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Abstract

Motivation: Single-cell RNA sequencing (scRNA-seq) technologies enable the study of transcriptional heterogeneity
at the resolution of individual cells and have an increasing impact on biomedical research. However, it is known that
these methods sometimes wrongly consider two or more cells as single cells, and that a number of so-called dou-
blets is present in the output of such experiments. Treating doublets as single cells in downstream analyses can se-
verely bias a study’s conclusions, and therefore computational strategies for the identification of doublets are
needed.

Results: With scds, we propose two new approaches for in silico doublet identification: Co-expression based doublet
scoring (cxds) and binary classification based doublet scoring (bcds). The co-expression based approach, cxds, uti-
lizes binarized (absence/presence) gene expression data and, employing a binomial model for the co-expression of
pairs of genes, yields interpretable doublet annotations. bcds, on the other hand, uses a binary classification approach
to discriminate artificial doublets from original data. We apply our methods and existing computational doublet identi-
fication approaches to four datasets with experimental doublet annotations and find that our methods perform at least
as well as the state of the art, at comparably little computational cost. We observe appreciable differences between
methods and across datasets and that no approach dominates all others. In summary, scds presents a scalable, com-
petitive approach that allows for doublet annotation of datasets with thousands of cells in a matter of seconds.

Availability and implementation: scds is implemented as a Bioconductor R package (doi: 10.18129/B9.bioc.scds).

Contact: kostka@pitt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell RNA sequencing (scRNA-seq) technologies allow charac-
terization of transcriptomes of individual cells and aid our under-
standing of tissue and cell-type heterogeneity. New insights, for
instance in the context of development and/or disease (Li et al.,
2017; for a review see Potter, 2018; Segerstolpe et al., 2016), have
made them increasingly relevant across a diverse range of biomed-
ical research fields. Specifically, approaches that enable the study of
many thousands of cells simultaneously are making an impact, and
the availability of user-friendly solutions (like the 10X Chromium
platform, for example) has rendered scRNA-seq the assay of choice
in numerous studies. However, use of scRNA-seq data is not with-
out challenges, and careful data processing, quality control and ana-
lysis is essential (reviewed for instance in AlJanahi et al., 2018;
Kiselev et al., 2019; Stegle et al., 2015; Vallejos et al., 2017). We
focus on one key step of quality control that is the identification of
so-called doublets (or multiplets). Doublets (or multiplets) arise in
scRNA-seq data when two (or more) cells are mistakenly considered

as a single cell, due for instance to being captured and processed in
the same droplet on a micro-fluidics device. This type of error has
the potential to severely confound interpretation of study results, es-
pecially in the context of cellular heterogeneity and identity, where
they may appear as spurious novel cell types. However, despite rapid
advances in the field, to our knowledge relatively few approaches
exist that address the issue of doublet detection in scRNA-seq data.
In the following, we provide a brief overview of existing experimen-
tal and computational approaches for doublet identification.

1.1 Experimental methods for doublet detection
For some approaches, doublet detection can be performed as a qual-
ity control step to ensure that only single cells are picked at capture
sites (e.g. Proserpio et al., 2016; Segerstolpe et al., 2016).
Alternatively, barcodes have been used together with mixtures of
cells from different species to get estimates of doublet rates (e.g.
Alles et al., 2017; Klein et al., 2015). In their work, Kang et al.
(2018) present a multiplexing strategy that exploits genetic variation
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to detect doublets among mixtures of cells from different individu-
als. In another approach, Stoeckius et al. (2018) use oligonucleotide-
tagged antibodies against cell surface proteins to uniquely label cells
in a robust multiplexing strategy that allows for doublet detection.
In a similar vein, Gehring et al. (2018) use chemical labeling for tag-
ging cells from individual samples. Recently, McGinnis et al.
(2019b) proposed a technique called MULTI-seq, which uses lipid-
modified oligonucleotides to barcode individual cells. Thus, devel-
opment of experimental approaches that improve doublet detection
is a field of active research. However, experimental approaches typ-
ically face the limitation that they require specific technologies or
experimental designs, which are often not readily available to
researchers (for an overview of limitations of some of these
approaches, see Wolock et al., 2019). Therefore, it is at the stage of
computational data analysis where approaches are needed to iden-
tify doublets.

1.2 Computational methods for doublet detection
There are few computational approaches that explicitly address the
problem of distinguishing doublets from single cells using scRNA-
seq expression data alone. Often, researchers rely on curated marker
genes and expert knowledge to identify cells co-expressing markers
of distinct cell types as putative doublets (e.g. Ibarra-Soria et al.,
2018; Rosenberg et al., 2018; Wang et al., 2016). Based on the as-
sumption that doublets would have higher total RNA content, an-
other approach is to use a measure for overall expression signal
(total counts, for example) as a means for classifying cells as dou-
blets (e.g. Bach et al., 2017; Krentz et al., 2018; Ziegenhain et al.,
2017). However, given that marker gene information and expert
knowledge is not always available (and not always objective), and
that doublets may not necessarily have high total counts, recently a
number of computational doublet detection/annotation methods have
been proposed that do not rely on markers or total counts alone
(https://github.com/JonathanShor/DoubletDetection, DePasquale
et al., 2018; Lun et al., 2016; McGinnis et al., 2019a; Wolock et al.,
2019; Table 1). In the following, we briefly summarize each of them:

scrublet: In their approach scrublet, Wolock et al. (2019)
simulate artificial doublets from the original data coordinates of the
normalized and filtered data in a reduced-dimensional representa-
tion obtained by principal component analysis (PCA). A doublet
score is then created by considering the fraction of artificial doublets
in the neighborhood of each barcode using k-nearest-neighbor
(kNN) graph based on Euclidean distances. To determine the frac-
tion of doublets in an experiment, a doublet score threshold is set
visually by comparing the distributions of the doublet scores of ori-
ginal barcodes and artificial doublets. scrublet is available as a
python module.

dblFinder: In a similar vein, DoubletFinder (McGinnis et al.,
2019a) also uses artificial doublets, and the fraction of artificial dou-
blets in the neighborhood of each barcode, to calculate a metric
(‘pANN’), akin to the doublet score discussed above. Artificial dou-
blets are created by averaging raw counts of randomly paired barco-
des, then the data are normalized, PCA performed and pANN
scores computed. The authors provide a heuristic to automatically
choose parameters (like the number of neighbors considered), and fi-
nally thresholding pANN based on the expected doublet rate [or
based on an adjusted rate that accounts for homotypic doublets
(doublets formed by cells of the same type)] yields final doublet
annotations. dblFinder is available as an R package.

dblCells: In the vignette of their R package
simpleSingleCell (Lun et al., 2016) discuss two approaches,
doubletClusters and doubletCells, implemented as part of
the R package scran (Lun et al., 2016). The first prescribes an ap-
proach to identify clusters of cells that have intermediate expression
profiles to ‘parent’ clusters based on differentially expressed genes,
library size and number of cells in a cluster (Bach et al., 2017). Of
relevance to us is the second approach doubletCells, whereby
thousands of artificial doublets are generated by combining random-
ly chosen pairs of barcodes and projecting them into a reduced-
dimensional space. A doublet score is formalized by assessing neigh-
borhoods of simulated doublets and original barcodes.

dblDetection: This approach (http://doi.org/10.5281/zenodo.
2658730) also relies on artificially generated doublets, but, in con-
trast to previous methods, performs cell clustering on the augmented
dataset. Briefly, augmented data with artificial doublets is generated
from one of two possible sampling schemes, projected into a lower-
dimensional representation using PCA and then clustering is per-
formed with phenograph (Levine et al., 2015, https://github.com/
JonathanShor/PhenoGraph). Next, hypergeometric P-values are
assigned to clusters and their cells based on the number of artificial
doublets they contain. This procedure (including artificial doublet
generation) is performed multiple times, and then doublet calls and
scores are derived from annotated P-values across runs/iterations.
dblDetection is available as a python module.

dblDecon: Making use of an initial user-provided clustering,
the method of DePasquale et al., 2018, DoubletDecon, relies on de-
convolution as implemented in the R package DeconRNASeq (Gong
and Szustakowski, 2013) to identify doublets. First, distinct refer-
ence profiles are constructed from the initial clustering and then arti-
ficial doublets are generated and their deconvolution profiles are
computed. Next, barcodes with deconvolution profiles closest (by
Pearson correlation) to those of a synthetic doublet are initially pre-
dicted to be a doublet. Finally, to reduce penalizing cells with gene
expression profiles possibly corresponding to transitional cell states,
the authors implement a ‘rescue’ step whereby predicted doublets
with unique gene expression patterns are re-labeled as single cells.
dblDecon is available as an R package.

We note that most of these approaches are recent, based on simi-
lar strategies and to our knowledge have not been assessed together
across multiple datasets in a systematic way. In the following, we
present two new and complementary methods for computational
doublet annotation: Co-expression based doublet scoring (cxds)
and binary classification based doublet scoring (bcds). We show
that they can accurately annotate doublets, and we perform a com-
parison of these approaches and the methods discussed above on
four publicly available datasets with experimental doublet annota-
tions (Table 2). We show that our methods perform well compared
with existing approaches (at comparably little computational cost),
and we demonstrate heterogeneity in results and performance of
computational doublet annotation between different methods and
across different datasets.

2 Materials and methods

2.1 Co-expression based doublet scoring
Co-expression based doublet scoring (cxds) is motivated by the as-
sumption that heterotypic doublets (i.e. doublets comprised of cells
from different cell types), co-express ‘marker’ genes that are not usu-
ally active in the same cell. In contrast to approaches that leverage
expert knowledge and assess expression patterns of curated sets of
marker genes manually, cxds uses the scRNA-seq data to first as-
sess gene pairs and then derive an overall doublet score for each bar-
code (We use the terms ‘cell’ and ‘barcode’ interchangeably, and
sometimes use ‘doublet cells’ to refer to barcodes coding for two or
more cells, based on gene-gene co-expression).

Specifically, let X 2 R
m�n be a genes � cells count matrix for m

genes and n cells, and B its thresholded binarized version, where Bij

denotes whether gene i is expressed in cell j (absence/presence). The
row means of B, fpkgm

k¼1, are the fraction of cells expressing each

Table 1. Computational approaches for doublet annotation

Method Language Reference

scrublet Python Wolock et al. (2019)

dblDetection Python doi:/10.5281/zenodo.2658730

dblFinder R McGinnis et al. (2019a)

dblCells R Lun et al. (2016)

dblDecon R DePasquale et al. (2018)
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gene, and the symmetric matrix BBT contains for each gene pair the
number of cells co-expressing the two genes. If we denote the matrix
where the entries in B have been flipped by B ðBij ¼ 1� BijÞ, then
we can write the number of cells that express exactly one of two
genes as ðBBT þ BBTÞ and, assuming independence between genes,
arrive at the following binomial model:

ðBBT þ BBTÞij � Binðn;pið1� pjÞ þ pjð1� piÞÞ ;

where (ij) now denotes a pair of genes. Let a ‘score matrix’ S 2
R

m�m hold negative (upper tail) log P-values under the above model.
Scores for gene pairs that co-express across cells less often than
expected (given their marginal frequencies) are high, while scores
for pairs that co-express normally (or more often than expected) are
low. We now use S to derive cell-specific doublet scores by sum-
ming, for each cell, negative log P-values of co-expressed gene pairs,
so that we get for cell i a doublet score cxds via:

cxdsðiÞ ¼
X

k

X
j
BkiBjiSkj ¼ diagðBTSBÞi : (1)

We then rank cells in the order of decreasing scores, with high scores
denoting doublet cells/barcodes. We note that B, for UMI data, is
typically sparse (often more than 95% zeros), so that the matrix
products BBT and BTSB above are not prohibitive, even for tens of
thousands of cells. On the contrary, our run times are comparable
with the fastest current approaches (see Table 3 in the Section 3).

As mentioned above, a motivation for this score is a (simplified)
concept of marker genes that are expressed in specific cell types
only. Gene pairs containing marker genes for the same cell type will
receive low scores (they are co-expressed more often than expected),
while gene pairs with marker genes for different cell types would
receive high scores (they are co-expressed less often than expected,
because they do not co-express in non-doublet cells). In our cell-
specific scores fcxdsðiÞgni¼1, we then aggregate information across
gene pairs.

2.1.1 Gene pair scoring

Because the doublet score cxdsð�Þ in Equation (1) directly sums up
contributions of individual gene pairs, we can rank pairs based on
their cumulative impact on doublet prediction in the dataset at
hand, weighted by the doublet score for each cell. For the ‘import-
ance’ of a pair formed by genes k and j we define

impðk; jÞ ¼
X

i
cxdsðiÞBkiBjiSkj ¼ ððBDBTÞ � SÞkj; (2)

where D is a diagonal matrix containing doublet scores and the as-
terisk denotes the element-wise product of matrices. This approach
prioritizes gene pairs that substantially contribute to the annotation
of cells with high doublet scores, and it can be used to study the
pairs of genes that most drive doublet prediction. Further on, to pri-
oritize gene pairs that drive doublet predictions in a particular cell
we can omit the sum in Equation (2); or, to focus on a group of cells
(forming a cluster, for instance), we can restrict the sum to group
members.

2.1.2 Implementation

We implemented cxds using the R programming language (R Core
Team, 2018), and in practice add two heuristics: Given a count

matrix X of an scRNA-seq experiment, we first binarize expression
based on a threshold binThresh, such that B contains genes with
more than binThresh counts. In all our studies, here we set
binThresh to zero, but other values can be reasonable
(Supplementary Table S1). Next, we focus on highly variable genes
by ranking genes with respect to their Binomial variance (i.e.
npjð1� pjÞ for gene j) then keeping only the ntop most variable
ones. We choose ntop¼500 as default (Supplementary Table S2
shows that cxds results are largely robust with respect to different
choices of the ntop parameter).

2.2 Binary classification based doublet scoring
Binary classification based doublet scoring (bcds) employs artificial
doublets, similar to other strategies (see Section 1 for an overview).
However, it does not rely on dimension reduction or nearest neigh-
bor approaches to calculate a doublet score. Briefly, given a genes-
by-cells matrix of expression counts we create artificial doublets by
adding random pairs of columns. We then log-transform, normalize
and select variable genes before using a binary classification algo-
rithm to discriminate artificial doublets from original input data.
Finally, for each input barcode we then take the estimated probabil-
ity of belonging to the artificial doublet class as the doublet score we
annotate.

2.2.1 Implementation

We implemented bcds using the R programming language (R Core
Team, 2018), with the following specifics. We simulate artificial
doublets by randomly selecting pairs of cells and adding their
counts, followed by mean-normalization of log-counts of all cells
(artificial doublets and input cells) and thereby generate an aug-
mented dataset containing input data and simulated doublets. We
then train gradient boosted decision trees (Chen and Guestrin,
2016) using the xgboost R package (Chen et al., 2019) with de-
fault parameters for artificial doublet classification. We employ two
heuristics for establishing the number of training rounds: (i) We use
5-fold cross-validation approach in combination with the ‘one-
standard-error-rule’ (Hastie et al., 2001) to determine the number of
rounds to train on the complete dataset. (ii) We set the number of
training rounds to seven. In both cases, we stop training in case the
misclassification error does not decrease for two consecutive rounds.
All results reported in this manuscript use heuristic (i), except for
Table 3, where we report running times; there we also report heuris-
tic (ii), termed bcds7 (Supplementary Table S3 compares the per-
formance of the two heuristics across datasets). We report the class
probability for the artificial doublet class given by the model trained
on the complete dataset as doublet scores. Also, like with cxds, we
select ntop variable genes before simulating doublets and training
the classifier. Here, we log-transform and mean-normalize count
values before calculating the variance of each gene. The ntop most
variable genes are then included for further analysis, and we choose
ntop¼500 for all results reported.

Table 2. Datasets with experimental doublet annotation

Dataset Cells Sparsity # Genes Reference

hgmm 12 820 79% 3068.5 10X Genomics

ch_pbmc 15 583 98% 321 Stoeckius et al. (2018)

ch_cell-lines 8191 92% 2086 Stoeckius et al. (2018)

demuxlet 14 619 97% 520 Kang et al. (2018)

Notes: The ‘# Genes’ column shows the median number (across cells) of

expressed genes. The URL for the hgmm 10X Genomics dataset is https://sup

port.10xgenomics.com/single-cell-gene-expression/datasets-2.1.0/hgmm_12k.

Table 3. Running time for doublet detection methods in seconds

# cells 1k 2k 4k 8k 12k

h cxds 0 0 1 2 2

h bcds7 1 2 4 7 8

� scrublet 1 1 3 7 11

$ bcds 5 7 11 22 26

� dblCells 19 41 106 210 340

� dblFinder 58 93 207 384 627

� dblDetection 56 102 228 484 774

Notes: The row for bcds7 denotes the time for bcds for a fixed number of

training rounds (Section 2).

1152 A.S.Bais and D.Kostka

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz698#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz698#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz698#supplementary-data
https://support.10xgenomics.com/single-cell-gene-expression/datasets-2.1.0/hgmm_12k
https://support.10xgenomics.com/single-cell-gene-expression/datasets-2.1.0/hgmm_12k


2.3 Hybrid doublet scoring
We also combine both approaches, cxds and bcds, into a version
generating annotations as follows. After running each method we
simply normalize the scores to fall between zero and one (by sub-
tracting the minimum and subsequently dividing by the maximum)
before adding them. We denote these annotation scores as hybrid.

2.4 Data description, retrieval and processing
We evaluated our approach and compared performance with other
methods on four publicly available datasets with experimentally
annotated doublets. Table 2 lists the datasets, in the following we
describe how we retrieved and processed each of them:

hg-mm: This dataset contains a 1:1 mixture of freshly frozen
human HEK293T cells and mouse NIH3T3 cells. We downloaded
data from the 10X genomics website (www.10xgenomics.com) and
processed them as follows: Barcodes were filtered to include those
with experimental doublet annotations. For genes, human-mouse
1:1 orthologs were identified using the Ensemble database (v95,
Zerbino et al., 2018) with the getLDS function provided by the
biomaRt R software package (Durinck et al., 2009), and corre-
sponding counts were added. Removing features with no counts
resulted in gene expression data of 14 437 orthologs across 12 820
barcodes.

ch_pbmc: This dataset contains peripheral blood mononuclear
cells (PBMCs) from eight donors, with cells from each donor
uniquely labeled using the cell hashing approach of Stoeckius et al.
(2018). Data files were downloaded from Dropbox (https://www.
dropbox.com/sh/c5gcjm35nglmvcv/AABGz9VO6gX9bVr
5R2qahTZha? dl¼0) and processed according to the vignette of the
Seurat R package (Butler et al., 2018) entitled ‘Demultiplexing with
hashtag oligos (HTOs)’ (https://satijalab.org/seurat/hashing_vi
gnette.html). This resulted in a gene expression matrix of 21 606
genes across 15 583 barcodes.

ch_cell-lines: This dataset contains a mixture of four
human cell lines, HEK, K562, KG1 and THP1. Each cell line was
labeled using the cell hashing approach of Stoeckius et al. (2018).
Data files were downloaded from the same location as for ch_pbmc
and processed according to the same vignette, resulting in a gene ex-
pression matrix with 25 241 genes across 8191 barcodes.

demuxlet: This dataset contains a uniform mixture of PBMCs
from eight lupus patients, and doublets have been annotated based
on genetic information using demuxlet (Kang et al., 2018). Data
files for gene expression counts were downloaded from GEO
(GSM2560248) and doublet annotations were retrieved from the
demuxlet github repository (https://github.com/statgen/demuxlet).
This resulted in data comprising of expression counts for 17 662
genes across 14 619 barcodes.

We note that for all gene counts above, and for the sparsity cal-
culations in Table 2, we included genes expressed with at least one
count in one barcode.

2.5 Annotation of doublets with existing methods
We annotated doublets with five existing tools (Table 1), and in the
following we describe how we applied each of them:

dblCells: Data were processed per the vignette of the R pack-
age simpleSingleCell (Lun et al., 2016). Briefly, raw counts
were normalized using size factors computed using scran (Lun
et al., 2016) with the igraph clustering method and a min.mean
value of 0.1. Technical noise was removed using the denoisePCA
function of scran with approximate singular value decomposition
performed (approximate ¼ TRUE). Finally, doublet scores were
retrieved using the doubletCells function run with default
options except again with approximate ¼ TRUE to allow fast ap-
proximate PCA.

dblDecon: Raw counts were fully processed using Seurat
(Butler et al., 2018) [i.e. normalization, scaling with nUMI regressed
out, finding variable genes, dimension reduction (with PCA) and
clustering were performed]. Additionally, marker genes were calcu-
lated with default settings using the FindAllMarkers function
and top 50 markers used. The Main_Doublet_Decon function

was run with input files created using the Seurat_Pre_Process
function and default settings except for species which was set to
hsa, and using centroids as references for deconvolution (cent-
roids ¼ TRUE).

dblDetection: The python module (https://github.com/
JonathanShor/DoubletDetection) was used in the R programming
language using the reticulate package (https://github.com/rstu
dio/reticulate), and run with default parameters on the count data.
For each cell, negative log P-values were averaged across runs/itera-
tions to derive an aggregate doublet score for each cell.

dblFinder: Fully processed Seurat objects were created (Butler
et al., 2018), where normalization, scaling (with nUMI regressed
out), finding variable genes (with arguments as per their github ex-
ample code), dimension reduction (PCA and TSNE) and clustering
were performed with dims.use ¼ 10 and all other Seurat settings
set to default. For dblFinder, the value for pK was selected follow-
ing the best practices outlined on their github page (https://github.
com/chris-mcginnis-ucsf/DoubletFinder), i.e. as the one with the
maximum mean-variance normalized bimodality coefficient
(BCmvn). The function DoubletFinder was run with the expected
doublet rate of 7.5% assuming Poisson statistics, as per the example
code on github (see URL above).

scrublet: The python module scrublet (Wolock et al.,
2019) was used in the R programming language using the reticu-
late package (https://github.com/rstudio/reticulate), and run with
default parameters on raw count data. Doublet scores were used as
reported by the software.

2.6 Data visualization and calculation of performance

metrics
Low dimensional representation for visualization of data in our fig-
ures were calculated as follows: For each dataset, log counts were
calculated and random projection PCA was performed on the 500
most variable genes using the rsvd R package (Erichson et al.,
2016); finally the first ten principal components were projected into
two dimensions for visualization using the Rtsne package (Krijthe,
2015) with default parameters.

For performance evaluation, we calculated the area under the
ROC curve using the pROC R package (Robin et al., 2011), includ-
ing partial areas under the ROC curve (pAUC) at 90%, 95% and
97.5% specificity. For the partial areas, the option partial.
auc.correct was set to TRUE, such that the maximal pAUC is
one and a pAUC of 0.5 is non-discriminant. Areas under the
precision-recall curves (AUPRCs) were calculated using the PRROC
package (Keilwagen et al., 2014) and we report the smoothed area
under the curve according to Davis and Goadrich (2006) by select-
ing the appropriate option. We used all cells present in each dataset
(see above) to calculate performance metrics. We note that
dblDetection would occasionally not score a small subset of cells
(between 0 and 11), which we then excluded for this method’s
metrics.

Running times for methods available as R packages were calcu-
lated in R, while python was used for python-based methods. The
median (middle) value of three timings is reported. Methods were
run on the same sub-samples of cells of the demu data, and four
cores of an Intel(R) Xeon(R) E5-2667 v4 CPUs were made available
for computing.

3 Results

We report two computational methods for in silico doublet predic-
tion: co-expression based doublet scoring (cxds) and binary classifi-
cation based doublet scoring (bcds). Co-expression based doublet
scoring identifies doublets from thresholded expression data essen-
tially using a Binomial model (Section 2), based on the reasoning
that marker genes for different cell types do not co-express in (non-
doublet) barcodes. Pairs are scored exhaustively, and no prior know-
ledge about marker genes in a specific context is needed. Further on,
doublet annotations for cells are interpretable in the sense that they
are based on the co-expression of pairs of genes and cxds allows
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users to view gene pairs ordered with respect to their contribution to
doublet predictions across a dataset (Section 2). Figure 1 shows the
top two pairs driving doublet prediction for cxds across the four
datasets (Table 2), illustrating how co-expression of genes in each
pair identifies doublet cells.

Binary classification based doublet scoring, on the other hand,
combines generation of artificial doublets from existing data with
binary classification. Barcodes in the original data that are difficult
to discriminate from artificial doublets receive high doublet scores
using bcds. We use gradient boosted decision trees (Chen and
Guestrin, 2016) to classify (Section 2), but in principle the approach
is generic and other classification algorithms could be explored. In
the following, we apply our methods to four datasets with experi-
mental doublet annotations (Table 2), provide evidence that com-
bining the cxds and bcds into a ‘hybrid’ score (Section 2) improves
performance and compare our approaches and other computational
methods for doublet annotation (Table 1).

3.1 Doublet scoring with scds accurately recapitulates

experimental doublet annotations
We performed computational doublet annotation on four scRNA-
seq datasets (Tables 2 and 4) using several current methods
(Table 1), together with library size (libsize) and number of
expressed genes (termed features); together both are referred to
as ‘baseline’ methods from here onwards. Results for each dataset
are presented in Supplementary Table S4 and performance averaged
across datasets is shown in Table 4. Columns are performance met-
rics [the area under the receiver operating characteristic curve (ROC
curve), the area under the precision-recall curve (PR curve) and par-
tial areas under the ROC curve focusing on 90%, 95% and 97.5%
specificity], while rows correspond to computational doublet anno-
tation approaches. Rows are sorted with respect to their perform-
ance in terms of the area under the ROC curve (AUROC), with ties
being broken by the performance in terms of the area under the PR
curve (AUPRC). Baseline methods are marked with gray bullets, cur-
rent methods with blue bullets and our proposed approaches with
red bullets. We find that all the methods we propose (cxds, bcds
and hybrid) perform well across datasets, consistently outperform-
ing baseline approaches and at least one ranks in the top three best
performing methods. The one exception is the ch_pbmc dataset
(Supplementary Table S4), where annotating doublets based on the
number of features achieves an area under the ROC curve of 79%.
Our weakest-performing approach on this data, cxds, performs
slightly worse (78%), but does much better in terms of area under
the PR curve (AUPRC of 54% versus 45%, respectively). We also
note that two other computational doublet annotation methods,
dblCells and scrublet, perform worse than the number of fea-
tures in terms of AUROC on this dataset. On average, our hybrid
method does best of the three methods we propose, significantly out-
performing baseline approaches on all four datasets.

3.2 Coexpression-based doublet scoring highlights

informative gene pairs
One of the features of cxds is its ability to provide gene pairs that
drive doublet annotations of cells in a specific dataset (Section 2). As
an illustration, Figure 1 shows the top two gene pairs driving cxds
doublet annotation in each of the datasets we analyzed. For each
dataset, the first row shows a two-dimensional representation of all
cells (left), the subset of experimentally annotated doublets (middle)
and the subset of doublets predicted by cxds (right). The next two
rows depict gene pairs: Binarized expression (presence/absence) of
one gene alone on the left, of the second gene in the pair in the mid-
dle and co-expression of both genes in the same cell on the right
(also absence/presence). We see that cxds finds genes with comple-
mentary expression patterns that mark coherent groups of cells, and
how co-expression of these genes contributes to doublet predictions.
We note that while no clustering has been performed, genes included
in high-scoring pairs by cxds often look like they mark different
cell types, or combinations thereof, that may be present in the data.

3.3 Comparison of computational doublet scoring

methods
We compared computational doublet annotation methods across
four datasets; performance evaluation results averaged across data-
sets are shown in Table 4, dataset-specific results are shown in
Supplementary Table S4, while Supplementary Figure S4 shows a
resampling-based assessment of prediction robustness. In addition
to aggregate performance measures reported in these tables and fig-
ures, Supplementary Figures S5 and S6 show a more fine-grained
comparison between methods. In general, we find that computation-
al doublet prediction performs best on the hg-mm dataset, followed
by demuxlet and ch_pbmc, while it is most challenging for the

Fig. 1. Gene pairs driving doublet prediction in cxds. For four datasets (panels) the first row shows all cells in (left), the annotated doublets (center) and cxds-predicted dou-

blets (right). The following two rows depict the two gene pairs that contribute most to the cxds classifier (Section 2). For each pair (i.e. for each row), the left plot depicts the

expression of one gene (presence/absence), the middle plot the expression of the other gene, while the right plot the average expression in cells that co-express both genes. We

see that each gene in a pair is expressed in distinct groups of cells, and that their co-expression highlights annotated and predicted doublets

Table 4. Performance of doublet annotation methods, averaged

across datasets

AUROC pAUC900 pAUC950 pAUC975 AUPRC

� dblCells 0.75 0.69 0.66 0.63 0.47

h libsize 0.76 0.60 0.56 0.53 0.29

h features 0.78 0.62 0.57 0.54 0.33

$ cxds 0.83 0.74 0.71 0.68 0.56

� scrublet 0.83 0.75 0.72 0.69 0.60

$ bcds 0.84 0.75 0.70 0.63 0.56

$ hybrid 0.85 0.77 0.72 0.67 0.62

� dblDetection 0.85 0.80 0.75 0.71 0.66

� dblFinder 0.86 0.80 0.76 0.72 0.67

Notes: Squares mark baseline methods, circles mark current methods for

doublet annotation and stars mark proposed methods. AUROC: Area under

the ROC curve; AUPRC: area under the precision-recall curve; pAUC: partial

area under the ROC curve (Section 2).
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ch_cell-lines data. Within each dataset there is appreciable
spread of performance between the different methods, with most
methods consistently outperforming baseline approaches. From
Table 4 we see that, on average, dblFinder, dblDetection and
our hybrid approach perform best. However, this order varies be-
tween datasets; for example on the demu dataset, bcds performs
slightly better than hybrid (Supplementary Table S4). On the
ch_pbmc dataset, the baseline classifier features does better than
on other datasets, outperforming cxds, scrublet and dblCells.
In general, library size and number of features identify doublets rea-
sonably well (AUCs � 78%, with the exception of the ch_cell-
lines dataset), which motivated us to further explore the effect of
library size on the performance of computational doublet
annotation.

3.3.1 Doublet annotation performance stratified by library size

For each dataset, we divided cells into equal-sized bins according to
library size, so that the first bin contains cells with library sizes be-
tween the 0% and 10% quantile, the second bin cells between the
10% and 20% quantile, and so on. We then assessed annotation
performance for all computational methods in each bin for each
dataset separately. Results for demuxlet and ch_pbmc data are
summarized in Figure 2, the remaining two datasets can be found in
Supplementary Figure S1. For each dataset, the left panel depicts
performance in terms of the area under the ROC curve (AUROC),
the right panel in terms of the area under the PR curve (AUPRC).
For each performance comparison, columns correspond to library
size bins and rows to annotation methods.

We see that all approaches (baseline methods included) perform
best on cells with high library size (quantile bins 5 and up), and that
this trend is more pronounced for performance in terms of AUPRC,
compared with AUROC. We also find that this trend applies broad-
ly, with notable exceptions being: The hg-mm dataset, where most
methods perform well in terms of AUROC across bins and
dblDetection and cxds both also perform consistently across a
wide range of bins in terms of AUPRC. The second exception is the
demuxlet dataset, where hybrid and cxds perform suprisingly

well in terms of AUROC for cells with small library sizes (first quan-
tile bin).

3.3.2 Comparison of doublet annotations between methods

We also assessed similarities and differences between doublet predic-
tions of each method. To do so, we determined the fraction of barc-
odes experimentally annotated as doublets and then compared the
same number of doublet predictions for each method. Results are
summarized in Figure 3, where we looked at overlapping and non-
overlapping doublet annotations from different methods (and ex-
perimental annotations) in the form of upset plots (Conway et al.,
2017). Doublet annotations for each method (and experimental
annotations) are considered as sets of barcodes, and this type of plot
depicts set intersections, where the sets participating in each inter-
section are indicated by a ‘combination matrix’ at the bottom.
Vertical bars indicate the number of cells in each such intersection
class; bars colored in gray correspond to intersections containing
only barcodes not experimentally annotated as doublet [i.e. false
positives (FP)], whereas bars colored in black correspond to sets
containing barcodes annotated as doublets [i.e. true positives (TP);
the ‘annotation’ set is participating in these intersections]. The
twenty largest intersection sets are shown for each dataset.

We find that in each dataset (except hg-mm) there is a substantial
number of experimentally annotated doublet cells that none of the
computational annotation approaches recovers (black bars corre-
sponding to the ‘annotation only’ intersection). The cxds, scrub-
let and dblCells methods often have a fairly large amount of FP
predictions that are unique to the respective methods, as do lib-
size and/or features. While we note these differences, we also
see that TP predictions are typically shared by many methods. In
fact, with the exception of the scrublet-specific TP predictions in
the ch_pbmc data, all TP intersections have consistent predictions
from at least four methods. That is, we observe better agreement be-
tween methods in terms of TP predictions as compared with FP
predictions.

Further on, we compared the library size of cells, stratified by
their annotation classes [TP, true negative (TN), FP and false nega-
tive (FN) predictions] for each method and dataset. Results are

Fig. 2. Performance of methods, stratified by library size. For two datasets, the first panel shows performance in terms of the area under the ROC curve (AUROC), while the se-

cond shows performance under the precision-recall curve (AUPRC), respectively. In each panel, the rows correspond to methods, and the columns to groups of cells in the

same stratum of library sizes. The left-most column focuses on the 10% of cells with the lowest library size, the next column on the cells between the 10% and the 20% quan-

tile and so on. In each panel methods are ranked by their average performance across quantile bins. See Supplementary Figure S1 for the remaining two datasets

Fig. 3. Comparison of doublet predictions. For the four datasets (panels), we show upset plots (Conway et al., 2017) comparing doublet predictions for nine prediction meth-

ods (including baseline methods) with annotated doublet cells. Bars showing the size of intersections containing experimentally annotated doublets (termed ‘annotation’) are in

black, bars showing intersections without experimentally annotated doublets are in gray. We show the 20 largest intersection sets. For demuxlet, ch_pbmc and ch_cell-

lines the set of doublets that gets missed by all prediction methods (i.e. consistent false negatives) is ranked number six, three and three in terms of size, respectively
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summarized in Supplementary Figure S2. We see that for some
methods (cxds, bcds, hybrid, dblDetection, dblFinder)
FP predictions tend to have higher library size compared with FN
predictions, often comparable to TP predictions (similar to what
McGinnis et al., 2019a observe for dblFinder). We also find that
this trend can vary for the same method between datasets (e.g. cxds
has this trend in all datasets except ch_pbmc, and dblFinder has
it in all datasets except hg-mm). This trend is markedly less pro-
nounced in scrublet and dblCells.

Finally, the ch_cell-lines dataset contains experimental an-
notation about whether a doublet is homotypic (from the same cell
line) versus heterotypic. We used this to quantify the enrichment of
TP predictions for heterotypic doublets across methods. Results are
summarized in Supplementary Table S5. We see that all methods
(except dblCells) are significantly enriched for heterotypic dou-
blets, with enrichment being most extreme for scrublet and
dblDetection (odds ratio > 6), present for the remaining meth-
ods (odds ratios between three and four) and absent for the baseline
methods (odds ratios of 1.2 and 0.98 for features and libsize,
respectively). Next, we visually compared doublet annotations
across methods and datasets.

3.3.3 Visual comparison of annotated doublets

We visually compared doublet predictions. Figure 4 depicts that for
the demuxlet data, whereas Supplementary Figure S3 holds results
for all four datasets. In Figure 4, columns correspond to computa-
tional annotation methods and the first row shows doublet scores
with darker colors representing higher scores (i.e. more doublet-like
barcodes); the second, third and fourth rows show TP, FP and FN
predictions, respectively. The relative density for each type of pre-
diction is indicated in color (TP: green, FP: red, FN: blue). As before,
we choose method-specific cutoffs such that the number of predicted
doublets matches the number of experimentally annotated doublets.

For Figure 4 (the demuxlet data), we observe clearly visible dif-
ferences in terms of TP, FP and FN density for all methods. We see
FN predictions are more concentrated in the first five columns and
more heterogenous in the other methods. This coincides with higher
FP concentration for the baseline methods and cxds, but not for
dblCells and scrublet. For the hg-mm data, where computa-
tional annotations are mostly correct (Supplementary Table S4), we
see that TP and FN predictions are highly concentrated
(Supplementary Figure S3). However, we can still make out interest-
ing differences between the methods in terms of where their FP pre-
dictions fall. dblDetection, features and libsize have FP
predictions in similar areas for one type of cells pretty much exclu-
sively, scrublet and dblFinder predict false positives more pre-
dominantly in the other cell type, while hybrid and bcds have FP
predictions in both types of cells. For the ch_cell-lines dataset,
TP and FN predictions appear similar amongst non-baseline meth-
ods, while FP predictions appear distinct. For example, for

dblDetection the FP density is highest in two of the four cell
types (somewhat similar to the baseline methods), while for other
methods FP predictions appear more broadly distributed. For the
ch_pbmc dataset, we observe the biggest difference in terms of FP
density between the two baseline methods and the rest.

Overall, we observe appreciable variability between doublet pre-
diction methods, including the top three performers in Table 4,
dblFinder, hybrid and dblDetection. This may suggest that
none of the methods are close to optimal, and that an approach
combining their respective strengths might further improve doublet
annotation.

3.3.4 Running time comparison

We measured running times of the different methods we compare,
and Table 3 summarizes the results. We find that cxds, bcds_7
(where we do not perform cross validation, see Section 2) and bcds
are able to annotate >10k cells in tens of seconds or on the order of
a minute, while other methods take significantly longer. There is a
distinct gap between ‘fast methods’, comprising the tools we pro-
pose and scrublet and the rest. We note that computational doub-
let annotation can be performed for each chip/batch separately, and
therefore we did not assess larger numbers of barcodes.

3.3.5 Comparison with dblDecon

dblDecon (DePasquale et al., 2018) does not provide a doublet
score, and therefore we could not include it in the previous analyses.
To be able to still include it in our study, we applied it to all four
datasets and generated doublet predictions. For the hg-mm dataset
the method failed to run through, and therefore we excluded it from
this analysis. For the three remaining datasets and other tools in the
comparison, we then generated the same number of annotated dou-
blets as dblDecon by choosing appropriate score thresholds.
Surprisingly, we find that dblDecon does not perform well in this
comparison, even though it determined the number of positive
doublet calls for all methods (Supplementary Table S6). We also see
a wide range of precision and sensitivity values across methods,
while specificities are high due to the large amount of true negatives
in all datasets.

4 Discussion

We have introduced single cell doublet scoring, scds, encompassing
three methods (cxds, bcds and hybrid) for the in silico annota-
tion of doublets in scRNA-seq data. We applied them to four data-
sets with experimental doublet annotations, and they all outperform
baseline approaches. cxds is based on co-expression of gene pairs,
and it is quite different from current approaches, because it does not
utilize artificially generated doublets and it works on a binarized ab-
sence/presence version of the RNA expression data. It features fast
running times and provides users the opportunity to investigate pairs
of genes driving doublet predictions (Sections 2 and 3). Binary classi-
fication based doublet scoring, bcds, is more similar to established
methods and utilizes artificially generated doublets. However, in
contrast to other tools (see Section 1 for short descriptions), it does
not make use of dimension reduction techniques, nor does it employ
nearest neighbors for doublet scoring. Finally, hybrid is a combin-
ation of cxds and bcds that performs better than either method
alone. In summary, our approaches are complementary to existing
tools and work well for annotating doublets in scRNA-seq data.

We note that we do not estimate the number of doublets in a
dataset, but rather score cells/barcodes and rank them from most
doublet-like to least doublet-like. Therefore, our annotations are
most useful when an estimate about the expected doublet rate is
available (for instance, 10X Genomics provides them in their ‘User
Guide for Chromium Single Cell 3’ Reagent Kits’, based on the
number of cells loaded on a chip), or when researchers wish to in-
clude a doublet score as only one of many factors in their decision
about which cells may be excluded prior to downstream analyses.
Our approaches share some conceptual limitations with other meth-
ods, which have been discussed in the literature (e.g. Wolock et al.,

Fig. 4. Visual comparison of doublet predictions for the demuxlet dataset. For

nine computational doublet annotation methods (columns) cells are shown in a

two-dimensional tSNE projection. The first row depicts all cells, shaded by the rank

of the respective doublet prediction score. The second, third and fourth rows show

true positive (TP, green), false positive (FP, red) and false negative (FN, blue) predic-

tions. Shading reflects the relative density in each row, cells are shown in black
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2019). Specifically, successful doublet identifications require that
doublets are rare, that mixtures of more than two cells are even
more rare and that single cell instances of cell types in doublets are
present in the data at appreciable frequency. Further on, our
approaches are more sensitive towards identifying heterotypic dou-
blets as compared with doublets comprised of two cells of the same
type (also see Supplementary Table S5).

We also compared our methods and four existing tools that pro-
vide doublet scores using four datasets, and we find appreciable het-
erogeneity between computational doublet annotation methods. No
tool consistently outperforms all others, and performance varies be-
tween datasets. Our tools perform well, especially when running
time is a consideration. Averaged across datasets, dblFinder,
dblDetection and hybrid are the top performing methods
(Table 4). Investigating doublet predictions of each method in more
detail, we find that: (i) for most datasets there is a sizable fraction of
experimentally annotated doublets that is consistently missed by all
methods, (ii) many correctly annotated doublets share the consensus
of most methods and (iii) methods differ mostly in terms of their
false positive annotations and these tend to be method-specific (i.e.
typically not shared between methods). This implies that while
methods differ in their doublet annotations (appreciable variability
in terms of false positives), no method is yet able to recover a sizable
fraction of annotated doublets (false negatives shared by all
approaches). Therefore, we believe there is room to further improve
computational doublet annotation. Specifically, we note that for
bcds we used default parameters and did not really engage in par-
ameter tuning, which could in principle lead to substantial improve-
ments. The reason is that with only four doublet datasets available,
we believe that there is some danger of inadvertent ‘information
leak’ and therefore optimizing parameters may lead to over-fitting.
But this concern will decrease as more (and more diverse) data with
experimental doublet annotations become available.

We note that results of our method comparisons necessarily depend
on the datasets we used, and how they were processed. We attempted
to minimize processing steps as much as possible, and we did not filter
cells in addition to the original publications. We used published/pro-
vided experimental annotations, and for cell hashing (Stoeckius et al.,
2018) we followed the annotation strategy prescribed by the authors
(Section 2). However, we are cognizant that alternative data processing
strategies are equally reasonable and may have the potential to impact
results. Further on, many analysis steps include random sampling in
some way, thereby inducing a certain amount of stochasticity.
Therefore, we have made the code for our analyses available (https://
github.com/kostkalab/scds_manuscript) and provide a docker container
(https://hub.docker.com/r/kostkalab/scds) for other researchers. Finally,
in our study we used experimentally annotated doublets as gold stand-
ard ignoring shortcomings of the respective experimental approaches,
for example, that some are not able to identify identically barcoded
doublets (McGinnis et al., 2019a). However, in the absence of better
experimental data, we feel there are little alternatives to this approach.

In summary, in silico doublet annotation enriches single-cell RNA
sequencing data and can guard against over interpretation of results.
From our comparison, we find that current approaches (including
ours) are able to annotate doublets more accurately than baseline meth-
ods, but also that there appears to be room for improvement as more
datasets with experimental annotations become available. We intro-
duced new light-weight methods for computational doublet annota-
tion, which perform well in comparison to the status quo. They all
feature comparably short running times, and co-expression based
doublet scoring produces biologically interpretable results. Therefore,
we provide researchers with new and useful tools to study and increase
the value of their single-cell RNA sequencing data.
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