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Abstract

B cells develop high affinity receptors during the course of affinity maturation, a cyclic pro-

cess of mutation and selection. At the end of affinity maturation, a number of cells sharing

the same ancestor (i.e. in the same “clonal family”) are released from the germinal center;

their amino acid frequency profile reflects the allowed and disallowed substitutions at each

position. These clonal-family-specific frequency profiles, called “substitution profiles”, are

useful for studying the course of affinity maturation as well as for antibody engineering pur-

poses. However, most often only a single sequence is recovered from each clonal family in

a sequencing experiment, making it impossible to construct a clonal-family-specific substitu-

tion profile. Given the public release of many high-quality large B cell receptor datasets, one

may ask whether it is possible to use such data in a prediction model for clonal-family-

specific substitution profiles. In this paper, we present the method “Substitution Profiles

Using Related Families” (SPURF), a penalized tensor regression framework that integrates

information from a rich assemblage of datasets to predict the clonal-family-specific substitu-

tion profile for any single input sequence. Using this framework, we show that substitution

profiles from similar clonal families can be leveraged together with simulated substitution

profiles and germline gene sequence information to improve prediction. We fit this model on

a large public dataset and validate the robustness of our approach on two external datasets.

Furthermore, we provide a command-line tool in an open-source software package (https://

github.com/krdav/SPURF) implementing these ideas and providing easy prediction using

our pre-fit models.

Author summary

Antibody engineering can be greatly informed by knowledge about the underlying affinity

maturation process. As such this can be probed by sequencing, but unfortunately, in prac-

tice often only one member of the clonal family is sequenced, making it difficult to deter-

mine a set of possible amino acid mutations that would retain the original antibody

antigen binding affinity. We overcome this data sparsity by developing a statistical learn-

ing approach that leverages vast information about amino acid preferences available in
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public immune system repertoire data. We use a penalized regression approach to devise

a flexible statistical model that integrates multiple sources of information into a coherent

prediction framework and validate our prediction algorithm using subsampling and held

out data.

Introduction

In the therapeutic antibody discovery and engineering field, researchers commonly isolate

antibodies from animal or human immunizations and screen for functional properties such as

binding to a target protein. Following the initial screening process, a small number of well-

behaving antibodies (hits) are isolated for more rigorous examination of their biophysical

properties in order to determine their potential as a therapeutic. After this stage, only a few

final antibodies remain as lead candidates. However, even these carefully selected antibodies

often have immunogenic peptides or other undesirable properties such as poor thermo/chemi-

cal stability and aggregation tendencies. To address these problems, the art of antibody engi-

neering has emerged [1], with numerous rational design strategies developed to mitigate

aggregation. Researchers have removed hydrophobic surface patches to avoid aggregation

[2–5], “deimmunized” complementarity-determining regions by screening immunogenic pep-

tides and mutating positions detrimental for peptide MHCII binding [6], and improved ther-

mostability through stable framework grafting [7] and targeted mutagenesis using predictions

from proprietary structure/sequence analysis software [8]. Although referred to as “rational”,

the choice of which amino acid to use for a site-directed mutation is often made using 1) the

germline as a reference, 2) biochemical similarity between amino acids, or 3) the highest prob-

ability amino acid from a generic substitution matrix (e.g. BLOSUM) [9]. However, neither of

these three methods are explicitly designed to conserve antibody functionality (i.e. binding to

the same epitope with the same kinetics), so mutations are likely to have negative side effects

on affinity. These considerations motivate a prediction problem: given a B cell receptor (BCR)

sequence, which positions can be modified, and to which amino acids, without drastically

changing the binding properties of the resulting BCR?

An immunization-derived antibody has already implicitly explored the mutational space

through the population of B cells sharing the same naive ancestor, referred to as its clonal fam-

ily (CF). The members of a CF arise during affinity maturation in a germinal center and carry

fitness information about the effect of amino acid substitutions. A profile of the observed sub-

stitutions aggregated over all the B cells in a CF reveals which sites are more conserved, which

sites can be more freely edited, and which amino acids can be used for replacements. However,

we generally do not sequence all the B cells that are released from a germinal center so the

information to make such a substitution profile is lost. Thus, we can formulate a more specific

version of our prediction problem: given bulk BCR data and a single input sequence, can we

infer the most likely per-site substitutions that are allowed in its true germinal center clonal

family?

We begin by reviewing the natural mutation and selection process of germinal center affin-

ity maturation. The Darwinian selection undertaken inside a germinal center is driven by B

cells’ ability to bind the antigen through the membrane-embedded BCR. The highly-mutated

population of B cells in a germinal center is under stringent selection, driving the cell popula-

tion towards higher and higher affinity until the germinal center is dissolved. Each germinal

center is seeded by around one hundred naive B cells, but eventually internal competition

makes one or a few of these lineages take over the whole germinal center [10]. Although B cells
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in the germinal center reaction experience an extraordinarily high mutation rate (106 fold

higher than the regular somatic mutation rate [11]), they rarely harbor more than 15% muta-

tions at the DNA level [12]. However, since they must maintain some degree of antigen speci-

ficity to survive during the course of the germinal center reaction, lineages evolve in small

incremental steps [13, 14] and therefore, even lineages that drift far away from their naive B

cell ancestor most likely maintain the same epitope specificity throughout the germinal center

reaction [15].

We can describe the combination of germinal center mutation and selection dynamics by

computing per-site amino acid frequency vectors from observed BCR sequence data. We fol-

low previous authors in calling site-specific amino acid probability vectors “substitution pro-

files”, where each vector in a profile stores the probabilities of observing the 20 different amino

acids at a given site [16]. We use the concept of a clonal family, defined by a shared heavy

chain inferred naive DNA sequence, to segment BCR sequences into evolutionarily-related

groups [17]; some practitioners refer to these groups as lineages. CF inference is highly

informed by nucleotide sequences and therefore performed using DNA sequences. This makes

DNA-level information necessary even though germinal center selection operates at the pro-

tein level and synonymous codons do not possess any fitness advantages (modulo transcrip-

tion rate differences and codon bias, which we follow many others in ignoring here). The per-

site amino acid frequency vectors described above form the substitution profile estimates; the

substitution profile estimates converge to the true substitution profiles as the number of

sequences sampled from the same CF tends to infinity.

Most CFs do not contain enough sequences in order to get a detailed substitution profile

estimate. Indeed, most CFs in repertoire sequencing (Rep-Seq) samples have few members

and a large fraction are singletons due to the exponential nature of the CF size distribution

[17]. Additionally, many antibody screening methods are not geared towards whole repertoire

sequencing. One may wish, then, to enhance the substitution profile estimates for data-sparse

CFs with substitution profile information from similar CFs.

In this paper, we present “Substitution Profiles Using Related Families” (SPURF), a penal-

ized tensor regression framework that integrates multiple sources of information to predict the

CF-specific amino acid frequency profile for a single input BCR sequence (Fig 1). Some of

these information sources include substitution profiles for CFs in large, publicly available BCR

sequence datasets and germline gene sequence information. We combine the local context-

specific profile information with global profile information derived from other related germi-

nal centers by regularizing the noisy local substitution profile estimate and pooling it closer

towards more robust global profile estimates. Even though each germinal center focuses on

binding to a unique epitope context, there are structural and possibly functional properties

associated with BCR sequences that are common across germinal centers that we can leverage.

In addition, our inference machinery uses both standard and spatial lasso penalties as

model regularizers and, as a result, furnishes sparse, interpretable parameter estimates. While

our output type shares some similarities to that described by [16], the proposed objective,

approach, and details differ (e.g. they predict substitution profiles for gene families, we predict

substitution profiles for CFs). We enable substitution profile prediction for single input BCR

sequences based on profiles derived from a high-quality repertoire dataset that contains B cell

samples from many human donors. To demonstrate the usefulness of our technique, we vali-

date SPURF on two external datasets—one containing CFs extracted from a single human

donor and the other focusing on a single CF of a HIV broadly neutralizing antibody. Lastly, we

implement SPURF in an open-source software package (https://github.com/krdav/SPURF),

which outputs a predicted CF-specific substitution profile and an associated logo plot based on

a single input BCR sequence.

Predicting B cell receptor substitution profiles
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Methods

Overview

The aim of our model is to take a single sequence and predict the site-wise amino acid frequen-

cies as would be found in the full CF from which this single sequence derived. We will refer to

this as the sequence’s CF-specific substitution profile. For this prediction problem, we have no

direct information about this desired substitution profile other than the information contained

in the input sequence itself, but we may use other information (e.g. from the inferred germline

gene, simulated substitutions, or information derived from published BCR sequence datasets).

For large CFs, a CF-specific substitution profile can be constructed simply by counting and

making a per-site frequency matrix, with the rows of the matrix representing each of the 20

amino acids, and the columns being the sequence positions.

For training, we extract a collection of such large CFs and use them to build “ground truth”

CF-specific substitution profiles as a training set for fitting the model. A randomly sampled

single sequence is then taken out from each of these large CFs to predict the substitution pro-

file, which is compared to the ground truth. We refer to these single sequences, sampled from

large CFs, as subsamples.

To make the best possible prediction, we need a flexible model framework that can accom-

modate different sources of information seamlessly (Fig 2). For example, previous work by

[18] and [19] suggests that the various V genes have different characteristic paths of diversifica-

tion. We can obtain a data-driven summary of that intuition by building profiles from large

Rep-Seq data sets stratified by V gene. We may also think that the neutral substitution process

is an important factor in determining substitution profiles [18]. We can quantify that sort of

information by repeatedly simulating the neutral substitution process using a context-sensitive

model [20]. We call each external data set (e.g., V gene alignments and sequences simulated

Fig 1. Amino acid substitution profiles viewed from three different perspectives. High-throughput sequencing data (HTS data)

yields large amounts of VDJ sequences, but because of uneven sampling many CFs will be sampled just once, resulting in poor

representations of the amino acid substitution profiles of those true CFs. “Substitution Profiles Using Related Families” (SPURF) is a

statistical framework that integrates large scale Rep-Seq data to predict amino acid substitution profiles for singleton CFs. In vivo
affinity maturation will test many different mutations and the resulting CFs reflect the amino acid substitution profiles that we

attempt to predict.

https://doi.org/10.1371/journal.pcbi.1006388.g001
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from the neutral substitution process) that can be used to predict the CF substitution profile of

interest a source of profile information.

To make predictions using these types of information, we need a way of describing the vari-

ous sites, and a way of integrating the information across the sites. We use the AHo numbering

scheme [21] to provide a single coordinate system to all sequences via its fixed-length number-

ing vector going from 1 to 149. Given this coordinate system, we use a site-wise weighted aver-

age of the input predictive profiles using a α weight vector for each source of profile

information.

To train this model, we fit the α vectors by minimizing some objective function that quanti-

fies the difference between the predicted profiles (where the prediction uses the subsampled

sequence and the external profile information) and the “ground truth” substitution profiles

from the large CFs. Any objective function could be used, but here we provide implementa-

tions of two such functions, a “fine-grained” L2-error-based objective and a “coarse-grained”

Jaccard-similarity-based objective [22].

We use two forms of regularization to avoid overfitting the many parameters of this model.

This includes a standard lasso penalty to shrink weights to zero that do not contribute signifi-

cantly to prediction performance [23]. We also use a fused lasso penalty [24, 25] to smooth dif-

ferences between parameters at nearby sites in the sequence. These regularization terms have

Fig 2. Model overview figure. SPURF uses a per-site linear combination of substitution profiles from diverse sources to predict

complete substitution profiles from a single member of a CF. At the top are the different profiles that serve as inputs to the model,

some directly related to the naive sequence (X̂ naiveAA and X̂ neut), and others partitions of the public Rep-Seq datasets (X̂ vgene and

X̂ vsubgrp). To predict a substitution profile, a weighted average is taken over the input sequence X and external profiles X� ¼
fX̂ naiveAA; X̂ vgene; X̂ neut; X̂ vsubgrpg (see the dashed line bubble). The vertical blue arrow indicates that the weighted average (in the

dashed line bubble) occurs at each of the 149 AHo positions. Once a predicted profile is generated, this is compared to ground truth

using either L2 error or Jaccard similarity as a performance metric. The α vectors are estimated by optimizing the objective function,

which also includes a statistical regularization term to prevent overfitting.

https://doi.org/10.1371/journal.pcbi.1006388.g002
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tuning parameters that regulate the strength of the penalties and are estimated using cross-

validation.

Given this setup, a forward stepwise selection procedure is run with cross-validation to pick

the set of external profiles to use in the final model. As a last check, this model is tested on two

external datasets to give a fair estimate of the prediction performance.

Data

We divide input data into two parts, with each part for a respective purpose: 1) model fitting

and model testing and 2) providing “public” substitution profiles over clustered data to be

used by our model. Throughout this work, we are careful to not use the same data for both

purposes as this would bias our estimates; as a final validation, we test SPURF on two external

datasets which are only used in this validation. Because we do not model sequence error, we

only include high-quality data that we have high confidence in. We collect post-processed data

files from 6 published works on Rep-Seq, which we refer to as repertoire data 1 to 6 (RD1-6):

1. RD1 from [26], which is an Illumina MiSeq re-sequencing of the samples in [27], where

they sequence multiple time-points before and after influenza vaccination of 3 donors

using the 454 pyrosequencing platform.

2. RD2 from [28], from a study of the auto-immune disease Myasthenia Gravis (MG), in

which 9 MG patients and 4 healthy donors participate.

3. RD3 from [29], containing data from different tissues in a study of B cell response in 4 mul-

tiple sclerosis patients.

4. RD4 from [30], from a study of neutralizing antibodies against the West Nile virus by

sequencing naive and memory cells from 7 virus infected donors.

5. RD5 from [31], from a study of Rep-Seq error correction by sequencing naive, plasma, and

memory cells from a single healthy donor.

6. RD6 from [32], from the “B cell tissue atlas” acquired from the ImmuneDB web portal.

All datasets are acquired in their post-processed form with read processing performed as

described in their respective publications.

The first five datasets (RD1-5) are prepared from unique molecular identifier (UMI) bar-

coded cDNA spanning the whole VDJ region and sequenced on the Illumina MiSeq platform

using overlapping paired-end reads. Using the UMI, these reads are processed to address both

PCR and sequencing errors giving high confidence reads [33]. Briefly, UMIs are used for error

correction in conjunction with either of the pRESTO [34] or MIGEC [33] processing pipelines

and an appropriate Phred quality score cutoff. Paired-end reads are assembled using pRESTO

and only the set of high confidence assembled reads constitute the final dataset used in this

work. RD6 is the only dataset not prepared with UMIs; however, it is sequenced directly from

genomic DNA (gDNA) instead of the more common practice of sequencing mRNA. Sequenc-

ing gDNA has the benefit of avoiding mutations introduced by the transcription machinery as

well as mutations introduced in the RT-PCR step. On the other hand, DNA sequencing is not

able to discriminate between expressed versus unexpressed BCRs (e.g. in the case of faulty VDJ

recombination) and therefore we apply aggressive filtering of non-functional BCR sequences.

We prefer quality over quantity and therefore avoid datasets from the 454 technology because

of their higher indel frequencies compared to those from Illumina technologies [35].

Individual sequence files are merged based on donor identity so that the number of sample

files matches the number of donors; this process yields 33 donor files. The donor files are then
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annotated and partitioned into CFs using the partis software [17, 36]. Each donor file is

run separately from the other files so CFs are defined by their unique partis-inferred naive

sequence and donor identity. To ensure we obtain the highest quality and most biologically

relevant sequences, partis is run in its most restrictive mode, discarding all reads with VDJ

recombinations that are deemed as unproductive because of out-of-frame N/P junction nucle-

otides, missing invariant codons, or stop codons inside the VDJ region; furthermore, the most

accurate partis partitioning mode (“full”) is used to get the best CF estimates. Lastly, pro-

ductive VDJ-recombined sequences are removed if they contain indels to assure concordance

between the length of the naive sequence and the length of the read sequences in its CF.

At this stage, some sequences contain ambiguous bases (e.g., because of primer masking);

these are allowed to pass only if the ambiguous bases are inside the first or last 30 nucleotides

of the VDJ region (equivalent to the length of the potentially masked PCR primers), otherwise

they are discarded. This is a way of substituting the error-prone ends with neutral bases that

minimize variance and maintain a conservative estimate of the substitutions; we also note that

this has no apparent effect on the subsequently-described estimates (Figs 3 and 4). For all

sequences that pass this requirement, ambiguous bases are substituted with bases from the

naive sequence in batches of 3 nucleotides (i.e. one codon) at a time until all ambiguous bases

are resolved. Sequences are then translated into their respective amino acid sequences and de-

duplication of repeated amino acid sequences is done within each CF. Because our statistical

methodology operates on these amino acid sequences, we use the word “sequence” in subse-

quent sections to refer to these amino acid sequences. All CFs with fewer than 5 unique

sequences are discarded. From these remaining CFs, their inferred naive sequences are used

for antibody sequence numbering with the ANARCI software [37] under the AHo numbering

scheme [21]. As a result of our restriction to non-indel sequences, all sequences within a given

CF have equal length; thus, the AHo numbering from the naive sequence can be positionally

transferred to all its CF-related read sequences. Finally, for each CF, the amino acid usage is

Fig 3. A stacked barplot of the estimated parameter values of α from the best regularized L2 model. For convenience, we

aggregate the estimates of α associated with X̂ vgene and X̂ vsubgrp (blue) and with X̂ naiveAA and X̂ neut (red). The black vertical lines

represent the boundaries between the different CDRs and FWKs.

https://doi.org/10.1371/journal.pcbi.1006388.g003
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extracted as a vector of counts at each AHo position. This overall dataset, which we call the

“aggregated” dataset, contains 518,174 sequences distributed over 31,893 CFs and is built as a

matrix of counts with rows denoting CFs and columns representing AHo positions and amino

acid identities. All data used to build this aggregated dataset is public and freely available. We

provide the data partitioned into CFs and numbered into AHo numbering for download on

Zenodo (https://doi.org/10.5281/zenodo.1289984).

Model fitting dataset. To fit our CF-specific substitution profile prediction model, it is

desirable to use the CFs from the aggregated dataset with the most sequence members so we

can train using the observed substitution profiles with the least amount of noise; on the other

hand, it is also desirable to extract CFs from as many donors as possible to avoid overfitting

towards a few similar donors. To achieve both goals, we pick 500 CFs as a “model fitting” data-

set as follows. We first exclude any CFs with less than 100 sequences from being eligible to be

picked. We then cycle through donors, each time picking the largest remaining eligible CF. If a

donor does not have any remaining eligible CFs, it is skipped. The process ends when 500 CFs

are found; all unpicked CFs are used as the “public” dataset.

In addition, we perform subsampling for each CF in the model fitting dataset; this is the

information from which we would like to predict the full profile. First, a single sequence is ran-

domly chosen from each CF, then partis is re-run using each of these subsampled

sequences to re-do the VDJ annotation and naive sequence inference. For some inferred naive

Fig 4. The model performance results across the different antibody regions on the model fitting test dataset and the Briggs

validation dataset. In these plots, we compare the performances from our best models to the baseline predictive performances using

only the input sequence (i.e. model predictions with all parameter values of α set to 0). The error bars show bootstrap standard

errors.

https://doi.org/10.1371/journal.pcbi.1006388.g004
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DNA sequences, a stop codon is incidentally present in the N/P nucleotides of the junction

region; these are considered spurious and replaced by the identically positioned codon from

the input sequence. We stress that the CF-specific annotation and naive sequence are inferred

solely based on the subsampled sequence itself and are not determined using information

from the other CF sequence members. Additionally, the parameters used within the partis
clustering and annotation procedure are derived from an external dataset. Once we finish the

partis inference process on the subsampled sequences, we construct the amino acid count

matrix for these same sequences; we denote these substitution profiles as the “subsampled”

profiles because they are subsampled from the “full” profiles in the model fitting dataset.

Simulation of neutral substitution profiles. For each of the 500 subsampled substitution

profiles, we also simulate a neutral substitution profile via a context-sensitive model. For each

subsampled sequence, we calculate its number of somatic hypermutations (SHMs) and intro-

duce that number of mutations sequentially into the inferred naive DNA sequence according

to the BCR-specific neutral substitution model S5F [20]. Once the last mutation is introduced,

the simulated DNA sequence is translated into an amino acid sequence and stored as a sample

of the neutral substitution process. This procedure is repeated 10,000 times and the count pro-

file aggregated over all the samples is referred to as the “neutral” profile.

External validation datasets. For validation, two test sets are generated: the first called

“Briggs”, is made from the healthy donor single cell droplet sequencing dataset described in

[12]. Briefly, the data is made by passing 3 million B cells into 6 emulsion pools, each droplet

with a unique barcode, and then reverse transcribing mRNA inside these droplets, attaching

both a droplet and a molecular barcode. After breaking the emulsion, cDNA is sequenced and

processed using UMI consensus building using pRESTO. The highest-quality UMI consensus

sequence is extracted from each drop and aggregated into the final heavy chain dataset, which

is then further partitioned into CFs using partis. Finally, this validation dataset is built up

in the same manner as the model fitting dataset, where the only difference is that we allow

smaller CFs to enter this dataset (minimum 28 sequences; Table 1) in order to increase the

number of extracted CFs to 100.

As all the above described datasets are repertoire wide datasets with hundreds of clonal fam-

ilies, we sought to find a suitable dataset with focus on a single large CF. For this, we created

the second test set curated from the “Liao” dataset which comes from a well studied broadly

neutralizing HIV clone, CH103, described in [38]. To prepare the raw heavy chain sequences

from [38], they were annotated and indel reversed by partis, following reconstruction of

the whole VDJ region by substituting ambiguous bases with bases from the partis-inferred

naive sequence if necessary. Finally, sequences unable to be annotated within the standard 149

Table 1. Number of donors (Ndonors), number of CFs (NCF), number of sequences from all CFs (Total Nseq), smallest CF size (Min Nseq), median CF size (Median

Nseq), and maximum CF size (Max Nseq).

Dataset Dataset summary statistics

Ndonors NCF Total Nseq Min Nseq Median Nseq Max Nseq

Aggregated 33 31,893 518,174 5 9 2,709

Model fitting 15 500 98,887 100 147 2,709

Public 33 31,393 419,287 5 8 104

Briggs 1 100 6,702 28 44 370

Liao 1 1 312 312 312 312

“Aggregated” is the base dataset aggregating RD1-6. “Model fitting” refers to the dataset with the 500 largest CFs from the “Aggregated” dataset. “Public” is the dataset

left after the “Model fitting” dataset is extracted from the “Aggregated” dataset. “Briggs” and “Liao” are the external validation datasets used for testing.

https://doi.org/10.1371/journal.pcbi.1006388.t001
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position AHo numbering scheme were filtered out, leaving 312 sequences (available on the

SPURF GitHub repository). For the Liao dataset, the prediction error is measured using all

sequences as input samples, contrary to the repertoire datasets where only a single input

sequence from each CF is used.

In summary, our datasets span 35 different donors, *32,000 clonal families and *500,000

sequences (Table 1). We note that the distribution of VDJ gene usage is non-uniform but that

the “Model fitting” and “Public” datasets have very similar V/J gene usage (S4 and S5 Figs). On

the other hand, the “Briggs” dataset does have a distinctly different V/J gene usage distribution

compared to the other datasets, which we attribute to the fact that it comes from a single

donor.

Input data tensor

Before we present our penalized tensor regression model, we first describe how the input data

for the model is constructed, building off the data descriptions in the last subsection. Through-

out the rest of this section, we assume the count matrices are normalized to frequencies and

reorganized into three-dimensional tensors (i.e. arrays) as follows. For any substitution profile

tensor T = {Ti,j,k}, let Ti,j,k denote the frequency of the kth amino acid at the jth AHo position

for the ith CF; we represent the subsampled, full, and public substitution profile tensors as X,

Y, and Z, respectively. Our goal is to use the subsampled profiles X to predict the correspond-

ing full substitution profiles Y (i.e. we want to construct a function F(X) such that F(X)� Y).

We incorporate information from the public dataset Z to enhance these predictions. In addi-

tion to the subsampled profiles, we use other types of substitution profiles within F(X):

1. Public substitution profiles segmented by the inferred V-subgroup label (X̂vsubgrp);

2. Public substitution profiles segmented by the inferred V-gene label (X̂vgene);

3. Inferred naive sequence “substitution profiles” (X̂naiveAA);

4. Public substitution profiles segmented by the inferred naive sequence (X̂naiveAA� clust);

5. Public substitution profiles segmented by the original frequency profiles (X̂clust);

6. Neutral substitution profiles (X̂neut).

To compute the external profiles in X̂vsubgrp (resp. X̂vgene), we cluster the public dataset Z by

averaging its CF-specific substitution profiles according to the partis-inferred [36] IMGT

defined [39] V-subgroup (resp. V-gene) labels and then assign each row in X to a V-subgroup

(resp. V-gene) cluster profile according to its V-subgroup (resp. V-gene) identity. We obtain

the second set of profiles X̂naiveAA by using the partis-inferred naive sequences as substitu-

tion profiles (these profiles contain zeros and ones because they are based on one sequence

only); we re-emphasize that these naive sequences are inferred based only on the correspond-

ing subsampled sequences in X. We cluster the public dataset Z once more by running K-

means clustering based on the inferred naive sequences in Z and obtain our third set of substi-

tution profiles X̂naiveAA� clust by assigning each CF in X to its closest cluster centroid. The addi-

tional cluster profiles X̂clust are obtained similarly as above, except in this case, we run K-means

clustering based on the original frequency profiles in Z. The K-means clustering procedure is

run over a grid of cluster sizes ranging from 2 to 120 using the algorithm described by [40]

with the standard euclidean distance metric. Lastly, the tensor X̂neut contains the simulated S5F

neutral substitution profiles, which are described in the previous subsection.
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The frequency tensors X̂vsubgrp and X̂vgene are important to include in our analysis because

these profiles capture substitution information at the level of the V subgroup (V1, V2, . . .) and

V gene (V1-5, V2-2, . . .), respectively; this is similar to the types of profiles obtained in [16].

Even though we expect the X̂vsubgrp and X̂vgene tensors to be correlated, we are interested in see-

ing whether either of these profiles will dominate the other in our regression model. As

described in the introduction, most germinal center lineages do not accumulate many muta-

tions relative to the naive sequence so substitution profiles based solely on the naive sequence

(like X̂naiveAA) may be informative for predicting the mutational patterns at conserved residue

positions. In addition, we believe that the X̂naiveAA� clust cluster profiles are useful as the naive

sequence can greatly influence the pattern of substitutions in a CF due to local sequence con-

text. Unlike the X̂vsubgrp and X̂vgene substitution profiles, which are based on IMGT labeling

schemes, the profiles in X̂naiveAA� clust (and X̂clust) are determined by a data-driven clustering pro-

cedure, which allows us to group CFs in Z in a more intricate fashion. The simulated neutral

substitution profiles X̂neut are able to provide some insight into the CF-specific SHM processes

without the corresponding clonal selection effects.

To condense our model presentation, we introduce a four-dimensional tensor X� that

combines as many of the input profiles mentioned previously as we would like, where p, the

size of the fourth tensor dimension, represents the number of external profiles used. We define

X� � fX�i;j;k;lg to be the input data tensor that incorporates all the external information we

want to use in our substitution profile predictions; note that i 2 {1, . . ., NCF} (NCF CFs in

the tensors), j 2 {1, . . ., 149} (149 AHo positions), k 2 {1, . . ., 20} (20 amino acids), and

l 2 {1, . . ., p} (p external profiles). Each element X�i;j;k;l represents an amino acid frequency as

described above for Ti,j,k; for instance, X�
5;130;1;4

represents the amino acid frequency of the first

amino acid (i.e. alanine) at the 130th AHo position for the 5th CF in the 4th profile in the ten-

sor. In addition, we use the indexing symbol • to extract all elements of a particular array

dimension of a tensor (i.e. X�
10;50;�;2

specifies the full substitution profile of the 20 amino acids

at the 50th AHo position for the 10th CF in the 2nd profile in the tensor). This setup allows us

to easily include as many external profiles as we would like.

Model formulation

Given the subsampled profiles X and all the external profiles X�, we compute a weighted aver-

age to form an estimator of Y. Our independent-across-sites model F(X) = [f(X•,1,•), . . .,

f(X•,149,•)] is specified as follows:

f ðX�;j;�Þ � f ðX�;j;�;αj;�Þ ¼
Xp

l¼1

aj;l � X
�

�;j;�;l þ ð1 �
Xp

l¼1

aj;lÞ � X�;j;�; ð1Þ

where α = {αj, l}; 0� αj, l� 1; 0 �
Pp

l¼1
aj;l � 1 represents the site-specific weights of the dif-

ferent external profiles for j = 1, . . ., 149 and l = 1, . . ., p. Although we consider f to be a func-

tion of the per-site data X•,j,•, the frequencies X�
�;j;�;l are computed using sequence-level, site-

dependent information. With 149 × p parameter values of α, this is a highly parameterized

model so we include regularization terms to prevent overfitting and obtain sparse, interpret-

able parameter estimates. Specifically, we use standard and spatial (fused) lasso penalties to

achieve these goals.

Standard lasso penalties shrink individual parameters to zero and are commonly used to

obtain sparse solutions in regression problems [23]. It has been shown that regression models

using standard lasso penalties provide more accurate predictions than models using best subset
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selection penalties when there is a low signal-to-noise ratio [41], which probably holds true in

our problem as well. In addition, standard lasso penalties are convex functions, which is

important in a regression problem as it guarantees that a local minimum is indeed a unique

global solution [42].

On the other hand, fused lasso penalties shrink the differences between parameters to zero

and are useful in regression problems with spatially-related covariates [24]. We believe that the

α parameters have a spatial relationship (i.e. adjacent residues are under similar constraints);

for instance, given that the mutations in the framework regions are largely related to antibody

stability, it makes sense that we would weight external profile information similarly in those

regions. The fusion penalty in this setting enforces smoothness of the α trend across the AHo

positions. For example, if we penalize first-order differences of the α trend, the fitting proce-

dure will necessarily favor trends that have no slope (i.e. that are piecewise constant). We can

obtain more flexible piecewise polynomial α trends by penalizing higher-order successive dif-

ferences of α [25].

In our modeling framework, the standard lasso penalty is represented as
P149

j¼1

Pp
l¼1
jaj;lj ¼

kαk1 and the fused lasso penalty is specified by
Pp

l¼1
krdðα�;lÞk1, where k�kq denotes the Lq

norm andrd(�) represents the dth difference operator. Thisrd(�) operator accepts a vector v

as input (call its length nv) and outputs a length-(nv − d) vector that results from successively

differencing adjacent elements d times. In the special case when d = 1, the fusion penalty

becomes
Pp

l¼1
k r1ðα�;lÞk1 ¼

P149

j¼2

Pp
l¼1
jaj;l � aj� 1;lj; the |αj, l − αj−1,l| terms can be interpreted

as first-order discrete derivatives.

Our unpenalized objective function can be written as:

Lα
2
� Lα

2
ðY; FðXÞÞ ¼

1

149 � NCF

X149

j¼1

jjY�;j;� � f ðX�;j;�;αj;�Þjj
2

2
; ð2Þ

where, as in the last subsection, NCF denotes the number of CFs in X and Y; we refer to this

objective as “L2 Error”. Our penalized estimation problem is defined in the following manner:

α̂ ¼ argmin
α

Lα
2
ðY; FðXÞÞ þ l1k α k1 þ l2

Xp

l¼1

k rdðα�;lÞ k1;

s:t: 0 � aj;l � 1; 0 �
Xp

l¼1

aj;l � 1; 8j; l;

ð3Þ

where λ1, λ2� 0 and d 2 N signify tuning parameters. The differencing order d is used to spec-

ify a given level of smoothness in the spatial α trend estimates because the
Pp

l¼1
krdðα�;lÞk1

term in the above minimization problem encourages α trends that have dth order discrete

derivatives close to 0 (i.e. that are piecewise polynomials of order d − 1). In addition, careful

selection of λ1 and λ2 is required to obtain an adequate model fit. Unfortunately, this is a con-

strained optimization problem with a multivariate output and there are not any obvious ways

to minimize such an objective without resorting to general-purpose optimizers. Therefore, in

all our experiments, we use the L-BFGS-B algorithm [43] to fit the above model. We note that

the above penalized optimization problem is (non-strictly) convex so any local minimum is, in

fact, a global solution too.

Jaccard similarity

While the model described above has computational and statistical appeal, in engineering

applications it is mostly interesting to know the high-frequency amino acid predictions;
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however, our penalized objective function focuses attention on the complete substitution pro-

files and not exclusively the high-frequency amino acids. To provide a metric with exclusive

focus on high-frequency amino acids, we utilize the Jaccard similarity metric, which can be

used to measure differences between predicted and observed sets. Sets of high-frequency

amino acids are defined at each position by a minimum frequency cutoff t; Jaccard similarities

are then computed between the observed and predicted sets and averaged across each CF and

AHo position in the dataset.

The Jaccard similarity metric [22] measures the similarity between two finite sets. Specifi-

cally, for any sets A and B, the similarity metric J(A, B) is defined as the ratio of the intersection

size |A \ B| to the union size |A [ B|. It has these properties: 0� J(A, B)� 1; J(A, B) = 1 when

A = B and J(A, B) = 0 when A \ B = ; (empty set). To formally establish our use of Jaccard sim-

ilarity, we define the following notation. Let Yi;j ¼ fy 2 Yi;j;� j y � tg represent the set of

amino acid frequencies at AHo position j for CF i that has observed frequencies greater than

or equal to the cutoff t and denote Y � fYi;jg for i = 1, . . ., NCF and j = 1, . . ., 149. We define

F̂ X
i;j and F̂ X � fF̂ X

i;jg to be the analogous quantities for the predicted amino acid frequencies.

If we let AðY0Þ denote a function that accepts as input an amino acid frequency set Y 0 (i.e. Yi;j

or F̂ X
i;j) and outputs the corresponding set of amino acid identities, then our Jaccard similarity

objective can be written as:

Jαt � Jαt ðY; FðXÞÞ ¼
1

149 � NCF

XNCF

i¼1

X149

j¼1

J AðYi;jÞ;AðF̂
X
i;jÞ

� �
; ð4Þ

which is referred to as the “Jaccard Similarity” objective. We can define a penalized Jaccard

estimation problem by substituting � Jαt ðY; FðXÞÞ for Lα
2
ðY; FðXÞÞ in Eq (3). Jaccard similarity

optimization is difficult using derivative-based optimization because of its discrete nature, so

we use a smooth approximation of the aforementioned metric for model fitting in our experi-

ments (see S2 Text for detailed explanation).

Forward stepwise selection

We devise a forward stepwise selection procedure to help us determine the combination of

external profiles that best predict the outcome of interest, which can be penalized L2 Error or

Jaccard Similarity. In this procedure, we initially try all possible external profiles in the model

separately and determine the best fit using 5-fold cross-validation. We cache the best model

from the initial step and continue fitting models with two external profiles; the first external

profile is fixed to be the best profile from the previous round and the second profile can be any

possible remaining external profile. We continue this iterative scheme until we reach a pre-

specified limit on the number of external profiles allowed in X�. It is important to note that to

ease computation, we perform forward selection using the unpenalized variants of our models.

Even though this procedure is greedy and not as thorough as all-subsets selection, we believe

this technique provides the best trade-off between accuracy and efficiency. We provide the

implementation of our stepwise procedures at https://github.com/krdav/SPURF.

Inference pipeline

We apply a 80%/20% training/test split to the model fitting dataset described above. We first

run the forward stepwise selection procedure with a maximum profile limit of five to approxi-

mately determine the best profile groupings starting with a single profile and ending with a

group of five profiles. Using the profile groupings from the previous step, we fit the penalized
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version of the model and use 5-fold cross-validation to obtain estimates of the relevant tuning

parameters, which consist of the lasso penalty weights λ1, λ2 and the differencing order d; note

that we report unpenalized performance estimates when we run cross-validation. After we

determine the optimal tuning parameters via cross-validation, we fit the penalized model

using the entire training portion of the model fitting dataset and the best tuning parameters

and cache the resulting parameter estimates of α. Once we obtain the estimates of α from the

penalized model, we can use them to compute the chosen performance metric on the testing

portion of the model fitting dataset and any other validation dataset of interest.

Results

As described in the methods (the Inference Pipeline subsection), we first need to infer the best

profile groupings to use in penalized model fitting. To determine these groupings, we run the

forward stepwise selection procedure for both the L2 error function and the smoothed Jaccard

objective function with a frequency cutoff t = 0.2 (Table 2).

For both objective functions, the forward selection path is the same until

X� ¼ fX̂naiveAA; X̂vgene; X̂neut; X̂vsubgrpg. For the L2 loss function, model performance is the best

when X� ¼ fX̂naiveAA; X̂vgene; X̂neut; X̂vsubgrpg even though there are diminishing returns for using

profiles beyond X� ¼ fX̂naiveAA; X̂vgeneg. In a similar fashion, the Jaccard similarity estimates

tend to be highest when X� ¼ fX̂naiveAA; X̂vgeneg, despite the almost identical model perfor-

mance from just using X� ¼ fX̂naiveAAg. For the subsequent penalized model fitting step, we

choose to evaluate the fX̂naiveAA; X̂vgene; X̂neutg and fX̂naiveAA; X̂vgene; X̂neut; X̂vsubgrpg profile group-

ings with the L2 objective and fX̂naiveAAg and fX̂naiveAA; X̂vgeneg with the smoothed Jaccard simi-

larity objective. The inclusion of the X̂vgene tensor puts a notable restriction on the model; no

prediction can be made for a sequence annotated to a V gene which has not been observed in

our Public dataset.

We now use the approximate profile groupings obtained from the forward stepwise selec-

tion procedure to fit our regularized models. The penalized estimation problem has additional

tuning parameters that must be determined. In our experiments, we cross-validate over pen-

alty parameters; λ1, λ2 = 10−7, 5.05 × 10−6, 10−5; the differencing order, d = 1, 2, 3; and the two

profile groupings specified above for both the L2 error and Jaccard similarity objectives. The

best regularized L2 model uses X� ¼ fX̂naiveAA; X̂vgene; X̂neut; X̂vsubgrpg, while the best regularized

Jaccard model utilizes X� ¼ fX̂naiveAAg (S1 Table and S7 Fig). In summary, using many exter-

nal profiles is important for predicting the complete substitution profiles, while the inferred

Table 2. Results of forward stepwise selection on our L2 and smooth Jaccard objective functions.

Objective Function Unregularized CV

L2 Error ⌀ X̂ naiveAA X̂ vgene X̂ neut X̂ vsubgrp X̂ naiveAA� clust� 5

0.110 0.0542 0.0459 0.0456 0.0455 0.0456

Jaccard Similarity

(t = 0.2)

⌀ X̂ naiveAA X̂ vgene X̂ neut X̂ vsubgrp X̂ naiveAA� clust� 85

0.9170 0.9322 0.9324 0.9323 0.9319 0.9318

The performance estimates shown in the table are obtained using 5-fold cross-validation. Going from left to right, each column represents the best profile addition into

X� with the associated CV performance estimate. For Jaccard, we fit using the smooth Jaccard objective, but report exact Jaccard similarity estimates, both using

frequency cutoff t = 0.2. Note that we fix the prespecified limit on the number of external profiles allowed in X� to be 5.⌀ represents the model using only the input

sequence.

https://doi.org/10.1371/journal.pcbi.1006388.t002

Predicting B cell receptor substitution profiles

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006388 October 17, 2018 14 / 24

https://doi.org/10.1371/journal.pcbi.1006388.t002
https://doi.org/10.1371/journal.pcbi.1006388


naive sequence is the only external profile deemed useful for our model to accurately predict

the observed high-frequency amino acids (where high-frequency is defined by being at least

20% of the observed amino acids).

Our optimization times for both L2 loss and Jaccard Similarity on the 500 CFs ranged from

12 to 15 minutes. Our optimization is based on evaluating the objective function at different

points and each objective function call has linear complexity in the number of CFs so increas-

ing the number of CFs should result, on average, in a linear increase in time complexity.

Computational time invested in pre-processing is one-time and negligible.

In addition to predictive performance, we are also interested in understanding how the esti-

mated parameter weights from our best regularized L2 model vary across the different external

profiles in X� and antibody regions. For convenience, we aggregate the estimates of α associ-

ated with the V gene (X̂vgene and X̂vsubgrp) and with the full naive sequence (X̂naiveAA and X̂neut) as

these sets of profiles are intuitively similar (Fig 3); the V-gene and V-subgroup profiles are

both derived by averaging over different IMGT V germline gene labeling schemes and the sim-

ulated S5F neutral substitution profiles originate from the CF-specific inferred naive sequence.

Antibody heavy chain (and light chain) sequences can be partitioned into framework regions

(FWKs) and complementarity-determining regions (CDRs) by the AHo definitions [21]; the

BCR binding affinity is largely determined by the CDRs (especially by the heavy chain CDR3),

while the FWKs encode the structural constraints of the BCR and thus can be strongly con-

served [44]. The X̂vgene and X̂vsubgrp profiles are extremely important for prediction at

FWK1-FWK3, which is not surprising as V germline genes extend from the FWK1 to the

beginning of the CDR3. In contrast, the X̂naiveAA and X̂neut external profiles are heavily weighted

in the CDR3 and FWK4; this result is also intuitive because the CDR3 is highly variable across

CFs as it is a strong determinant of antigen-binding specificity, the X̂naiveAA and X̂neut profiles

are our only CF-specific sources of external information, and the V gene specific profiles can-

not provide any information beyond the end of the V gene. Furthermore, the FWKs have, on

average, more support from the external profiles compared to the CDRs, which is consistent

with our understanding of antibody biochemistry as the FWKs are structurally constrained

and thus need to be more conserved compared to the more flexible CDRs. We note that the

middle of the CDR3 has artificially low estimates of α because most of the AHo positions in

the CDR3 have only a few or no defined sequence positions in the dataset (S1 Fig).

While our penalized modeling framework allows for easy interpretation of the parameter

estimates, ultimately the quality of the α estimates is determined by their performance on

independent test datasets. Specifically, we compute the L2 error (Lα
2
) and Jaccard similarity

(Jα
0:2

) between the predicted and observed profiles associated with both the testing portion of

the model fitting dataset and the Briggs validation dataset (Table 3); we remind readers that

Table 3. The model performance using either L2 error or Jaccard similarity resulting from predicting on independent datasets.

Objective Function Model Type Objective Function Values

Model fitting: test Briggs Liao

L2 Error Best 0.0492 0.0511 0.0991

Baseline 0.114 0.129 0.183

Jaccard Similarity

(t = 0.2)

Best 0.9289 0.9227 0.8516

Baseline 0.9156 0.9053 0.8439

We provide results for the testing portion of the model fitting dataset, the Briggs validation dataset, and the Liao dataset. Note that the term “baseline” refers to

predictions made using only the input sequence (i.e. model predictions with all parameter values of α set to 0). Lower L2 error and higher Jaccard Similarity mean

higher accuracy.

https://doi.org/10.1371/journal.pcbi.1006388.t003
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these predictions are made based on the subsampled (i.e. single-sequence) profiles in the afore-

mentioned datasets and compared to the corresponding actual amino acid frequencies

through the Lα
2

and Jα
0:2

performance metrics (Fig 2). Additionally, we compute the L2 error

and Jaccard similarity on all sequences in the Liao dataset, comparing the baseline and SPURF

predictions to the full amino acid frequencies (Table 3, S2 Table, and S6 Fig). Our model

improves upon the “baseline” prediction performance, where “baseline” refers to predictions

made using only the input sequence (i.e. model predictions with all parameter values of α set

to 0).

In addition, we also want to know how well our model performs in the different antibody

regions (i.e. FWKs/CDRs). To answer this question, we compute the same metrics as shown in

Table 3 for the different FWKs and CDRs (Fig 4). To provide some insight into the variability

Table 4. Mode prediction results from both the testing portion of the model fitting dataset and the Briggs dataset fitted using the L2 objective function. For each CF

and AHo position in a given dataset, we determine whether the predicted mode (i.e. highest-frequency amino acid) from our best model is the same as the actual mode.

Results are aggregated based on whether or not the input sequence has the correct mode. At the left side of the vertical bar (j) is the count for the germline predicted modes

(i.e. situations when the predicted amino acid mode is the naive sequence amino acid) and at the right side is the count for the non-germline predicted modes (vice-versa).

germline j non-germline Correct SPURF Mode Prediction? germline j non-germline Correct SPURF Mode Prediction?

Yes No Yes No

Is input amino

acid the mode?

Yes 10,473 j 465 156 j 0 Is input amino

acid the mode?

Yes 10,541 j 376 178 j 1

No 349 j 0 170 j 395 No 474 j 0 196 j 393

(a) Model fitting: test dataset (b) Briggs dataset

https://doi.org/10.1371/journal.pcbi.1006388.t004

Fig 5. Positional profile weights α mapped to an antibody protein structure (PDB: 5X8L). The antigen (PD-L1) appears as a

purple surface at the top of the images, the light chain appears in white cartoon, and the heavy chain is displayed using a blue to red

color gradient; the grey dashed lines mark the CDR loops. The color gradient represents the possible values of profile weights in α
and goes from blue at a zero weight to red at the maximum weight for the profile. The display in panels B and C is rotated relative to

panel A to better show results for CDR1 and CDR3; as a consequence, the CDR2 loop is hidden behind the CDR1. Panel A shows

that the input sequence has high weight at the CDR1 and CDR2, panel B illustrates that the naive sequence and the neutral

substitution profile have high weight at the CDR3 and FWK4, and panel C demonstrates that the V gene and V subgroup profiles are

highly weighted in parts of the CDR1 but more generally in the FWKs, especially at the heavy and light chain interface.

https://doi.org/10.1371/journal.pcbi.1006388.g005
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of the model performance estimates in the different regions, we calculate bootstrap standard

errors, which are expressed as error bars in Fig 4.

We see that our substitution profile prediction model performs well in the CDRs relative to

the baseline model. This is an important finding because antigen binding is largely determined

by the sequence segments in the CDRs, and especially CDR3. In fact, our models seem to pro-

vide the greatest improvement in performance in the CDR3, which is also the hardest region

to predict because it has the highest amount of sequence variability. Another important take-

away is that the prediction performance is better in FWKs than CDRs, which is presumably

because FWKs have lower variance and are more conserved compared to CDRs. In summary,

our prediction models are able to systematically integrate different data sources to make better

predictions of the per-site amino acid compositions in CFs.

Our model also improves the prediction of the highest-frequency amino acid at a given

position, referred to here as the mode (Table 4). Indeed, the counts in the bottom-left cells

(cases where the model is correctly predicting the actual mode given an incorrect input

sequence amino acid) are larger than the counts in the top-right cells (vice-versa). In addition,

the input sequence amino acids that are not the true modes but correctly predicted by the

model to be the actual modes are all germline reversions, which is consistent with the X̂naiveAA

profile being heavily weighted in our prediction model (Fig 3). In the opposite case, where the

input sequence amino acid is correct but the model prediction is wrong, all the counts consist

of germline predictions as well. In summary, many of the mode predictions are just germline

reversions and, in fact, most of these predictions are to the true modes (i.e. the actual highest-

frequency amino acids); however, most of the input sequence amino acids are the true modes

already (� 99%).

The in-sample and out-of-sample prediction performances demonstrate that our SPURF

inference pipeline is able to obtain accurate and robust estimates of α. Specifically, prediction

performance is consistently similar but slightly worse when comparing the Briggs dataset to

the model fitting test set, which likely reflects two things: 1) the median number of sequences

per CF in the Briggs set is lower than in the test set (Tables 1 and 2) the model fitting dataset is

sampled from the same donors as the dataset for cross-validation. Regardless, the differences

between the test and Briggs datasets are small, which provides evidence in support of our

model performance estimates. We also note that the test on the Liao data yielded results

strongly favoring SPURF over baseline. Since the Liao dataset carries a high mutation fre-

quency compared to the average CF of the other dataset it is (as expected) harder to predict the

amino acid frequency, which is reflected in the magnitude of both the L2 error and Jaccard

similarity for all predictions. Subjective assessments of the inferred substitution profiles coin-

cide with our description of the L2 error metric, namely that fine-grained amino acid substitu-

tion information is captured by SPURF (S2 Fig).

The SPURF model setup produces interpretable and meaningful profile weights (Fig 5; per-

profile decomposition in S3 Fig). The input sequence is strongly weighted in the CDRs, indi-

cating that substitutions in these regions are both specific and conserved within the CF and,

therefore, cannot easily utilize the information from other CFs. The weight on the V gene spe-

cific profiles spikes at CDR1 and at the end of FWK3, which is at the heavy and light chain

interface. We note that, as expected, the weight on the V gene specific profiles is minimal

downstream of FWK3 as this is the end of the V gene and the beginning of the V-D junction

region. As such, nothing prevents the V gene profiles from having a high weight downstream

of FWK3, but the model framework has chosen these meaningful weights without any manual

interference. We ascribe this shrinkage feature of the weights to the standard lasso penalty

built into SPURF. The profiles that are derived from the inferred naive sequence (X̂naiveAA,
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X̂neut) take up the missing weight of the V gene profiles as these are highly weighted in the

CDR3 and FWK4.

Discussion

In this paper, we present SPURF, a statistical framework for predicting CF-specific amino acid

frequency profiles from single input BCR sequences by leveraging multiple sources of external

information. We use standard and spatial lasso penalties to prevent our model from overfitting

and obtain sparse, interpretable estimates of the profile weights, expressed by an α matrix. The

spatial lasso penalizes extreme differences between spatially-adjacent profile weights, while the

standard lasso penalties promote simpler models by shrinking parameter values in α to 0 if the

associated external profiles are not useful predictors. We show that our method not only per-

forms well on the held-out (test) portion of our model fitting dataset but also provides accurate

predictions on the Briggs and Liao external validation datasets. Indeed, we did not obtain the

Briggs or Liao validation datasets until after we ran our model inference pipeline on the model

fitting dataset.

Using two different objective functions we fitted SPURF to predict the frequencies of all

amino acids (L2 objective) and only the>20% frequency amino acids (Jaccard similarity objec-

tive). With the L2 objective we obtained a large difference (0.114 to 0.0492) between the base-

line model and SPURF, which was confirmed using repertoire wide data from [12] and single

clone data from [38] (Fig 4 and S6 Fig). With the Jaccard similarity objective improvements

over baseline were more modest (0.9156 to 0.9289) showing that SPURF is strongest at predict-

ing the full spectrum of amino acid frequencies (Table 3). Still, fitted using the L2 objective,

SPURF can recover the highest frequency amino acid of a clonal family (mode prediction)

much better than a random sequence from the corresponding clonal family (Table 4), showing

the versatility of the L2 objective.

Our work can be seen as a prediction-based extension of the work of [16] and [19]. This

previous work illustrates that amino acid substitution profiles differ between germline genes, a

finding supported by the context specificity of somatic hypermutation [20]. In our work, we

provide a prediction algorithm that takes a single BCR sequence from a clonal family as input

and outputs a CF-specific substitution profile estimate for the whole VDJ region. As SPURF

relies on large CFs to establish a ground truth substitution profile it is possible that certain

types of rare clones or V/J gene combinations are not included in our training/test data. For

such rare events the error estimates reported cannot be reliably used, however, we note that

our training/test data cover a broad set of V/J combinations (S4 Fig) and that the substitution

profile of a rare, but expanded, broadly HIV neutralizing clone is well predicted (S6 Fig).

We believe that this work will be a useful tool for antibody engineering in situations when it

is important to maintain antibody binding affinity to the same epitope. The predicted profiles

from SPURF can be used to choose the sites that are most tolerable for mutagenesis and the

substitutions that are most likely to maintain binding specificity; as such, this information can

be used to engineer antibodies with better biophysical properties.

The seven datasets utilized in the present study were all derived from different laboratories

employing varying strategies to obtain their processed data which served as input for SPURF.

We carefully examined available resources and selected the datasets to be used in our model.

However, our approach would greatly benefit from a large and uniformly accessible repository

of Rep-seq datasets. For this to happen, data has to be discoverable and usable, including hav-

ing all information about the study and data processing available together with the raw and

processed data in publicly accessible data repositories. Recently, the Adaptive Immune Recep-

tor Repertoire (AIRR) community [45] proposed MiAIRR [46], a set of minimal standard
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elements to be published alongside the raw and processed data. Future Rep-seq studies follow-

ing this initiative and making their data available under the MiAIRR-standard will facilitate

the development of SPURF and future approaches with similar goals.

To our knowledge, SPURF is the first prediction algorithm for B cell CF substitution pro-

files. There are many possible extensions; in our SPURF inference pipeline, we subsample sin-

gle BCR sequences from CFs to use as model input; unfortunately, this means that our

modeling analysis is conditional on a dataset that does not account for the variability associ-

ated with the subsampling process. One obvious means of fixing the above problem is to draw

multiple subsamples from each CF and treat these multiple “observations” per CF within a

dataset as a clustered data or weighted least squares problem. In addition, our model fitting

dataset consists of only the largest CFs because we need accurate CF-specific substitution pro-

file estimates to serve as the ground truth. This non-random sampling technique could poten-

tially bias our analysis results; however, this appears unlikely given our model’s performance

on the external Briggs and Liao validation datasets. Furthermore, our approach models per-

site amino acid composition in a CF and accounts for interactions between sites only through

the fusion lasso penalties. It is well known from other protein studies that spatially-adjacent

amino acid residues evolve jointly [47, 48], presumably to maintain structural stability, or in

the case of antibodies to stabilize the interface between heavy and light chains [49]. In the con-

text of antibodies, residues in the FWKs have the potential to co-evolve (e.g. FWK residues

flanking the CDRs could co-evolve to stabilize the stem leading to the more flexible CDRs).

Thus, figuring out how to incorporate more detailed interaction effects in our model is an

important avenue for future research.
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S1 Text. Model interpretation. Details of the penalized regression model.
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S2 Text. Smoothed Jaccard similarity. Explanation of the continuous approximation of the

Jaccard similarity used in the optimization.
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S3 Text. Supporting information references. References used in the Supporting Information

sections.
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S1 Table. The results from fitting the regularized models using 5-fold cross-validation.

We present the optimal tuning parameters selected from λ1, λ2 = 10−7, 5.05 × 10−6, 10−5 and

d = 1, 2, 3 and show the associated cross-validated performance estimates. Note that the

possible choices of X� for the L2 error metric include the fX̂naiveAA; X̂vgene; X̂neutg and

fX̂naiveAA; X̂vgene; X̂neut; X̂vsubgrpg groupings, while the fX̂naiveAAg and fX̂naiveAA; X̂vgeneg groupings

are the possible X� choices for the smoothed Jaccard similarity objective.

(TIFF)

S2 Table. The results from fitting the regularized models using 5-fold cross-validation.

The unregularized and regularized model performance using either L2 Error or Jaccard Similarity

resulting from predicting on independent datasets. We provide results for the testing portion of

the model fitting dataset, the Briggs validation dataset, and the Liao dataset. Note that the term

“baseline” refers to predictions made using only the input sequence (i.e. model predictions with

all parameter values of α set to 0) and lower L2 error and higher Jaccard Similarity is preferred.

(TIFF)
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S1 Fig. A stacked barplot of the estimated parameter values of α from the best regularized

L2 model. The black vertical lines represent the boundaries between the different CDRs and

FWKs. Due to the AHo antibody numbering used [21], some positions are assigned to a gap

character (an AHo position that does not map to a sequence position). The percentage of CFs

that are not assigned to gap characters is shown in the bottom plot for each AHo position. The

input sequence is heavily weighted in regions with high gap percentages because of the stan-

dard lasso penalty included in our model. The conserved Tryptophan amino acid is observed

as a spike in the X̂vgene and X̂naiveAA profile weights following the end of CDR1 (position 43 in

the AHo scheme). The conserved Cysteine amino acid that defines the beginning of CDR3 is

not readily observed, presumably because this is invariant in all profiles. Generally, the input

sequence has less weight in CDR3 and FWK4, which indicates that there is some conservation

during affinity maturation. Beyond CDR3 and FWK4, there is a general trend that the input

sequence has higher weight in the CDRs than in the FWKs, which suggests that there is a

higher level of conservation in the FWKs than in the CDRs during affinity maturation. A more

surprising observation is the spike in the X̂vgene, X̂vsubgrp, and X̂neut weights at AHo position 83

near the beginning of FWK3 (the “outer” loop); this could indicate a conserved position not

previously described.

(TIFF)

S2 Fig. A logo plot displaying the input sequence, predicted profile, and true profile

(ordered from top to bottom) for an arbitrary CF in the Briggs dataset. The logos are plot-

ted using AHo numbers (1-149) and AHo positions undefined in the sequence are shown as

empty columns. The predicted profile (middle) captures much of the amino acid composition

information associated with the full profile (bottom).

(TIFF)

S3 Fig. Positional profile weights α mapped to an antibody protein structure (PDB: 5X8L).

The antigen (PD-L1) appears as a purple surface at the top of the images, the light chain

appears in yellow cartoon, and the heavy chain is displayed using a blue to red color gradient.

The color gradient represents the possible values of profile weights in α and goes from blue at

a zero weight to red at the maximum weight for the profile. The black dashed lines mark the

CDR loops; note that the CDR2 loop is hidden behind the CDR1. The colored balls represent

the AHo-defined FWK/CDR boundaries. The black arrows indicate regions of high profile

weight. The X̂naiveAA profile is heavily weighted in CDR3 and FWK4. The X̂vgene profile weight-

ing is fairly even from FWK1 through FWK3; it spikes slightly in CDR1 and completely disap-

pears beyond FWK3, which is expected as the V-D junction region starts past the end of

FWK3. The X̂neut profile weighting is fairly even across sites but spikes near the beginning of

FWK3 (the “outer” loop). The X̂vsubgrp profile weighting is distributed similarly to that of the

X̂vgene profile with the exception of a spike at the end of FWK3 (i.e. at the heavy and light chain

interface).

(TIFF)

S4 Fig. Distribution of per-clonal-family V/J gene combination usage in the different data-

set partitions. Minimum frequency of 1% in either partition used as a cutoff for inclusion.

(TIFF)

S5 Fig. Distribution of per-clonal-family V/J subgroup combination usage in the different

dataset partitions. Minimum frequency of 1% in either partition used as a cutoff for inclusion.

(TIFF)
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S6 Fig. Two histograms showing L2 loss estimates based on model predictions from the

baseline model and best model for the Liao dataset [38]. In this analysis, we made model

predictions using each of the 312 sequences as the input sequence for our model.

(TIFF)

S7 Fig. A heatmap showing 5-fold cross-validated L2 loss results from fitting the regular-

ized models for the fX̂naiveAA; X̂vgene; X̂neut; X̂vsubgrpg profile grouping. We present unregular-

ized L2 loss estimates for tuning parameters λ1, λ2 = 10−7, 5.05 × 10−6, 10−5 and the order of

differencing, d = 1, 2, 3, and mark the optimal tuning parameters found from our experiments.

(TIFF)

S8 Fig. A plot of the function f�(ai, 0.2) against ai 2 [0, 1] for various values of �. As � gets

larger, f�(ai, 0.2) tends to the indicator function f(ai, 0.2).

(TIFF)
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