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Abstract

The biological function of proteins is closely related to its structural motion. For instance,
structurally misfolded proteins do not function properly. Although we are able to experimen-
tally obtain structural information on proteins, it is still challenging to capture their dynamics,
such as transition processes. Therefore, we need a simulation method to predict the transi-
tion pathways of a protein in order to understand and study large functional deformations.
Here, we present a new simulation method called normal mode-guided elastic network inter-
polation (NGENI) that performs normal modes analysis iteratively to predict transition path-
ways of proteins. To be more specific, NGENI obtains displacement vectors that determine
intermediate structures by interpolating the distance between two end-point conformations,
similar to a morphing method called elastic network interpolation. However, the displace-
ment vector is regarded as a linear combination of the normal mode vectors of each interme-
diate structure, in order to enhance the physical sense of the proposed pathways. As a
result, we can generate more reasonable transition pathways geometrically and thermody-
namically. By using not only all normal modes, but also in part using only the lowest normal
modes, NGENI can still generate reasonable pathways for large deformations in proteins.
This study shows that global protein transitions are dominated by collective motion, which
means that a few lowest normal modes play an important role in this process. NGENI has
considerable merit in terms of computational cost because it is possible to generate transi-
tion pathways by partial degrees of freedom, while conventional methods are not capable of
this.

Introduction

Proteins are essential components of living cells. Each protein has its own biological function,
which is accompanied by conformational change of the protein. Therefore, studying this con-
formational change is necessary to understand the underlying mechanism of its biological
functions. Various experimental methods have been developed as part of this effort.
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Specifically, NMR [1,2], Raman spectroscopy [3,4], electron cryo-microscopy [5,6], atomic
force microscopy [7,8], and terahertz time-domain spectroscopy [9,10], as well as time-
resolved methods such as x-ray scattering [11,12], the transient grating method [13-15] and
light scattering [16] have expanded our understanding of the relationship between structure
and function in biomolecules. Although the local vibrational movement of a protein in meta-
stable states can be relatively easily captured by those experimental methods, it is still challeng-
ing to observe its global dynamics experimentally. This is due to the existence of a high-energy
barrier between two conformational states, and also because capturing a very dynamic transi-
tion state is difficult with current experimental techniques. Thus, various computational
attempts have sought to find intermediate structures from the known stable structures.

Molecular dynamics (MD) simulation [17,18] is a representative computational method
that can be used to analyze the dynamics of proteins in atomic detail. However, the conven-
tional MD simulation is inappropriate for predicting large-scale transitions due to its compu-
tational cost, despite recent efforts to overcome time limitations [19-21]. Instead, the
prediction of transition pathways based on a simplified potential function, called the elastic
network model (ENM), has flourished in recent years. Unlike MD simulation, which integrates
an empirical potential function, ENM exploits a Hookean potential function and can signifi-
cantly reduce the computational cost. The ENI first attempted to find intermediate structures
by interpolating the distance between two end-point conformations of a target protein [22—
24]. This transition pathway generation technique was already implemented on an online
morph server called KOSMOS [25]. The mixed elastic network model (MENM) was also
developed to study large-scale conformational transitions [26]. In the MENM method, the
Boltzmann-weighted Go potentials for the end-point structures are combined into a smooth
potential function, which interpolates conformation. The interpolated ENM (iENM) was pro-
posed by constructing a double-well potential function from the ENM:s of two end-point struc-
tures [27]. To improve conventional coarse-grained ENM-based methods without the loss of
physical reality, the hybrid ENI considers the rigidity information of conformation when gen-
erating transition pathways [28]. In addition, the ANMPathway used two end-point ENMs
and constructed two-state potential resulting in a cusp hypersurface [29]. The minimum
energy conformation on this cusp hypersurface is regarded as the transition conformation.

Meanwhile, normal mode analysis (NMA) based on coarse-grained modeling has addressed
predicting collective motions at low frequency and succeeded in explaining biological func-
tions in terms of the collective motion [30-34]. Since the transition process mostly shows the
large collective motion, there have been efforts to employ low-frequency mode shapes pre-
dicted by NMA to the transition pathway. Firstly, collective MD iteratively obtains the transi-
tion pathways by combining NMA based on ENM, which guides the collective dynamics with
MD evaluating local dynamics and atomic interactions [35]. The optimized torsion-angle nor-
mal modes in internal coordinates generated more accurate transition pathways than the Car-
tesian modes [36]. Next, in the anisotropic network model-Monte Carlo (ANM-MC) method,
normal modes are also used for describing intermediate structures on transition. Then, MC
algorithm is applied to minimize their conformational energy in order to predict the transition
pathway successfully [37]. Such NMA-based transition pathway prediction tools were also
addressed through online web servers. NMSim reproduces the feasible transition pathways
using rigid-cluster NMA in Cartesian coordinates [38], while iMODS performs the pathway
generation based on NMA in internal coordinates [39].

In this work, we present a new simulation method based on ENM, which is called the nor-
mal mode guided elastic network interpolation (NGENI). This method can generate pathways
on a large-scale transition process by iteratively performing NMA. The conventional ENI
method generates conformational pathways between the initial and the final conformations by
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obtaining displacement vectors iteratively toward a direction which linearly reduces root-
mean-square deviation (RMSD) between the two given structures [22-24]. On the other hand,
the displacement vectors in NGENI are composed of a linear combination of normal mode
vectors. Because of this methodological difference, NGENI generates theoretically more reli-
able pathway than ENI of which the pathway doesn’t take into account any physical aspects
such as the intrinsic thermal vibration, but only complies with the given topological con-
straints in Cartesian space. As the existing morphing methods such as MENM, iENM and
ANMPathway also utilize either topological constraints or potential energy landscape for pre-
diction of large-scale transition pathways, our method is expected to be a new solution consid-
ering both aspects in a balanced way. In addition, NGENI is able to adjust degrees of freedom
in the simulation by determining the number of normal modes to be used. This enables us to
reduce the computational cost. The validity of NGENI has been verified with extensive testing
by comparing NGENI to ENI.

Materials and methods
A set of proteins

In this work, we choose a set of 8 proteins for which two end-point structures are available at
the Protein Data Bank (PDB). The RMSD between the two end-point structures was more
than 3 A for all tested proteins. Such a topological difference is enough to test whether a pro-
tein undergoes conformational changes that cause its own biological functions. The informa-
tion about these proteins is listed in Table 1.

Outline of NGENI

The purpose of the NGENI method is to construct a pathway between two end-point struc-
tures based on low-frequency modes, which are most relevant to biological function. The path-
way comprises consecutive displacement vectors between an intermediate structure and the
next one. To obtain these vectors, we established an objective function in which potential
energy linearly decreases with respect to the RMSD value by interpolating the distance
between spatially close residues (more detailed description on RMSD calculation is given in S1
Text). Here, the coordinates are collected from the position of the alpha carbon atoms (C,s),

Table 1. Fundamental information about a set of 8 large-scale transition proteins.

Protein PDBaID PDBbID No. of residues (n) RMSD (A) No. of iterations® (s) Resolution? (A)
A B
T4 lysozyme 178L 256L 162 3.4 34 1.80
Maltodextrin binding protein 10MP 1ANF 370 3.8 38 1.67
D-allose binding protein 1GUD 1RPJ 288 4.5 45 1.70
LAO binding protein 2LAO 1LST 238 4.7 47 1.80
5’-nucleotidase 10ID 1018 525 5.5 55 2.10
Ribose-binding protein 1BA2 2DRI 271 6.2 62 1.60
Adenylate kinase 4AKE 1AKE 214 7.1 71 2.00
Ribonuclease llI 1YZ9 1YYO 438 7.3 73 2.10

& Initial conformation of each protein.

® Final conformation of each protein.

© The number of iterations (no. of iterations) is simply determined by multiplying the RMSD value by 10 since NGENI generates the intermediate
conformations, which have an RMSD of 0.1 A to the previous step at each iteration.

9 The smaller resolution value between the two conformations of each protein is selected as a representative here.

https://doi.org/10.1371/journal.pone.0185658.t001
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Fig 1. Schematic of the proposed NGENI method. (A) A flow chart of NGENI. If the total number of iterations is s, then kincreases
iteratively from 1 to s-1. (B) A schematic description of a large-scale transition pathway. Specifically, the left figure labeled ‘Start’ refers to an
initial structure, the right one labeled ‘End’ refers to a final structure, and the center one labeled ‘(™ indicates an intermediate structure at the

K" step.
https://doi.org/10.1371/journal.pone.0185658.g001

and spatially close residues are connected by linear springs based on the ENM concept [40,41].
The key idea of the NGENI is to generate transition pathways based on normal mode vectors.
A linear combination of normal mode vectors yields the corresponding intermediate structure.
By adjusting the contribution weighting of each mode vector, we can define the vector set that
satisfies the desired value of potential energy. Iteratively, a series of these displacement vectors
are obtained from the initial to the final conformation to create a possible transition pathway.
Here, the number of iterations is preset by multiplying the RMSD value between the two end-
point structures by 10 in order to get a smooth transition pathway with the RMSD increment
of 0.1 A every iteration step. The overall scheme of NGENI is shown in Fig 1 and more details
about the proposed objective function are also described in the following chapter.

Cost function

For a protein composed of n residues (e.g., C,s based on coarse-grained ENM), the coordi-
nates for the two end-point structures are denoted by {x;} and {y,}, respectively. When we use
the m lowest normal modes in the simulation, we can define the displacement vector for the i
residue as follows

81’ = Vi + CVia +eee ConVim = Vicw € Rg’ (1)
where v;,, is the m™ normal mode vector of the i residue and c,, is a weighting constant of
the m™ normal mode. Thus, we can define

V, = [Vi,l yVigs =" 7Vi‘m] € R (2)

1
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and
C, = [61,62,~~~,CM]T €R"™ (3)

Here, we introduce a cost function as follows

1 n—1 n
c(C,) = 52 Z ki,j{Hxi +VC, —x — VijH - li,j}27 (4)

i=1 j=i+1

where k; ; is an element of the linking matrix which contains binary information about virtual
spring connection in ENM. The value of [;; is the desired distance between the i™ residue and
j™ residue at a certain intermediate state. The value of I; j can be determined as

liJ: (1_“)Hx1_xj” +<x||yi_yj||7 (5)

where o is a scale factor that interpolates between the initial distance ||x; - x;|| and the final one
|lyi = yjl|. It ranges from 0 (i.e., initial) to 1 (i.e., final) with an increment of 1/s. Again, s is the
total number of iterations here.

We simplify the cost function in Eq (4) in order to obtain the optimum solution of C,,.
First, we define C;; as a part of the cost function

1
Ci.j = §kiJ{||xi + Vij - xj - Vij” - li.j}Q' (6)

This equation can be simplified into a quadratic equation in terms of C,, by using a Taylor
series approximation for small values of V;C,, and V,C,,.

.ve. 1(vC.)"A(x)VC
e+ VG, || & 1] + 5 VG  1VE) AG)

-, (7)

[l 2 <]l
where
xx?
Alx) =E; — I (8)
and E; is the 3 by 3 identity matrix.
Then, we write Eq (6) as
1
_ (1) (2) (3)
C,= Ek,.,j(c,.ﬁj + G +GC7), 9)
where
A(x, — x;)
(1) _ T i
Ci.j - (Vicw - Vjcw) E:s - lz:ij‘—_x‘h (Vicw - Vjcw)v (10)
i j
L.
¢y =2|1-——])(x—-x)(VC,—VC,), (11)
! ||xi - xj” ! !
and
ij')) = (%, — xj)T(xi - xj) - 21i.iji - xj” + li2,j' (12)
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In CS) in Eq (10), we define PS) € R¥3 as

Ax; — x;)
(1) _ i J
Py = [E AT ] | )
i ]
Then, we can rewrite
(1)
¢l =(vc, - VvC,) PY(ve, - VC,). (14)

Considering all the spring connections, we can obtain the following equation

5 Z Z k,Cl = —CWTA(”CW, (15)

i=1 j=i+1

where AV € R™™ is defined as

n—1 n
_ T 1) T 1) T p(0) T p(0)
*szw(vipwVi_VfPiJVj_Vqu Vit Vi B Vj)' (16)

i=1 j=itl

Next, for ij.) in Eq (11), taking Pfj) € RV as

L.
PP =21 —-—2 ) (x,—x)". (17)
! < ||xi - xj”) !
Then,
C; =PJ(vVC, - VC,). (18)

We can also simplify the term such that

fZZk,JC,J =-A%c,, (19)

i=1 j=i+l

where A® € RV is

I S S ) (20)

i=1 j=i+l

Lastly, let A be a constant such that

Z Z k,C. (21)

i=1 j=i+1

Consequently, we can derive a quadratic form of the cost function by substitution of Eqs
(16), (20), and (21) into (9).

ZZC 5G/AYC, 45 LA®C, + AY (22)

i=1 j=i+l

Our goal is to determine the value of C,,, which minimizes Eq (22). To do that, the C,, has
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to satisfy the following equation

9c(c,)
acC

w

1
=AYC, + 3 (A" =o0. (23)

Through this computation, we can obtain the optimum weighting constant C,, and deter-
mine the optimum displacement vectors from an intermediate state to the next one. Iteratively,
this process can generate a conformational transition pathway between the given two end-
point structures. From a computational point of view, the whole process can be divided into
two parts: NMA and the main computational part from Eqs (9) to (23). First, the time com-
plexity of NMA is O(nm?) when using the “eigs” function in MATLAB. This function is well
designed to find the largest/smallest magnitude eigenvalues of sparse matrix efficiently using
Krylov subspace methods including Lanczos and Arnoldi algorithms [42,43]. Next, in the
main computational part, the most computational effort is required to construct the cost func-
tion in Eq (16) with the time complexity of O(nm?). Consequently, the overall time complexity
of optimum-NGENI can be expressed as O(n) when m is a constant. On the other hand, in
ENI, the computation time is mainly consumed by multiplication/inversion of large and sparse
matrix with the time complexity of O(n?) (see S2 Text for further details).

Results and discussion
Verification of NGENI by using the full degrees of freedom

We first evaluated the performance of NGENI with all normal modes (full-NGENI) by com-
paring it with the conventional ENI pathways [22-24] in terms of average RMSD values. For 8
large-scale transition proteins, we obtained average RMSD which is the average of RMSD val-
ues between two corresponding intermediate conformations generated by full-NGENI and
conventional ENI for all iteration steps. As a result, the negligibly small RMSD values indicate
that the full-NGENI generated similar pathways to those of conventional ENI for all cases
(Table 2). This is because the full normal mode vectors can take the complete set of degrees of
freedom (DOF) into account. Mathematically speaking, this is nothing more than a different
representation of the bases that constitute the given topological space. Therefore, we con-
firmed that the full- NGENI could generate reliable pathways for a large-scale transition pro-
cess based on the fact that the conventional ENI pathway has already been verified elsewhere
[22-24].

Table 2. Comparison between the full-NGENI and the conventional ENI pathways.

Protein Resolution (A) Average RMSD? (A)
T4 lysozyme 1.80 0.0879
Maltodextrin binding protein 1.67 0.0296
D-allose binding protein 1.70 0.0012
LAO binding protein 1.80 0.0002
5’-nucleotidase 2.10 0.0021
Ribose-binding protein 1.60 0.0031
Adenylate kinase 2.00 0.0029
Ribonuclease IlI 2.10 0.1620

2 |tindicates the averaged RMSD value between the full-NGENI and the conventional ENI pathways. Here,
all the ENI pathways are automatically generated through KOSMOS online server [25].

https://doi.org/10.1371/journal.pone.0185658.t1002
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Fig 2. A schematic of different NGENI pathways in terms of degrees of freedom. A cylindrical tube
represents the searching space for a transition pathway depicted by a curved line. The optimum-NGENI is
shown in blue, while the full-NGENI is shown in red. Both pathways are generated from the same initial and
target structures.

https://doi.org/10.1371/journal.pone.0185658.g002

Potential of NGENI with partial degrees of freedom

As low frequency modes dominantly show collective motion, one can significantly reduce
computational cost without loss of generality of the pathway by using only those modes. Here,
we define another NGENI with partial DOF, called optimum-NGENTI, and test whether the
optimum-NGENT s still able to generate reasonable transition pathways. Fig 2 illustrates this
concept, in which each curved line represents a transition pathway inside a cylindrical space
spanned by corresponding normal modes. The smaller search space of the optimum-NGENI
enables us to dramatically reduce the computational cost. The size of the searching space can
be easily adjusted by the number of normal modes taken in the optimum-NGENTI, but it has
not been determined whether this optimum number satisfies all general cases.

To determine the optimum number of lowest normal modes used in the optimum-NGENI,
the quality of the optimum-NGENI pathway was evaluated using RMSD between intermediate
conformations and the final given structure for every iteration step. If these RMSD values are
less than its experimental resolution, then the proposed optimum-NGENI with a particular
number of lowest normal modes is considered to satisfy the convergence condition. Although
the optimal number of normal modes may be different in each case, 30 lowest normal modes
seem to be sufficient to generate reliable pathways, as shown in Table 3.

For further assessment of this convergence condition, Fig 3 presents the transition path-
ways of two proteins: adenylate kinase and D-allose binding protein. Adenylate kinase cata-
lyzes the transfer of a phosphoryl group from ATP to AMP [44] and undergoes rigid body
motions of the NMPy,;,4 and LID domains with two pairs of hinges connecting each domain to
CORE domain [45]. Fig 3A (upper) includes an actual simulation result showing that the opti-
mum-NGENI successfully generates the rigid body movements of adenylate kinase. In addi-
tion, both full-NGENI and optimum-NGENI pathways are compared to each other in Fig 3A
(lower). Unlike full-NGENI, the error of the optimum-NGENI pathway is accumulated at the
end and obviously caused by the missing DOF. However, this error is acceptable compared to
the experimental resolution of the adenylate kinase structure. This result suggests that only a
small portion of the lowest normal modes is sufficient to predict transition pathways without
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Table 3. Convergence of the optimum-NGENI.

Protein Resolution (A) Convergence condition, m®
5 10 20 30 40 Full

T4 lysozyme 1.80 O O (0] (0] o O
Maltodextrin binding protein 1.67 X O (0] (0] o O
D-allose binding protein 1.70 O o} (0] (0] (0] O
LAO binding protein 1.80 O o o O O )
5’-Nucleotidase 2.10 X X X o o O
Ribose-binding protein 1.60 O o} (0] (0] O O
Adenylate Kinase 2.00 O o} (0] (0] O O
Ribonuclease Il 2.10 X o} (0] (0] (0] O

If the convergence condition is satisfied, it is marked ‘O’. If not, it is marked X’.
& The number of lowest normal modes used in the optimum-NGENI test. The full-NGENI case is also listed in the last column as a reference.

https://doi.org/10.1371/journal.pone.0185658.t003

loss of generality because this portion has enough information to comprehend biologically
important collective protein motion. Fig 3B also confirms similar results for D-allose binding
protein, which has three hinge points between two domains [46]. The upper figure in Fig 3B
shows that the generated pathway demonstrates the hinge movement without difficulty, and
the lower one verifies that the pathway of optimum-NGENI meets the convergence condition.
Furthermore, their reverse transition pathways (from closed to open form) were also generated
by optimum-NGENI. They not only satisfy the convergence condition but also preserve realis-
tic geometry during the reverse transition (see S3 Text).

Adenylate Kinase D-allose binding protein
e ) w&f’m o e{%\\,* KT SN0 Qg;mbw ,—.,gw
5 o2~ ) o) S 7 : v\1<
("’\(Q "g?;: Q ké !\” \P
& o <V\3 KN % 2 f\
4AKE © Intermediate structure 1AKE 1GUD Intermediate structure 1RPJ
T T T T T T 5 T T T T
7 — optimum-NGENI | — optimum-NGENI
- -- ENI --- ENI
6 - 4 4
51 N
< < °r 1
< ,L | >
o) o)
2 3
r °r 1 @ 2 Resolution
,|_Resolution TR
1k
r > N 7 RS
N ~N
N N
0 1 1 1 1 1 1 0 1 1 1 1
0 10 20 30 40 50 60 70 0 10 20 30 40
iteration step iteration step

Fig 3. RMSD comparison between the optimum-NGENI and the conventional ENI pathways for adenylate kinase and D-allose
binding protein. (A) Adenylate kinase, (B) D-allose binding protein. The upper figures show rough transition pathways of proteins using
representative intermediate structures. The lower graphs show changes in RMSD between the final structure and intermediate
conformations generated by two different methods: full-NGENI (dashed red) and optimum-NGENI (solid blue). The black dotted line
represents experimental resolution of each protein.

https://doi.org/10.1371/journal.pone.0185658.9003
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Table 4. Structural information of group Il chaperonin.

Protein PDB ID PDB ID No. of residues (n) RMSD (A) No. of iterations (s) Resolution (A)
A B
Group Il chaperonin 3IYF 3J03 3928 15.4 154 4.80

https://doi.org/10.1371/journal.pone.0185658.t1004

RMSD (A)

Availability of optimum-NGENI for large proteins

Thus far, we have defined optimum-NGENI as the NGENI using only the first 30 lowest nor-
mal modes through the evaluation of convergence condition of generated transition pathways.
Now, we test if optimum-NGENT is still able to generate transition pathways for relatively
large proteins such as group II chaperonin. The detailed structural information of group II
chaperonin is provided in Table 4.

As shown in Fig 4A, the optimum-NGENI pathway successfully describes the hinge-bend-
ing motions of the intermediate domains which play a key role in the folding mechanism of
the group II chaperonin. Moreover, RMSD values of optimum-NGENI and ENI are compared
to each other in Fig 4B. Although the optimum-NGENI pathway shows higher RMSD error at
the end stage, it can still converge below the experimental resolution. Lastly, the bond lengths
and bond angles are measured for evaluating physical reality of the proposed pathway (Fig
4C). We have also confirmed that difference with the two end-point structures is negligible for
bond length (less than 0.03A).

Group Il chaperonin

Intermediate structures 3J03
T T T T T T T C T T T T T T T
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Fig 4. The optimum-NGENI pathway of group Il chaperonin. (A) Transition pathway from 3IYF (open) to 3J03 (closed). (B) RMSD
comparison between optimum-NGENI (solid blue) and ENI (dashed red). The black dotted line represents experimental resolution. (C)
Variation of bond length (solid black) during the conformational change.

https://doi.org/10.1371/journal.pone.0185658.9004
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Table 5. Comparison between the optimum-NGENI and the conventional ENI pathways.

Protein Resolution (A) Average RMSD? (A)
T4 lysozyme 1.80 0.30
Maltodextrin binding protein 1.67 0.58
D-allose binding protein 1.70 0.40
LAO binding protein 1.80 0.36
5’-nucleotidase 2.10 1.20
Ribose-binding protein 1.60 0.34
Adenylate kinase 2.00 0.55
Ribonuclease IlI 2.10 0.42
Group Il chaperonin 4.80 2.09

& The average RMSD indicates the average of RMSD values between intermediate conformations
generated by optimum-NGENI and conventional ENI for all iteration steps.

https://doi.org/10.1371/journal.pone.0185658.t005

Ideally speaking, there is no size limitation to optimum-NGENI. For large system, we can
expect much higher computational efficiency by using a finite number of meaningful normal
modes as the driving force of pathway generation. Although there is still an argument on how
to predetermine the number of normal modes required to capture the system dynamics with-
out any loss of generality, empirically speaking (also supported by our case study results), the
first 30 lowest normal modes are enough to generate the transition pathway successfully. Also,
it is noted that this number is not determined by the size of protein structure but the complex-
ity of conformational transition.

Quality of optimum-NGENI pathway

To address whether the optimum-NGENI method achieves goals as good as the conventional
ENTI, the performance of both methods is compared using the average RMSD values for our
protein set including the group II chaperonin (Table 5). Here, these values are obtained from
averaging RMSD values between two corresponding intermediate conformations generated by
optimum-NGENTI and ENI for every iteration step. As the average value is smaller than the
corresponding resolution value for all cases, topological difference between two pathways is
negligible. To evaluate quality of the optimum-NGENI pathways for adenylate kinase and D-
allose binding protein, we compared their weighting constants with those of full-NGENI (Fig
5). For both cases, the first 30 weighting constants of the full-NGENI were very similar to
those of the optimum-NGENTI, in the sense that several lowest modes dominantly influence
the transition pathway in proteins by generating large-scale and collective motion. Quantita-
tively speaking, the correlation coefficients between the two methods are 0.988 and 0.992 for
adenylate kinase and D-allose binding protein, respectively. This result indeed validates that
the proposed optimum-NGENI method can generate transition pathways as good as the con-
ventional ENI does with only the fixed number of lowest normal modes (i.e., 30 in this con-
text). The weighting constants for all the other protein pathways are also provided in S1 Fig.

Computational complexity of optimum-NGENI

The main advantage of NGENI is that one can incorporate large collective motions effectively
when predicting transition pathways in proteins, because NGENI generates transition path-
ways considering geometric constraints and physical mechanics, despite the simple interpola-
tion method. Of course, the computational cost of NGENI is higher than that of ENI because
NGENT has to perform NMA at every iteration step to update intermediate conformations.
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Fig 5. Comparison of weighting constants between the full-NGENI and the optimum-NGENI. (A)
Adenylate kinase, (B) D-allose binding protein. Weighting constants of normal modes for the full-NGENI (red
dashed line) and the optimum-NGENI (blue solid line) are compared to each other. They represent the
average values of weighting constants for all iteration steps (optimum-NGENI: modes 1 to 30, full-NGENI: all
modes).

https://doi.org/10.1371/journal.pone.0185658.9005

Using a finite number of normal modes, however, the optimum-NGENI can overcome this
drawback because it drastically reduces computational burden in the main computation in
which the next intermediate conformation is determined by displacement vectors obtained
from NMA. A rough mathematical calculation with big O notation yields that the optimum-
NGENI follows O(nm?), whereas the conventional ENI follows O(n°) where # is the number
of residues and m is a constant number of normal modes utilized in optimum-NGENI (see
Materials and methods and S2 Text for more details). As the size of protein increases, the con-
ventional ENI method requires much more computational time than optimum-NGENL

This relationship is verified by comparison of the actual computation time for both meth-
ods. For appropriate comparison, we take into account the average computing time to obtain
each intermediate conformation. Fig 6 shows that computation time of the ENI (denoted by
red circles) grows quadratically with respect to protein size, while the corresponding computa-
tion time of optimum-NGENI (denoted by blue quadrangles) increases linearly. Therefore, the
optimum-NGENI method can be a reliable alternative to the conventional ENI by balancing
physical realism and computational cost, regardless of protein size.

Conclusions

There are significant challenges in using experimental techniques to capture temporally
lengthy, large-scale protein dynamics at the atomic level, so simulation methods play an
important role in filling this gap by generating transition pathways between different
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https://doi.org/10.1371/journal.pone.0185658.g006

conformational states, which are strongly related to biological functions. However, there is still
concern regarding simulation reliability and computational cost. To compensate for this weak-
ness, this work proposes a new morphing method called NGENI that interpolates the distance
between spatially close residues based on a linear combination of normal mode vectors. This
key idea helps us generate topologically allowable and physically reliable pathways.

Furthermore, the optimum-NGENI successfully provides in-depth study on transition
pathway generation. First, it can elucidate how well a minimum number of collective modes
generate protein transition pathways. Second, the concept of the optimum weighting constant
can be also interpreted as a quantitative measure of the contribution of each mode to the tran-
sition pathway. Third, it compromises computational cost with the physical realism of the gen-
erated transition pathway by taking only a fixed number of lowest normal modes as a basis for
searching space.

Consequently, it is expected that the optimum-NGENI not only assesses degrees of collec-
tivity in protein dynamics, but also captures its functional transition pathway through a linear
combination of several intrinsic vibration modes.

Supporting information

S1 Text. Details on the root-mean-square deviation (RMSD).
(DOCX)

S2 Text. Details on the computational cost of the NGENI described by big O notation.
(DOCX)
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S3 Text. A review of reverse transition pathways from closed to open form generated by
optimum-NGENI.
(DOCX)

S1 Fig. Weighting constants of optimum-NGENI. (A) T4 lysozyme, (B) Maltodextrin bind-
ing protein, (C) D-allose binding protein, (D) LAO binding protein, (E) 5’-nucleotidase, (F)
Ribose-binding protein, (G) Adenylate kinase, (H) Ribonuclease III, (I) Group II chaperonin.
The values described in the graphs represent average weighting constants for all iteration
steps.

(TIF)

$2 Fig. Density map of linking matrix. (A) D-allose binding protein (B) Group II chapero-
nin.
(TIF)

S3 Fig. RMSD comparison between original and reverse pathways for adenylate kinase and
D-allose binding protein. (A,B,C) Adenylate kinase, (D,E,F) D-allose binding protein. The
graphs show changes in RMSD between the target structure and an intermediate conformation
for the two pathways: original pathway (dashed red) and reverse pathway (solid blue). Three
different methods are used to generate transition pathways: (A,D) optimum-NGENI, (B,E)
100-NGENTI using the 100 lowest normal modes, and (C,F) full-NGENI. The black dotted line
represents experimental resolution of each protein.

(TIF)

S1 Table. Density of linking matrix for the set of proteins.
(DOCX)

$2 Table. Variation of bond length over the reverse pathways of adenylate kinase and D-
allose binding protein.
(DOCX)
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