway of group II chaperonin. (A) Transition pathway from 3IYF (open) to 3J03 (closed). (B) RMSD

comparison between optimum-NGENI (solid blue) and ENI (dashed red). The black dotted line represents experimental resolution. (C)

Variation of bond length (solid black) during the conformational change.

https://doi.org/10.1371/journal.pone.0185658.g004
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Ideally speaking, there is no size limitation to optimum-NGENI. For large system, we can

expect much higher computational efficiency by using a finite number of meaningful normal

modes as the driving force of pathway generation. Although there is still an argument on how

to predetermine the number of normal modes required to capture the system dynamics with-

out any loss of generality, empirically speaking (also supported by our case study results), the

first 30 lowest normal modes are enough to generate the transition pathway successfully. Also,

it is noted that this number is not determined by the size of protein structure but the complex-

ity of conformational transition.

Quality of optimum-NGENI pathway

To address whether the optimum-NGENI method achieves goals as good as the conventional

ENI, the performance of both methods is compared using the average RMSD values for our

protein set including the group II chaperonin (Table 5). Here, these values are obtained from

averaging RMSD values between two corresponding intermediate conformations generated by

optimum-NGENI and ENI for every iteration step. As the average value is smaller than the

corresponding resolution value for all cases, topological difference between two pathways is

negligible. To evaluate quality of the optimum-NGENI pathways for adenylate kinase and D-

allose binding protein, we compared their weighting constants with those of full-NGENI (Fig

5). For both cases, the first 30 weighting constants of the full-NGENI were very similar to

those of the optimum-NGENI, in the sense that several lowest modes dominantly influence

the transition pathway in proteins by generating large-scale and collective motion. Quantita-

tively speaking, the correlation coefficients between the two methods are 0.988 and 0.992 for

adenylate kinase and D-allose binding protein, respectively. This result indeed validates that

the proposed optimum-NGENI method can generate transition pathways as good as the con-

ventional ENI does with only the fixed number of lowest normal modes (i.e., 30 in this con-

text). The weighting constants for all the other protein pathways are also provided in S1 Fig.

Computational complexity of optimum-NGENI

The main advantage of NGENI is that one can incorporate large collective motions effectively

when predicting transition pathways in proteins, because NGENI generates transition path-

ways considering geometric constraints and physical mechanics, despite the simple interpola-

tion method. Of course, the computational cost of NGENI is higher than that of ENI because

NGENI has to perform NMA at every iteration step to update intermediate conformations.

Table 5. Comparison between the optimum-NGENI and the conventional ENI pathways.

Protein Resolution (Å) Average RMSDa (Å)

T4 lysozyme 1.80 0.30

Maltodextrin binding protein 1.67 0.58

D-allose binding protein 1.70 0.40

LAO binding protein 1.80 0.36

5’-nucleotidase 2.10 1.20

Ribose-binding protein 1.60 0.34

Adenylate kinase 2.00 0.55

Ribonuclease III 2.10 0.42

Group II chaperonin 4.80 2.09

a The average RMSD indicates the average of RMSD values between intermediate conformations

generated by optimum-NGENI and conventional ENI for all iteration steps.

https://doi.org/10.1371/journal.pone.0185658.t005
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Using a finite number of normal modes, however, the optimum-NGENI can overcome this

drawback because it drastically reduces computational burden in the main computation in

which the next intermediate conformation is determined by displacement vectors obtained

from NMA. A rough mathematical calculation with big O notation yields that the optimum-

NGENI follows O(nm2), whereas the conventional ENI follows O(n2) where n is the number

of residues and m is a constant number of normal modes utilized in optimum-NGENI (see

Materials and methods and S2 Text for more details). As the size of protein increases, the con-

ventional ENI method requires much more computational time than optimum-NGENI.

This relationship is verified by comparison of the actual computation time for both meth-

ods. For appropriate comparison, we take into account the average computing time to obtain

each intermediate conformation. Fig 6 shows that computation time of the ENI (denoted by

red circles) grows quadratically with respect to protein size, while the corresponding computa-

tion time of optimum-NGENI (denoted by blue quadrangles) increases linearly. Therefore, the

optimum-NGENI method can be a reliable alternative to the conventional ENI by balancing

physical realism and computational cost, regardless of protein size.

Conclusions

There are significant challenges in using experimental techniques to capture temporally

lengthy, large-scale protein dynamics at the atomic level, so simulation methods play an

important role in filling this gap by generating transition pathways between different

Fig 5. Comparison of weighting constants between the full-NGENI and the optimum-NGENI. (A)

Adenylate kinase, (B) D-allose binding protein. Weighting constants of normal modes for the full-NGENI (red

dashed line) and the optimum-NGENI (blue solid line) are compared to each other. They represent the

average values of weighting constants for all iteration steps (optimum-NGENI: modes 1 to 30, full-NGENI: all

modes).

https://doi.org/10.1371/journal.pone.0185658.g005
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conformational states, which are strongly related to biological functions. However, there is still

concern regarding simulation reliability and computational cost. To compensate for this weak-

ness, this work proposes a new morphing method called NGENI that interpolates the distance

between spatially close residues based on a linear combination of normal mode vectors. This

key idea helps us generate topologically allowable and physically reliable pathways.

Furthermore, the optimum-NGENI successfully provides in-depth study on transition

pathway generation. First, it can elucidate how well a minimum number of collective modes

generate protein transition pathways. Second, the concept of the optimum weighting constant

can be also interpreted as a quantitative measure of the contribution of each mode to the tran-

sition pathway. Third, it compromises computational cost with the physical realism of the gen-

erated transition pathway by taking only a fixed number of lowest normal modes as a basis for

searching space.

Consequently, it is expected that the optimum-NGENI not only assesses degrees of collec-

tivity in protein dynamics, but also captures its functional transition pathway through a linear

combination of several intrinsic vibration modes.

Supporting information

S1 Text. Details on the root-mean-square deviation (RMSD).

(DOCX)

S2 Text. Details on the computational cost of the NGENI described by big O notation.

(DOCX)

Fig 6. Computational cost comparison between optimum-NGENI and ENI. For 9 example proteins, the

average computation time for each iteration step is measured and individually marked with respect to protein

size. Optimum-NGENI (the conventional ENI) is denoted by blue quadrangles (red circles) and the curve

fitting lines are also added for both methods.

https://doi.org/10.1371/journal.pone.0185658.g006
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S3 Text. A review of reverse transition pathways from closed to open form generated by

optimum-NGENI.

(DOCX)

S1 Fig. Weighting constants of optimum-NGENI. (A) T4 lysozyme, (B) Maltodextrin bind-

ing protein, (C) D-allose binding protein, (D) LAO binding protein, (E) 5’-nucleotidase, (F)

Ribose-binding protein, (G) Adenylate kinase, (H) Ribonuclease III, (I) Group II chaperonin.

The values described in the graphs represent average weighting constants for all iteration

steps.

(TIF)

S2 Fig. Density map of linking matrix. (A) D-allose binding protein (B) Group II chapero-

nin.

(TIF)

S3 Fig. RMSD comparison between original and reverse pathways for adenylate kinase and

D-allose binding protein. (A,B,C) Adenylate kinase, (D,E,F) D-allose binding protein. The

graphs show changes in RMSD between the target structure and an intermediate conformation

for the two pathways: original pathway (dashed red) and reverse pathway (solid blue). Three

different methods are used to generate transition pathways: (A,D) optimum-NGENI, (B,E)

100-NGENI using the 100 lowest normal modes, and (C,F) full-NGENI. The black dotted line

represents experimental resolution of each protein.

(TIF)

S1 Table. Density of linking matrix for the set of proteins.

(DOCX)

S2 Table. Variation of bond length over the reverse pathways of adenylate kinase and D-

allose binding protein.

(DOCX)
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