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Cognitive aging is one of the major problems worldwide, especially as people get older.

This study aimed to perform global gene expression profiling of cognitive function to

identify associated genes and pathways and a novel transcriptional regulatory network

analysis to identify important regulons. We performed single transcript analysis on 400

monozygotic twins using an assumption-free generalized correlation coefficient (GCC),

linear mixed-effect model (LME) and kinship model and identified six probes (one

significant at the standard FDR< 0.05 while the other results were suggestive with 0.18≤

FDR ≤ 0.28). We combined the GCC and linear model results to cover diverse patterns

of relationships, and meaningful and novel genes like APOBEC3G, H6PD, SLC45A1,

GRIN3B, and PDE4D were detected. Our exploratory study showed the downregulation

of all these genes with increasing cognitive function or vice versa except the SLC45A1

gene, which was upregulated with increasing cognitive function. Linear models found

only H6PD and SLC45A1, the other genes were captured by GCC. Significant functional

pathways (FDR < 3.95e-10) such as focal adhesion, ribosome, cysteine and methionine

metabolism, Huntington’s disease, eukaryotic translation elongation, nervous system

development, influenza infection, metabolism of RNA, and cell cycle were identified. A

total of five regulons (FDR< 1.3e-4) were enriched in a transcriptional regulatory analysis

in which CTCF and REST were activated and SP3, SRF, and XBP1 were repressed

regulons. The genome-wide transcription analysis using both assumption-free GCC and
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linear models identified important genes and biological pathways implicated in cognitive

performance, cognitive aging, and neurological diseases. Also, the regulatory network

analysis revealed significant activated and repressed regulons on cognitive function.

Keywords: cognitive aging, transcript, generalized correlation coefficient, linear regression, twins, regulons

INTRODUCTION

Cognitive impairment is a global challenge that creates
cost, social, and economic challenges for society in many
populations, in particular, older populations worldwide.
Although, some effort has been made to understand the genes
and biological pathways involved in cognitive functioning
through gene expression analysis, there is still a lack of
knowledge. Harries et al. (2012) performed gene expression
analysis on 691 subjects from the InCHIANTI study (mean
age 72.6 years) and reported that the CCR2 gene was
associated with cognitive function (FDR = 0.077). Also, no
significant pathways were identified. Nygaard et al. (2019)
performed gene expression analysis on 235 monozygotic
(MZ) twin pairs and reported POU6F1 gene (FDR =

0.09) and significant pathways such as protein metabolism,
translation, RNA metabolism, infectious disease, and the
immune system.

The popular statistical models used in the analysis of gene
expression data are usually linear models, which are controlled
by multiple assumptions, including normality of phenotype and
linear relations between expression level and the phenotype.
In the case of having twins in the data, linear mixed-effect
models are appropriate to deal with the correlation structure
in the data. Imposing multiple assumptions in linear models
might be the reason for having a smaller number of important
markers in gene expression analysis. However, recently a couple
of studies have shown the strength of generalize correlation
coefficient (GCC) as a non-parametric method that is able to
identify different patterns, deal with correlated twin samples
as well as non-normality of the phenotype without imposing
strict assumptions (Reshef et al., 2011; Speed, 2011; Murrell
et al., 2016; Tan et al., 2017; Mohammadnejad et al., 2020,
2021). In fact, linear models are well-designed when there is
a perfect linear relation; hence we applied both GCC and
linear models.

Transcription factors (TFs) are specific DNA sequences that
affect gene expression by promoting or repressing the target
genes. Mutation in TFs and TF binding sites determine many
human diseases. The group of genes that are controlled by TFs
are called regulons (Lambert et al., 2018).

This study aimed to perform two analyses: (1) a
global gene expression analysis of cognitive function
measured in monozygotic (MZ) twins to identify significant
genes and pathways associated with the phenotype by
applying the assumption-free GCC and linear models,
(2) investigate the significance of previously reported
cognitive function-related TFs through a gene regulatory
network analysis.

MATERIALS AND METHODS

Samples and Cognitive Score
We used 400 MZ twins (220 males and 180 females)
(Supplementary Table 1) recruited from the Danish Twin
Registry from the Middle-Aged Danish Twin (MADT) study
which were mainly healthy individuals. The whole blood samples
were collected in the years 2008–2011 on a follow-up assessment.
The general cognitive composite score consists of five cognitive
tests, including verbal fluency, attention and working memory
(digits forward and digits backward), and memory (immediate
and delayed word recall) (McGue and Christensen, 2002).
The cognitive test scores were standardized to mean 0 and
standard deviation 1 and were summed to calculate the general
cognitive composite scores (Petersen et al., 2016). The age ranged
from 56 to 80 and the cognitive score ranged from 11.68 to
84.93. Informed consent was obtained from all participants and
approved by The Regional Scientific Ethical Committees for
Southern Denmark (S-VF-19980072). The study was conducted
following the Helsinki II declaration. Blood cell counts for
blood leukocyte subtypes (basophils, monocytes, eosinophils,
lymphocytes, and neutrophils) were available for all the samples.

RNA Extraction and Gene Expression
Analysis
Whole blood was collected in PAXgene Blood RNA Tubes
(PreAnalytiX GmbH, Hombrechtikon, Switzerland) and total
RNA was extracted using the PAXgene Blood miRNA kit
(QIAGEN) according to the manufacturer’s protocol. The
extracted RNA concentration was determined using a NanoDrop
spectrophotometer ND-8000 (NanoDrop Technologies), and
the quality was assessed by the Agilent 2100 Bioanalyzer.
Gene expression profiling was performed using the Agilent
SurePrint G3 Human GE v2 8×60K Microarray (Agilent
Technologies). This array contains 62,976 60-mer probes. The
array hybridization and sample labeling were done according to
the “Two-Color Microarray-Based Gene Expression Analysis—
Low Input Quick Amp Labeling” protocol. Samples were
labeled Cy5 and the reference consisting of a pool of 16
samples was labeled Cy3. Hybridization, washing, scanning,
and quantification were performed according to the array
manufacturer’s recommendations (Nygaard et al., 2019).

Expression Data Preprocessing
The R package limma was used for quality control (QC)
of the data (Ritchie et al., 2007). Background correction
using the normexp method was done on the raw intensity
data, within-array normalization using loess normalization to
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intensity measurements of two colors (cy3/cy5) and between-
array normalization based on the quantile normalization method
to make data from the different arrays comparable. The missing
expression values were imputed using the k-nearest neighbor
algorithm and replicate probes were summarized calculating
their median. All probes on sex chromosomes and long non-
coding RNA (lncRNA) were excluded resulting in 27,734 mRNA
probes. Prior to the statistical analysis, we calculated the
coefficient of variation (CV) for each probe and excluded probes
with CV < 0.1. This resulted in 27,647 mRNA probes.

Statistical Analysis
Single mRNA Probe Analysis and Gene-Set

Enrichment Analysis
First, we adjusted covariates age, sex, and cell composition on
gene expression data. Next, we applied GCC, kinship, and LME
models to investigate the association between mRNA expression
level and cognitive function. In the linearmodels, both LME from
the lme4 R package (Bates et al., 2015) and the kinship model
from the kinship2 R package (Sinnwell et al., 2014) were applied.
The LME model adjusts for correlation between twins in a pair
by including twin pairing as a random effect in the model.

The kinship model calculates a kinship matrix and integrates
it in the covariance matrix of the expression data. For GCC
analysis, the Matie R package was applied (Murrell et al., 2016).
Matie computes GCC by estimating a generalized R2, which is
computed from the ratio of the likelihood of an alternative model
(allowing dependence between variables) over the likelihood of
a null model (that forces the variables to be independent). For
each probe, we report the result from the model (linear or GCC)
with the lowest p-value for statistical significance to ensure that
the final results are based on the most proper model unlimited by
linear assumption.

The adjustment for multiple testing was performed by the
Benjamini & Hochberg false discovery rate (FDR) correction
method (Benjamini and Hochberg, 1995). All analyses were
carried out in R. We consider this an exploratory study, and
to give an overview of the top findings we report findings
with FDR ≤ 0.28.

A total number of 1,968 genes (p< 0.05) were used as input in
the gene-set enrichment analysis (GSEA) website (https://www.
gsea-msigdb.org/gsea/msigdb/index.jsp) to identify biological
pathways over-represented by the list of genes for functional
interpretation. Over-representation analysis is an enrichment test
based on an overlap statistic (hypergeometric test) that uses a
list of significant genes to identify significantly different pathways
from what would be expected by chance.

Transcription Factor Network Analysis
We used the R package RTN (Castro et al., 2015) which
constructs the transcriptional regulatory network and analysis
of regulons. This package performs the analysis in two steps:
(1) Transcriptional Network Inference (TNI): it checks the
association between a given TF and all target genes using
microarray transcriptome data. It uses the gene expression data
and a list of all annotated target genes from the microarray
(18,078 genes). Next, it computes mutual information (MI)

between a regulator and all target genes, unstable interaction
is removed by bootstrapping analysis and leads to a consensus
network which is considered as a reference network. Then the
ARACNe algorithm developed by Margolin et al. (2006) is
applied to remove the redundant association between TFs and
gene targets. (2) Transcriptional Network Analysis (TNA): it
checks the enrichment of regulons by applying GSEA on the
set of regulons. The two-tailed GSEA (GSEA-2T) is used to
check if the regulon is positively or negatively associated with the
gene expression and finally assesses their significance expression
meaning that a large positive enrichment score (ES) represents
an activated regulon, whereas a large negative ES represents
a repressed regulon. We used a list of 17 TFs (CREB, MEF2,
Npas4, SRF, CTCF, TCF4, DREAM, KChIP3, MeCP2, FOXP2,
ZNF, SP3, ptf1a, REST, OTX2, XBP1, FOXO) which have already
been discussed in relation to cognitive function (Manolopoulos
et al., 2010;Wang and Konopka, 2013; Nonaka et al., 2014; Mozzi
et al., 2017; Hwang and Zukin, 2018; Xiao et al., 2018; Badowska
et al., 2020; Choi et al., 2021) and performed GSEA-2T with a
default p-value cut-off set to 0.05 and using 10,000 permutations
to identify significant regulons associated with cognitive function
in our gene expression data (https://bioconductor.org/packages/
devel/bioc/vignettes/RTN/inst/doc/RTN.html).

RESULTS

Single mRNA Probe Analysis and Gene-Set
Enrichment Analysis
The QQ plot and Manhattan plot are shown in Figures 1, 2. We
saw more mRNA probes from GCC in the upper tail deviate
from the diagonal line than those from the linear models as

FIGURE 1 | QQ plot for single mRNA probe analysis from GCC, kinship, and

LME models.
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well as no indication of correlation structure which shows all
models could perfectly deal with the correlation in the data. The
summary of statistical information for all 27,647 mRNA probes is
provided in Supplementary Table 2. The list of the top 20mRNA
probes from the analysis of both kinship and GCC is illustrated
in Table 1. Among the list, 12 mRNA probes were identified by
the GCC model and 8 mRNA probes by the linear model. The
top six genes annotated frommRNA probes in a combined list of
GCC and linear models were APOBEC3G (p = 1.569e-6, FDR=
0.04),H6PD (p=2.928e-5, FDR= 0.18), SLC45A1 (p= 3.027e-5,
FDR = 0.18), GRIN3B (p = 3.197e-05, FDR = 0.18), PDE4D (p
= 3.877e-5, FDR= 0.18), and PIGC (p= 0.0001, FDR= 0.28).

The list of mRNA probes with p < 0.05 was used as input
for over-representation analysis through the GSEA website. We
identified significant functional KEGG and Reactome pathways
with FDR < 3.95e-10 such as focal adhesion, ribosome, cysteine
and methionine metabolism, Huntington’s disease, eukaryotic
translation elongation, nervous system development, influenza
infection, metabolism of RNA, and cell cycle (Table 2).

Transcription Factor Regulatory Analysis
We used 17 TFs as input and after the filtering and bootstrapping
process, seven regulons remained, which among, five significant
regulons from GSEA-2T analysis were identified with FDR <

1.3e-4. Among these significant regulons, two are positively
associated with target genes, and three regulons are negatively
associated with target genes. Table 3 shows the list of identified
regulons with information about the number of TFs included in
each regulon, a positive or negative score that gives information
about the activating or repressing of the target genes, P-value,
and adjusted P-value. The significant regulons were CTCF (ES
= 0.89), REST (ES= 0.67), SP3 (ES=−1.24), SRF (ES=−0.87),
and XBP1 (ES=−0.97) (Figure 3).

DISCUSSION

Through applying both the assumption-free GCC and linear
models, this exploratory study was able to capture diverse
patterns of relations not limited to those from linear models. We
were able to identify interesting genes and pathways implicated
in cognitive function. Also, the novel transcription regulatory
analysis paved the way for the detection of significant regulons
associated with cognitive function.

The APOBEC3G gene belongs to a family of proteins grouped
together due to their homology with the cytidine deaminase
APOBEC1 (https://en.wikipedia.org/wiki/APOBEC3G). A very
recent paper by Smith et al. (2020) reported that the APOBEC1
gene affected cognitive aging in animals. In addition, Cole
et al. (2017) have reported that APOBEC1 is an essential
regulatory mechanism of microglia (MG) function and is
critical for overall brain homeostasis and healthy aging. The
other gene SLC45A1, is highly expressed in the brain (https://
gtexportal.org/home/). It is a protein-coding gene and associated
with intellectual developmental disorder with neuropsychiatric
features and autosomal recessive non-syndromic intellectual
disability (https://www.genecards.org/cgi-bin/carddisp.pl?gene=
SLC45A1). Srour et al. (2017) studied homozygous missense

variants in SLC45A1 on four affected children from two unrelated
consanguineous families with moderate to severe intellectual
disability associated with epilepsy and variable neuropsychiatric
features. They concluded that autosomal-recessive mutations in
SLC45A1 result in intellectual disability, movement disorder,
and epilepsy. SLC45A1 is thus the second cerebral glucose
transporter, in addition to GLUT1, to be involved in human
disease and implicated in neurodevelopmental disability. Also,
SLC proteins are of great importance in the elucidation of
neurodegenerative disorder mechanisms due to their important
role in the synaptic regulation of neurotransmitters (Aykaç
and Sehirli, 2020). Martínez-García and colleagues studied the
association of rs6688832 and rs34603401 polymorphisms in the
H6PD gene with obesity and polycystic ovary syndrome (PCOS)
on 237 cases and 135 controls and they found that the variants
in the H6PD gene were associated with obesity and PCOS
(Martínez-García et al., 2012).

The other gene is PDE4D which is already reported
to encode a cyclic AMP (cAMP) regulator which places
PDE4D-related acrodysostosis in the same family of diseases
as pseudohypoparathyroidism, pseudohypoparathyroidism,
PRKAR1A-related acrodysostosis, and brachydactyly mental
retardation syndrome, which are all characterized by cognitive
impairment and short distal extremities (Lynch et al., 2013).
Also, using gene knock-out and miRNA-induced gene knock-
down in mice, the PDE4D gene and particularly its long-form
isoforms has been shown to play a vital role in the mediation
of memory and hippocampal neurogenesis which is mediated
by cAMP signaling (Li et al., 2011; Michot et al., 2012). The
gene GRIN3B is associated with depersonalization disorder and
schizophrenia (https://www.genecards.org/cgi-bin/carddisp.pl?
gene=GRIN3B). Additionally, in a study, Hornig et al. performed
whole exome-sequencing in eight family members with a strong
history of psychotic disorders over three generations and they
found in all the affected family members frameshift mutation
rs10666583 in the GRIN3B gene, which codes for the GluN3B
subunit of the NMDA receptor (Hornig et al., 2017). NMDA
receptors are ligand-gated cation channels that are blocked in the
resting state by magnesium ions. They are involved in learning
and memory, synaptic plasticity, and synaptogenesis (Harris
et al., 1984; Normann et al., 2000; Lynch, 2004; Normann and
Clark, 2005; Fan et al., 2014).

The PIGC gene is associated with diseases including
glycosylphosphatidylinositol biosynthesis defect 16 and
autosomal recessive non-syndromic intellectual disability
(https://www.genecards.org/cgi-bin/carddisp.pl?gene=PIGC)
which are both linked to intellectual disabilities. Moreover,
Edvardson and colleagues studied to find disease-causing
mutations in three patients from two unrelated families with
severe intellectual disability, global developmental delay, and
drug-responsive seizure disorder. They concluded that mutations
in the PIGC gene were associated with epilepsy and intellectual
disability (Edvardson et al., 2017).

We found interesting and important pathways which might
be implicated in cognitive impairment (Table 2). Ding et al.
(2005) reported that in patients with mild cognitive impairment
and Alzheimer’s disease (AD), there is significant dysfunction in
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FIGURE 2 | Manhattan plot for single mRNA probe analysis from GCC, kinship, and LME models along each chromosome.

TABLE 1 | List of top 20 mRNA probes from the single mRNA probe analysis.

Probe A Gene symbol CHR BP GCC Kinship LME P-value FDR

A_23_P143713 0.018 APOBEC3G 22 39477481 1.569e-6 0.632 0.633 1.569e-6 0.04

A_33_P3303742 0.080 5 131142893 2.889e-5 0.635 0.636 2.889e-5 0.18

A_24_P626850 0.005 H6PD 1 9330351 2.928e-5 0.140 0.141 2.928e-5 0.18

A_32_P223059 0.072 SLC45A1 1 8390869 0.003 3.027e-5 3.714e-5 3.027e-5 0.18

A_33_P3394213 0.033 GRIN3B 19 1009648 0.204 3.197e-5 3.971e-5 3.197e-5 0.18

A_33_P3389649 0.093 PDE4D 5 59064133 3.877e-5 0.912 0.912 3.877e-5 0.18

A_21_P0014060 0.046 PIGC 1 172362943 0.120 0.0001 0.0001 0.0001 0.28

A_23_P354175 0.008 TMEM129 4 1717772 0.0002 0.255 0.256 0.0002 0.28

A_33_P3411025 0.135 ARHGAP19 10 99019229 0.0002 0.872 0.872 0.0002 0.28

A_23_P329375 0.063 POU6F1 12 51583372 0.013 0.0002 0.0002 0.0002 0.28

A_23_P216476 0.069 ZBTB5 9 37438478 0.001 0.0002 0.0002 0.0002 0.28

A_23_P325080 0.036 PTOV1 19 50358243 0.0002 0.742 0.742 0.0002 0.28

A_33_P3278560 0.037 ZIK1 19 58102575 0.081 0.0002 0.0002 0.0002 0.28

A_33_P3282241 0.013 OR5D16 11 55606873 0.180 0.0003 0.0003 0.0003 0.28

A_23_P205074 0.114 SLC46A3 13 29278193 0.0003 0.624 0.624 0.0003 0.28

A_23_P130027 0.080 EPN3 17 48620056 0.0003 0.215 0.216 0.0003 0.28

A_33_P3266078 0.025 OR2AG1 11 6806742 0.096 0.0003 0.0004 0.0003 0.28

A_21_P0000024 0.113 FLT1 13 28979986 0.0003 0.008 0.009 0.0003 0.28

A_23_P144896 0 PDLIM7 5 176910887 0.0003 0.297 0.249 0.0003 0.28

A_23_P34888 0.059 CHIA 1 111863116 0.0004 0.992 0.992 0.0004 0.28

A, association score; CHR, chromosome; BP, base pair; FDR, false discovery rate.

ribosome function that is not observed in the cerebellum of the
same patients. Ribosome dysfunction is associated with a decline
rate in protein synthesis, ribosomal RNA and tRNA levels, and
increased RNA oxidation. Focal adhesion involves the integration
of the adhesion, the communication between the extracellular
matrix and the actin cytoskeleton, and the regulation of many
cell types. Loss of cell adhesion can lead to cell death and
altered focal signaling has been associated with synaptic loss,
which may cause AD (Caltagarone et al., 2007). Wilson et al.
(2002) reported that with increasing age peripheral cytokine
dysregulation interacts with cognitive aging. Magaki et al. (2007)
showed that alteration in cytokines through peripheral blood
mononuclear cells (PBMCs) might be detected early in mild

cognitive impairment. Additionally, other studies have been done
on the role of cytokines in AD, cognitive impairment, and
neurological disorders (Aarli, 2005; Nagae and Araki, 2016).
Chang et al. (2012) discussed that p53 interacts with cellular
factors, viral factors, and small RNAs, explaining its role in
the development of neurodegenerative diseases. Previous studies
point to evidence of the role and pathogenesis of Huntington’s
disease, endocytosis, eukaryotic translation elongation, nervous
system development, influenza infection, metabolism of RNA,
and cell cycle in relation to cognitive impairment, AD, and
neurological diseases (Peavy et al., 2010; Jurgens et al., 2012;
Mufson et al., 2012; Beckelman et al., 2016; Barbash et al., 2017;
Zhu et al., 2020).
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TABLE 2 | Top 20 significant KEGG and Reactome biological pathways from GSEA.

Gene set Description # genes P-value FDR

KEGG_RIBOSOME Ribosome 26 6.15 e−15 1.14 e−12

KEGG_FOCAL_ADHESION Focal adhesion 21 2.36 e−4 2.19 e−2

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERA

ERACTION

Cytokine-cytokine receptor

interaction

25 3.66 e−4 2.27 e−2

KEGG_CYSTEINE_AND_METHIONINE_METABOLIS

LISM

Cysteine and methionine

metabolism

7 6.4 e−4 2.97 e−2

KEGG_P53_SIGNALING_PATHWAY p53 signaling pathway 10 8.22 e−4 3.06 e−2

KEGG_HUNTINGTONS_DISEASE Huntington’s disease 18 1.19 e−3 3.37 e−2

KEGG_ENDOCYTOSIS Endocytosis 18 1.27 e−3 3.37 e−2

REACTOME_EUKARYOTIC_TRANSLATION_ELONGATION Eukaryotic translation

elongation

27 4.06 e−15 5.95 e−12

REACTOME_METABOLISM_OF_AMINO_ACIDS_AND_

DERIVATIVES

Metabolism of amino acids

and derivatives

55 7.77 e−15 5.95 e−12

REACTOME_SELENOAMINO_ACID_METABOLISM Selenoamino acid

metabolism

29 3.52 e−14 1.8 e−11

REACTOME_METABOLISM_OF_RNA Metabolism of RNA 76 1.26 e−13 4.83 e−11

REACTOME_RESPONSE_OF_EIF2AK4_

GCN2_TO_AO_AMINO_ACID_

DEFICIENCY

Response of EIF2AK4

(GCN2) to amino acid

deficiency

26 2.91 e−13 8.31 e−11

REACTOME_RRNA_PROCESSING rRNA processing 37 3.68 e−13 8.31 e−11

REACTOME_INFLUENZA_INFECTION Influenza infection 32 3.8 e−13 8.31 e−11

REACTOME_NERVOUS_SYSTEM_

DEVELOPMENT

Nervous system

development

68 4.61 e−13 8.83 e−11

REACTOME_SIGNALING_BY_ROBO_

RECEPTORS

Signaling by ROBO

receptors

37 2.54 e−12 3.94 e−10

REACTOME_EUKARYOTIC_

TRANSLATION_INITIATION

Eukaryotic translation

initiation

27 2.57 e−12 3.94 e−10

FDR, false discovery rate.

TABLE 3 | List of seven regulons identified from GSEA-2T among which five significant regulons were identified with FDR < 1.3e-4.

Regulon Regulon size Observed score P-value Adjusted P-value (FDR)

CTCF 2,164 0.89 0.0000999 0.00013999

REST 2,559 0.67 0.0000999 0.00013999

SP3 7,490 −1.24 0.0000999 0.00013999

SRF 2585 −0.87 0.0000999 0.00013999

XBP1 7367 −0.94 0.0000999 0.00013999

TCF4 1,540 0.08 0.13929 0.1625

FOXP2 56 0.21 0.36526 0.36526

A total number of five significant regulons were enriched
by GSEA-2T analysis of transcriptional regulation, in which
CTCF and REST were identified as activated regulons and
SP3, SRF, and XBP1 as repressed regulons in our study. A
gene expression study on animal adult forebrain-restricted SRF
deletion reported the decreased expression of several gene-
containing serum response elements (SRE). And they proposed
that these deficits in gene expression indicate SRF’s role in the
induction of genes necessary for long-term memory formation
and the late phase of long-term potentiation-like (LTP) plasticity
(Ramanan et al., 2005; Etkin et al., 2006). In our study, we also

found the decreased expression of TF genes included in the
SRF regulon with cognitive function. Yamakawa et al. (2017)
discussed that SP3 tends to be a major negative regulator of
synaptic gene expression and synaptic activity, which is also likely
to play a significant role in cognitive decline in AD patients. They
reported that SP3 and histone deacetylase HDAC2 negatively
regulate synaptic function in neurons. Our study showed the
downregulation of the SP3 regulon with cognitive function. Some
studies have shown the role of XBP1 in endoplasmic reticulum
stress, memory, and cognition (Valdés et al., 2014; Cissé et al.,
2017a), rescuing hippocampal synaptic plasticity and memory
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FIGURE 3 | Two-tailed GSEA illustrating five significant identified regulons from regulatory network analysis. Regulons are split into positive and negative targets, and

differential enrichment score (dES) is shown for positive (red line) and negative (blue line) targets.

through activating the Kalirin-7 (Kal7) pathway (Cissé et al.,
2017b), XBP1’s expression corrected age-associated changes in
synaptic function (Cabral-Miranda et al., 2020). The other TF,
CTCF has been studied by Choi et al. (2021) in adult CTCF
cKO mice and concluded that deficiency in CTCF results in
cognitive deficits. Some studies have reported the importance
of REST due to its polymorphism role in cognitive function
and the activation state of REST in the aging brain, which may
differentiate neuroprotection from neurodegeneration (Lu et al.,
2014; Warburton et al., 2016).

CONCLUSION

Overall, through applying GCC as a complementary method
along with the linear models, this exploratory study was
able to detect more important and meaningful differentially
expressed genes and biological pathways implicated in cognitive
function. Additionally, applying transcriptional analysis could
reveal the link between significant regulons and cognition which
further confirms that previously noted TFs are associated with
cognitive function.
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