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Abstract: As a novel cell type from eight-cell-stage embryos, extended pluripotent stem cells (EPSCs)
are known for diverse differentiation potency in both extraembryonic and embryonic lineages, sug-
gesting new possibilities as a developmental research model. Although various features of EPSCs
have been defined, their ability to directly transfer extended pluripotency to differentiated somatic
cells by cell fusion remains to be elucidated. Here, we derived EPSCs from eight-cell mouse embryos
and confirmed their extended pluripotency at the molecular level and extraembryonic differentiation
ability. Then, they were fused with OG2+/− ROSA+/− neural stem cells (NSCs) by the polyethylene-
glycol (PEG)-mediated method and further analyzed. The resulting fused hybrid cells exhibited
pluripotential markers with upregulated EPSC-specific gene expression. Furthermore, the hybrid
cells contributed to the extraembryonic and embryonic lineages in vivo and in vitro. RNA sequencing
analysis confirmed that the hybrid cells showed distinct global expression patterns resembling EPSCs
without parental expression of NSC markers, indicating the complete acquisition of extended pluripo-
tency and the erasure of the somatic memory of NSCs. Furthermore, ultrastructural observation
and metabolic analysis confirmed that the hybrid cells rearranged the mitochondrial morphology
and bivalent metabolic profile to those of EPSCs. In conclusion, the extended pluripotency of EPSCs
could be transferred to somatic cells through fusion-induced reprogramming.

Keywords: cell fusion reprogramming; extended pluripotency; totipotency; metabolism;
embryonic; extraembryonic

1. Introduction

Cells are classified according to their potency, such as totipotency, pluripotency, multi-
potency, unipotency, and nullipotency. Totipotency, the ability to give rise to embryonic
and extraembryonic lineages from a single cell, is possessed only by the fertilized one-cell
embryo and 2- to 4-cell blastomere [1,2]. Therefore, totipotency exists transiently and cannot
be maintained in stem cells in vitro. Pluripotent stem cells (PSCs) can be derived from
the inner cell mass (ICM) of the blastocyst in vitro; these are called embryonic stem cells
(ESCs) and retain the differentiation capacity shown in the epiblast of peri-implantation
embryos [3,4]. PSCs can also be derived from reprogramming processes such as nuclear
transfer, cell fusion, and transduction of reprogramming factors [5]. ESCs and other types
of PSCs reprogrammed from somatic cells possess the developmental potency to give rise
to all adult cell types, including germlines [6,7]. PSCs are further subdivided into naïve,
formative, and primed PSCs according to their developmental/differentiation potentials
and molecular properties, reflecting diverse aspects of early embryogenesis [4,8–10]. How-
ever, these PSCs still display a limited differentiation potential, and their potency is usually
limited to embryonic lineages, somatic cells, and germ cells.
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A new cell type, the extended pluripotent stem cell (EPSC), was recently generated
from eight-cell-stage embryos using a chemically defined medium, the LCDM condition,
supplemented with several chemicals that capture developmental potency by blocking
cell fate decisions [11]. EPSCs display transcriptional and epigenetic profiles distinct from
those of naïve or primed PSCs. Notably, EPSCs showed higher potential for differentiation
into extraembryonic lineages in addition to embryonic lineages and a higher contribution
in human–mouse interspecies chimeras than ESCs [11]. The expanded pluripotency of
EPSCs allows the formation of blastoids (blastocyst-like structures composed of ICM and
trophectoderm-like cells), providing a new possibility as an early embryonic developmental
model and as a totipotent stem cell [12–15].

As mentioned previously, pluripotency can be obtained by reprogramming of differ-
entiated somatic cells. Cell-fusion-mediated reprogramming is a widely known reprogram-
ming method that rapidly converts differentiated somatic cells into pluripotent cells [5].
After cell fusion, the genome of differentiated cells, including somatic and extraembry-
onic cells, is reset by trans-acting reprogramming factors residing in PSC partners [16–18].
Various types of PSCs, such as ESCs, embryonic germ cells (EGCs), embryonic carcinoma
cells (ECCs), and induced PSCs (iPSCs), have been demonstrated to induce successful
reprogramming of somatic cells [19,20]. However, it remains unclear whether EPSCs can
transfer extended pluripotency to somatic cells via cell fusion and whether the resulting
hybrid cells can exhibit extended pluripotency.

In the present study, we report for the first time that EPSCs can transfer extended
pluripotency to somatic cells via cell fusion. We established EPSC lines from eight-cell
embryos and fused them with neural stem cells (NSCs), which are somatic stem cells. The
resulting EPSC-NSC hybrid cells showed transcriptional characteristics similar to EPSCs
and displayed dual potential for differentiation into both embryonic and extraembryonic
lineages in both in vivo and in vitro differentiation systems. We further showed that cell-
fusion-mediated reprogramming affects the metabolic phenotypes of somatic fusion partner
cells, remodeling energy metabolism profiles to be similar to those of EPSCs. This study
provides a new model for elucidating novel molecular reprogramming pathways to achieve
extended pluripotency.

2. Materials and Methods
2.1. EPSC Cell Line Establishment and Culture

EPSCs were established from 8-cell embryos using previously described procedures [11].
Briefly, 2-cell embryos were recovered from 1.5 dpc pregnant BL6 female mice and developed
to the 8-cell stage. Embryos were attached to mitotically inactivated C3H mouse embryonic
fibroblasts (MEF) in LCDM/N2B27 medium. N2B27 medium consists of Dulbecco’s Modified
Eagle Medium/Nutrient Mixture F-12 (DMEM/F12) (Gibco, Billings, MT, USA, 11320-033),
Neurobasal (Gibco, 21103-049), 5% Knockout serum replacement (Gibco, 10828-028), N2
(Gibco, 17052-048), B27 (Gibco, 17504-044), 1X penicillin-streptomycin (P/S; Gibco, 15140-122),
1% non-essential amino acid (Gibco, 11040-050), and 0.1 mM β-mercaptoethanol (Gibco, 21985-
023). An LCDM supplement consisting of 103 U/mL human recombinant leukemia inhibitory
factor (Millipore, Burlington, MA, USA, LIF1010), 3 mM CHIR99021(LC laboratories, Woburn,
MA, USA, C-6556), 2 mM S-(+)-dimethindene maleate (Tocris, Bristol, Avon, UK, 1425), and
2 mM minocycline hydrochloride (Santa Cruz, Dallas, TX, USA, sc-203339) was added to the
N2B27 medium before use. After 5–7 days, the outgrowths were dissociated into single cells
using 0.25% trypsin-EDTA (Gibco, 25200-072) and passaged on new inactivated C3H MEF.
The established EPSC cell lines were passaged on alternate days, and the culture medium was
changed every day.

2.2. EGFP Transfection

The lentiviral EF1a-EGFP expression vector was used to insert ubiquitously expressed
EGFP protein into EPSCs and ESCs. Lentivirus-containing EGFP vectors were generated
by transfecting 293FT cells. Appropriate amounts of lentiviral EF1a-EGFP expression
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vectors, psPAX2 packaging vectors, and pMD2G envelope vectors were enclosed using
Lipofectamine for 5 min. The enclosed vectors were then diluted in Opti-MEM for 20 min
and transfected into 293FT cells for 6 h. Three days after transfection, the supernatants
containing the virus were harvested.

One day before viral infection, 1 × 105 ESCs were seeded on inactivated MEF. Then,
24 h after transduction, the infected EPSCs or ESCs expressing EGFP were passaged
using 0.25% trypsin-EDTA, and EGFP+ single cells were manually picked to establish a
homozygous cell line.

2.3. Cell Fusion and Hybrid Cell Culture

EPSCs and OG2+/−/ROSA26+/− double-transgenic NSCs were washed with phosphate-
buffered saline (PBS), dissociated into single cells, and then mixed at a 1:3 ratio (1 × 105: 3 ×
105). The mixture was then centrifuged for 5 min at 400× g in a conical tube. The supernatant
was removed thoroughly, and 1 mL of pre-warmed polyethylene glycol (PEG1500; Roche, Basel,
Switzerland) was added to the cell pellet for 1 min. Then, 22 mL of Dulbecco’s modified Eagle’s
medium (DMEM; Cytiva, Incheon, Korea, SH30021.01) was carefully added to the PEG–cell
mixture with constant stirring. After centrifugation for 5 min at 400× g, the pellet was washed
with PBS, gently resuspended in the LCDM condition, and incubated for 20 min at 37 ◦C in a
5% CO2 incubator. The mixture was then cultured in the LCDM condition. After 5–6 days, Oct4-
GFP+ colonies were picked and attached to C3H MEF in LCDM. When the colonies expanded,
they were dissociated into single cells using 0.25% trypsin-EDTA. To prevent contamination
from non-fused cells, Oct4-GFP+ single cells were selected and homozygous cell lines were
established. The established cell line was cultured in the same manner as the EPSC cell lines.

2.4. Cell Culture

ESCs were cultured on inactivated MEF, in a mouse ESC culture medium consisting
of DMEM low glucose supplemented with 15% fetal bovine serum (FBS; Cytiva, Incheon,
Korea), 0.1 mM non-essential amino acids, 1× penicillin/streptomycin/glutamine (P/S/G;
Gibco, 10378-016), and 1 mM β-mercaptoethanol and 103 U/mL leukemia inhibitory factor
(Millipore, ESG1107).

NSCs were derived from heterozygous OG2+/− ROSA+/− strain, which was produced
by crossing a homozygous ROSA26 X OG2 male and a wild-type female [21,22]. NSCs were
cultured in NS medium in a gelatin-coated cell culture dish. The NS medium consisted of
DMEM/F12 containing 7.5% bovine serum albumin (BSA; Gibco, 15260-037), 1X P/S/G,
N2, epidermal growth factor (EGF; Gibco, PHG0311), and basic fibroblast growth factor
(bFGF; R&D systems, Minneapolis, MN, USA, 233-FB-01M). Cells were passaged every
2–3 days, and the culture media were changed every 2 days.

2.5. Karyotype Analysis

The cells at 50% cell confluency were fixed in the metaphase for karyotyping by adding
3 µg/mL nocodazole to the culture medium for 16 h. The cells were then spun down at
200× g and treated with hypotonic (0.56%) KCl solution for 15 min. Next, the cells were
fixed in a fixation buffer composed of 1:3 acetic acid and methanol and dropped onto a
clean glass slide. The glass slides were air-dried and stained with 10% Giemsa solution
(Sigma-Aldrich, St. Louis, MO, USA) for 15 min for microscopic observation.

2.6. In Vitro Random Differentiation

For random differentiation, cells were dissociated into single cells and suspended
in a differentiation medium to form embryoid bodies (EBs) by the hanging drop method
(800 cells per drop). The differentiation medium consisted of DMEM low glucose sup-
plemented with 15% FBS, 1× P/S/G, 0.1 mM non-essential amino acids, and 1 mM β-
mercaptoethanol. After 2 days, the formed EBs were harvested, washed, and attached to a
0.15% porcine-gelatin-coated culture dish in the medium. The medium was changed every
two days, and differentiation proceeded for approximately 14–16 days.
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2.7. In Vitro Extraembryonic Lineage Differentiation

EPSCs and hybrid cells were differentiated into extraembryonic endoderm stem (XEN)
cells using a procedure modified from the differentiation protocol for ESCs [23]. First, cells
were dissociated into single cells, and 1 × 105 cells were seeded into inactivated MEF in
converted XEN medium (standard XEN medium supplemented with all-trans retinoic
acid (R&D systems, 0695) and activin A (Peprotech, Cranbury, NJ, USA, 120-14E)). After 3–
4 days, the cells were dissociated into single cells using 0.25% trypsin-EDTA and passaged
onto inactivated MEF-coated 4-well dishes in standard XEN medium. The standard XEN
medium consisted of RPMI 1640 (Gibco, 11875-093), 15% FBS, 1X P/S, and 0.1 mM β-
mercaptoethanol. Then, we picked morphologically similar colonies of XEN cells after
10–15 days, and the cells were passaged at 70–80% confluency. The culture medium was
changed every alternate day.

The trophectoderm population was derived under trophoblast stem cell (TSC) medium
and TSC-conditioned medium (TSC-CM). The TSC medium consisted of RPMI 1640
medium containing 20% FBS, 1X sodium pyruvate (Gibco, 11360-070), 1X P/S/G, and
0.1 mM β-mercaptoethanol and was supplemented with heparin (Sigma, St. Louis, MO,
USA, H3393) and recombinant human FGF4 (Peprotech, 100-31). TSC-CM was prepared by
incubating TSC medium without heparin and FGF4 on an inactivated MEF-coated dish for
3 days, followed by filtering. To differentiate EPSCs and hybrid cells, 1 × 105 cells were
attached to inactivated MEF in a mixture of TSC medium and TSC-CM (1:1 ratio). After
two passages in the medium mixture, the cells were passaged in only TSC medium at a
low density. The cells were further passaged at 5–60% confluence.

2.8. Chimeric Embryo Generation

The day before aggregation, 2-cell-stage mouse embryos were collected from 1.5 dpc
B6C3F1 female mice and cultured in vitro in drops of G2 plus medium (Vitrolife, Gothen-
burg, Sweden, 10132) under OVOIL (Vitrolife, 10029) for 24 h. GFP-infected EPSCs or
hybrid cells were passaged and seeded onto inactivated MEF. The following day, the cells
were trypsinized, and clumps (4–10 cells per clump) were selected for aggregation with
an 8-cell-stage mouse embryo with a denuded zona pellucida. Aggregated embryos were
cultured overnight at 37 ◦C in a 5% CO2 incubator. After 24 h, the aggregated embryos
were transferred into the left uterine horn of a 2.5 dpc pseudopregnant ICR recipient.

2.9. X-Gal Staining

The EPSC-NSC hybrid cells and chimeric embryos were stained with X-gal. For
staining, cells were washed with PBS and fixed in 4% paraformaldehyde for 10 min at
4 ◦C. After washing with PBS three times, the cells were rinsed in rinsing solution: PBS
containing 0.02% NP40 and MgCl2. The cells were stained with X-gal staining solution:
rinsing solution supplemented with 25 µg/mL of 5-Bromo-chloro-3-indolyl-galactosidase
(X-gal; Promega, Medison, WI, USA, V3941), 5 mM K3Fe(CN)6, and 5 mM K4Fe(CN)6.
Cells were incubated at 37 ◦C and 5% CO2 for 24 h and visualized by light microscopy.

Chimeric embryos were fixed for 1 h and washed with PBS for 2–3 h at 4 ◦C. Embryos
were then rinsed with rinsing solution for 1 h and stained with X-gal staining solution,
followed by overnight incubation.

2.10. Electron Microscopy

For transmission electron microscopic (TEM) observations, the specimens were fixed
in 4% paraformaldehyde and 2.5% glutaraldehyde in 0.1 M phosphate buffer (PB) for 3 h.
After rinsing in 0.1 M PB, the samples were post-fixed in 1% osmium tetroxide for 30 min.
The samples were then dehydrated in a graded ethanol series (50, 70, 80, 90, 95, and 100%).
Polymerization of the infiltrated sample in Epon 812 was performed overnight at 60 ◦C.

Ultrathin sections were cut using an ultramicrotome (Leica Microsystems, Wetzlar,
Germany) to a thickness of approximately 60–70 nm. The sectioned slices were collected on
grids (200 mesh) and stained with 2% uranyl acetate and lead citrate. The prepared grids
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were examined using a transmission electron microscope (JEOL, Tokyo, Japan) operating at
60 kV.

2.11. Mitochondrial Length Measurement

Mitochondrial length and the maximum (Max)/minimum (Min) ratio of length were
analyzed using electron microscopy images. Measurements were made using Image J 1.53
software (NIH), and over 29 mitochondria were measured per sample for data analysis.

2.12. Oxygen Consumption Rate Analysis

A Seahorse XFp analyzer was used to measure the oxygen consumption rate (OCR).
Overall, 6 × 104 cells of EPSCs, fusion hybrid cells, and 8 × 104 cells of NSCs were
cultured for 16 h after being seeded into a cell culture plate pre-coated with diluted
Matrigel (Corning, NY, USA, 356234). For analysis, the medium was changed to XFp
base media supplemented with D-glucose (Agilent, Santa Clara, CA, USA, 103577-100),
sodium pyruvate (Agilent, 103578-100), and L-glutamine (Agilent, 103579-100). The OCR
was measured using a Seahorse XFp analyzer (Seahorse Bioscience, Billerica, MA, USA).
Measurement values were obtained after injection of oligomycin (1.5 µM), FCCP (0.1 µM),
and rotenone/antimycin A (0.5 µM) (Agilent). The analysis was performed according to
the manufacturer’s instructions.

2.13. Extracellular Acidification Rate Analysis

A Seahorse XFp analyzer was used to measure the extracellular acidification rate
(ECAR). Overall, 6 × 104 cells of EPSCs, fusion hybrid cells, and 8 × 104 cells of NSCs
were cultured for 16 h after being seeded into a cell culture plate pre-coated with diluted
Matrigel. For analysis, the medium was replaced with XFp base medium supplemented
with D-glucose, sodium pyruvate, and l-glutamine. The ECAR was measured using a
Seahorse XFp analyzer (Seahorse Bioscience). Measurement values were obtained after
injection of rotenone/antimycin A (0.5 µM) and 2-DG (80 mM) (Agilent Technologies, Clara,
CA, USA). The analysis was performed according to the manufacturer’s instructions.

2.14. RNA Isolation and qRT-PCR

Total RNA was extracted from samples using TRIzol reagent according to the ap-
propriate protocols, and the amount of RNA was measured using Nanodrop (Thermo
Scientific, Waltham, MA, USA). Then, cDNA was synthesized from 1 µg extracted total
RNA using SuperScriptTM III Reverse Transcriptase (Invitrogen, Waltham, MA, USA,
18080-044), Oligo(dT)12-18 Primer (Invitrogen, 18418-012), and 10 mM dNTP Mix (Invitro-
gen, 18427-013). Real-time polymerase chain reaction (real-time PCR) was carried out using
TOPrealTM qPCR 2X PreMIX (Enzynomics, Daejeon, Korea, RT500M), and the results were
analyzed using a Roche LightCycler 5480 (Roche). The primers used for real-time RT-PCR
are listed in Table S1.

2.15. Immunocytochemistry

For immunocytochemistry, cells were fixed with 4% paraformaldehyde for 20 min
at 4 ◦C. After washing with PBS, the cells were treated with 0.3% Triton X-100 in PBS for
10 min and blocked with PBS containing 3% bovine serum albumin (Bovogen, BSAS0.1)
for 1 h at 25 ◦C. The cells were then treated with primary antibodies at the following con-
centrations: OCT4 (1:500, Santa Cruz Biotechnology, Dallas, TX, USA, SC-5279), NANOG
(1:500, Abcam, Cambridge, UK, ab80892), EOMES (1:500, Abcam, ab23345), GATA4 (1:200,
Abcam, ab84593), tubulin beta III isoform (TUJ1; 1:500, Millipore, Burlington, MA, USA,
MAB1637), smooth muscle actin (SMA; 1:500, Abcam, ab7817), SOX17 (1:500, R&D Systems,
AF1924), and CDX2 (1:1250, Abcam, ab76541). The following day, the primary antibodies
were removed and the cells washed thrice with PBS for 10 min. Finally, the cells were
labeled with fluorescence-conjugated secondary antibodies to detect the primary antibodies
at the following concentrations: Alexa Fluor 488 (1:500) and Alexa Fluor 568 (1:500). Lastly,
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they were treated with DAPI or Hoechst in 0.3% Triton X-100 in PBS for 3 min at room
temperature and washed.

2.16. Bulk RNA Sequencing

The total RNA concentration was calculated using Quant-IT RiboGreen (Invitrogen,
#R11490). To assess the integrity of the total RNA, samples were run on a TapeStation RNA
screentape (Agilent, #5067-5576). Only high-quality RNA preparations with RIN greater
than 7.0 were used for RNA library construction.

A library was independently prepared with 1 µg of total RNA from each sample
using the Illumina TruSeq Stranded mRNA Sample Prep Kit (Illumina, Inc., San Diego, CA,
USA, #RS-122-2101). mRNA containing the poly A tail was purified using poly-T-attached
beads. Following purification, the mRNA was fragmented into small pieces, and mRNA
fragments were copied into first-strand cDNA using SuperScript II reverse transcriptase
(Invitrogen, #18064014) and random primers. Second-strand cDNA was synthesized using
DNA polymerase I, RNase H, and dUTP. Then, a single “A” base was added to cDNA
fragments for adapter ligation. The products were purified and enriched by PCR to create
the final cDNA library.

The libraries were quantified using KAPA Library Quantification kits for Illumina
Sequencing platforms according to the qPCR Quantification Protocol Guide (KAPA BIOSYS-
TEMS, #KK4854) and qualified using TapeStation D1000 ScreenTape (Agilent Technologies,
#5067-5582). Indexed libraries were then submitted to Illumina NovaSeq (Illumina, Inc.,
San Diego, CA, USA), and paired-end (2 × 100 bp) sequencing was performed by Macrogen
Inc. (Seoul, Korea).

2.17. Post Sequencing Data Analysis

For the raw sequencing reads, adapter trimming was performed with a skewer
(v0.2.2) [24] with the -L 100 and -e options. The output file was mapped to the mm10
UCSC Mus musculus genome using the STAR (v2.7.9a) [25] read aligner. The results from
STAR were quantified and normalized to FPKM values using the Cuffnorm of the Cufflinks
(v2.2.1) [26] toolset.

The quantified data were further analyzed and visualized using R (v4.2.0) and its
affiliated packages. A two-dimensional principal component analysis (PCA) plot was
produced using ggplot2 (v3.3.6) [27]. The corrplot (v0.92) [28] package was used for
the correlation plot. In the comparison using the scatter plot, genes having an average
expression level greater than FPKM3 and a fold change greater than 3 were defined as
differentially expressed genes (DEGs). A scatter plot was produced using the plot function
in R. In the expression analysis by the heatmap, DEGs were defined as genes with expression
levels greater than 3 in all samples and a fold change greater than 3 in comparison between
any two samples. Heatmaps and the hierarchical clustering of genes were produced using
the heatmap2 function of the gplot (v3.1.3) [29] package. Gene ontology analysis was
performed using DAVID (v2021update) [30,31], and the associated gene lists for specific
gene ontology terms were acquired from DAVID’s Knowledgebase. Data for each sample
are available at the Gene Expression Online under Accession Number GSE210520.

2.18. Statistical Analysis

All experiments were performed in triplicate, except for bulk RNA sequencing, which
was performed in duplicate. Experimental data are presented as the mean ± standard
deviation (SD). The significance of differences between sample data was evaluated using
Student’s t-test or one-way analysis of variance (ANOVA) in SAS software version 9.4 (SAS
Institute Inc., Cary, NC, USA). Tukey’s post hoc test was used for multiple comparisons. For
mitochondrial morphology analysis, Dunn’s post hoc test was used. Statistical significance
was set at p < 0.05.
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2.19. Animal Use Ethical Statement

All methods used in this study were carried out in accordance with national ani-
mal care and use guidelines laws, and all experimental protocols were approved by the
Institutional Animal Care and Use Committee of Konkuk University.

3. Results
3.1. Derivation and Characterization of Extended Pluripotent Stem Cells

EPSCs were established from C57BL/6 mouse eight-cell embryos using LCDM as
previously described by Yang et al. [11] (Figure 1A). Five to six days after seeding, out-
growths were observed around the seeded embryos. Round and dome-like colonies were
formed after passaging the outgrowths two–three times. These EPSCs could be stably
cultured for over 40 passages without morphological changes or differentiation (Figure 1B).
Immunocytochemistry analysis showed that the established EPSCs expressed pluripotency
markers such as OCT4 and NANOG, whereas extraembryonic lineage markers such as
EOMES and GATA4 were not expressed (Figure 1C).

Next, we determined several molecular characteristics of EPSCs that were distin-
guishable from those of ESCs. Typically, EPSCs show differences in the transcriptional
profile and developmental potential both in vitro and in vivo [11,32]. First, we analyzed
the transcriptomic characteristics of EPSCs using real-time qPCR. We checked Steap4, Tnc,
Csf1, Bgn, Vcam1, Postn, and Esrp1, which were suggested to be differentially expressed
between EPSCs and ESCs in Yang et al.’s previous report [11]. Real-time qPCR analysis
indicated that EPSCs have different transcriptional expression patterns from ESCs, which is
consistent with previously published EPSC transcriptome data (Figure 1D). Subsequently,
we sought to identify the dual potential of EPSCs toward embryonic and extraembry-
onic lineages in vivo and in vitro. In vitro differentiation through embryoid body (EB)
formation indicated lineage commitment to all three germ layers (Figure S1). Next, we
examined the lineage conversion ability of EPSCs. EPSCs can be directly converted into
extraembryonic stem cell lineages such as extraembryonic endoderm (XEN) cells and
trophoblast stem cells (TSCs) [1,11]. As expected, EPSCs were efficiently converted into
XEN cells (SOX17+) and TSCs (EOMES+ and CDX2+), which did not express pluripotency
markers (Figure 1E,F). These data demonstrated that newly derived EPSCs have distinct
molecular and developmental features compared to ESCs, which is consistent with several
previous studies.
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matic illustration for the establishment of EPSC lines from 8-cell embryos. (B) Representative images 
of 8-cell-stage embryo 5 days after seeding (left) and established EPSCs at passage 3 (right). Scale 
bars: 200 µm. (C) Immunocytochemistry images of EPSCs. EPSCs are shown to express pluripotency 
markers OCT4 and NANOG, whereas extraembryonic markers EOMES and GATA4 are not ex-
pressed. Scale bars: 200 µm. (D) quantitative RT-PCR analysis of EPSCs and ESCs about EPSC-spe-
cific upregulated genes. Data are presented as the mean ± SD for n = 3 independent experiments and 
every dot indicates the expression value of each sample. Gapdh was used as a housekeeping gene. 
EPSCs displayed a strong expression of genes that are overexpressed in EPSCs compared to ESC, as 
previously published. Student’s t-test: ns, non-significant; **** p < 0.0001. (E,F) Immunochemistry 
images of XEN (E) and TSC populations (F) directly converted from EPSCs. EPSC-derived XEN cells 
express primitive endoderm marker SOX17 (red) without expression of pluripotency marker OCT4 
(green). Scale bars: 200 µm. TSCs converted from EPSCs were shown to express EOMES and CDX2 
(red), but not OCT4 (green). Nuclei were stained by DAPI (blue). Scale bars: 200 µm (EOMES), 100 
µm (CDX2). 

Figure 1. Establishment and characterization of extended pluripotent stem cells (EPSCs).
(A) Schematic illustration for the establishment of EPSC lines from 8-cell embryos. (B) Repre-
sentative images of 8-cell-stage embryo 5 days after seeding (left) and established EPSCs at passage
3 (right). Scale bars: 200 µm. (C) Immunocytochemistry images of EPSCs. EPSCs are shown to
express pluripotency markers OCT4 and NANOG, whereas extraembryonic markers EOMES and
GATA4 are not expressed. Scale bars: 200 µm. (D) quantitative RT-PCR analysis of EPSCs and ESCs
about EPSC-specific upregulated genes. Data are presented as the mean ± SD for n = 3 independent
experiments and every dot indicates the expression value of each sample. Gapdh was used as a
housekeeping gene. EPSCs displayed a strong expression of genes that are overexpressed in EPSCs
compared to ESC, as previously published. Student’s t-test: ns, non-significant; **** p < 0.0001.
(E,F) Immunochemistry images of XEN (E) and TSC populations (F) directly converted from EPSCs.
EPSC-derived XEN cells express primitive endoderm marker SOX17 (red) without expression of
pluripotency marker OCT4 (green). Scale bars: 200 µm. TSCs converted from EPSCs were shown to
express EOMES and CDX2 (red), but not OCT4 (green). Nuclei were stained by DAPI (blue). Scale
bars: 200 µm (EOMES), 100 µm (CDX2).
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3.2. Extended Potential Reprogramming of Somatic Cells by Cell Fusion with EPSCs

To test whether EPSCs can transfer extended pluripotency to somatic cells, we fused
EPSCs with NSCs to induce fusion-induced reprogramming. To monitor the reprogram-
ming of NSCs, we used OG2+/−/ROSA26+/− double-transgenic NSCs, which express GFP
under the control of the distal enhancer of OCT4 expression and ubiquitously express lacZ
genes [33]. NSCs and EPSCs were fused using the PEG-mediated method [22] (Figure 2A).
Oct4-GFP+ colonies were observed after 2 days of fusion, and Oct4-GFP+ cells, which were
expected to be EPSC-NSC hybrids, were stably maintained over 40 passages (Figure 2B).
As Oct4 expression is restricted to PSCs and germ cells [34,35], Oct4-GFP+ cells should
be reprogrammed cells by fusion with EPSCs. Oct4-GFP+ cells were also positive for
the X-gal staining (Figure 2C). Karyotype analysis demonstrated that the cells exhibited
near-tetraploidy (4N) (Figure 2D). Meanwhile, OG2+/−/ROSA26+/− NSCs cultured in the
LCDM condition ceased to proliferate, confirming that the reprogramming of NSCs was
not driven by the culture conditions (Figure S2). Taken together, these results indicate
that Oct4-GFP+ cells are tetraploid hybrid cells that are successfully reprogrammed by cell
fusion between NSCs and EPSCs.

Subsequently, we investigated whether the hybrid cells obtained the characteristics of
extended pluripotency. Immunocytochemistry analysis confirmed that Oct4-GFP+ hybrid
cells expressed pluripotency markers OCT4 and NANOG (Figure 2E). We then compared
the expression patterns of EPSC-specific genes such as Steap4, Tnc, Csf1, Bgn, Vcam1, and
Postn. The expression levels of these EPSC-specific genes were similar between EPSCs and
EPSC-NSC hybrid cells, but the expression levels of ESCs and NSCs were significantly lower
than those of EPSCs (Figure 2F). Interestingly, the expression levels of EPSC-specific genes
in the hybrid cells were higher than those in EPSCs (Figure 2F). These results demonstrate
that somatic cells can be reprogrammed into an extended pluripotent state by fusion with
EPSCs at the transcriptional level.
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Figure 2. Reprogramming of NSCs by cell fusion with EPSCs and characteristics of the fusion
hybrid cells. (A) Schematic illustration of cell-fusion-mediated reprogramming of NSCs with EPSCs.
(B) Bright-field image (left) and fluorescence image (right) of Oc4-GFP+ established EPSC-NSC hybrid
cells. Scale bars: 200 µm. (C) X-gal staining assay of EPSC-NSC hybrid cells. Scale bars: 200 µm.
(D) Karyotype analysis showed the near-tetraploidy of EPSC-NSC hybrid cells. Scale bars: 50 µm.
(E) Immunocytochemistry images of EPSC-NSC hybrid cells for pluripotency markers, OCT4 and
NANOG (red). Nuclei were counterstained by DAPI (blue). Scale bars: 200 µm. (F) quantitative RT-
PCR analysis of EPSC-NSC hybrid cells about EPSC-specific upregulated genes. Data are presented
as the mean ± SD for n = 3 independent experiments and every dot indicates the expression value of
each sample. Gapdh was used as a housekeeping gene. EPSC-NSC hybrid cells expressed similar
level of Oct4, Nanog, Tnc, Bgn, Vcam1, and Postn to EPSCs. Hybrid cells expressed higher levels
of Steap4 and Csf1 than EPSCs. EPSCs and EPSC-NSC hybrid cells showed a higher level of EPSC
markers, Steap4, Tnc, Csf1, Bgn, Vcam1, and Postn. A–D Uppercase indicates significant differences
among different groups at p < 0.0001. Data were analyzed using one-way ANOVA and Tukey’s post
hoc with SAS® software, version 9.4 (Institute of INC, Cary, NC, USA).

3.3. Developmental Potency of Hybrid Cells into Both Embryonic and Extraembryonic Lineages

One of the distinct features of EPSCs is their expanded differentiation potency toward
not only embryonic, but also extraembryonic lineages [11]. If NSCs obtained extended
pluripotency through fusion with EPSCs, EPSC-NSC hybrid cells could functionally reca-
pitulate the differentiation potency of EPSCs similar to obtaining pluripotency after fusion
with pluripotent stem cells [5]. Thus, we attempted to verify whether hybrid cells could
differentiate into both embryonic and extraembryonic lineages under in vivo and in vitro
conditions [5]. First, we verified the in vivo developmental potential of reprogrammed
EPSC-NSC hybrid cells using chimera formation analysis. Chimeric blastocysts were gener-
ated by the aggregation of morula and EPSC-NSC hybrid cells and further cultured to the
blastocyst stage (Figure 3A). As a control experiment, chimeric blastocysts were generated
using ESCs and EPSCs, which ubiquitously express the GFP transgene (Figure 3B). EPSC-
NSC hybrid cells, ESCs, and EPSCs successfully formed chimeric blastocysts, in which
aggregated cells were integrated into the ICM (Figure 3A,B). Notably, a contribution to the
trophectoderm was observed in chimeric blastocysts formed by EPSCs and hybrid cells,
but rarely in those formed by ESCs. To check the extraembryonic contribution, we counted
the blastocysts showing the extraembryonic contribution (trophectoderm) by fluorescence
expression (for EPSCs and ESCs) or X-gal staining (for hybrid cells). Chimeric blastocysts
formed using EPSCs and reprogrammed hybrid cells showed a high ratio of extraembryonic
contribution (38% and 31.3%, respectively; Figure 3C), whereas those formed using ESCs
rarely contributed to trophectoderm formation (1.9%) (Figure 3C). Next, we investigated
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the developmental potential of reprogrammed hybrid cells in 13.5 dpc chimeric embryos
(Figure 3D). Notably, EPSC-NSC hybrid cells contributed to the placenta and various body
tissues in 13.5 dpc chimeric embryos (Figure 3D). In the X-gal-stained 13.5 dpc embryos,
X-gal-positive cells, which originated from hybrid cells, were detected in the placenta and
all three germ layer tissues: ectoderm (brain), mesoderm (heart), and endoderm (intestine)
(Figure 3D). These results suggest that reprogrammed hybrid cells display extraembryonic
developmental potential, as observed in EPSCs.
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Figure 3. In vivo and in vitro differentiation potential of EPSC-NSC hybrid cells. (A) Images of chimeric
blastocysts formed by aggregation of morular and EPSC-NSC hybrid cells. Bright-field and green fluores-
cence images (upper panel) and X-gal staining images (lower panel) of E4.5 chimeric blastocysts. Arrows
indicate the X-gal-positive trophectoderm area of chimeric blastocysts. Scale bars: 100 µm. (B) Images
of chimeric blastocysts formed by the aggregation of morular and ESCs (upper panel) or EPSCs (lower
panel). ESCs and EPSCs expressing GFP ubiquitously were used for chimeric blastocyst formation to
trace the cell fate. The contribution to trophectoderm was observed in chimeric blastocysts formed by
EPSCs, but rarely formed by ESCs. Scale bars: 100 µm. (C) Contribution rate to ICM only or both ICM
and trophectoderm (TE) in chimeric blastocysts formed by aggregation of ESCs, EPSCs, and EPSC-NSC
hybrid cells with morula-stage embryos. (D) X-gal staining images of E13.5 chimeric embryos formed from
chimeric blastocysts (using EPSC-NSC hybrids); entire embryo (upper left), a sectioned embryo (upper
middle), and placenta (upper right). X-gal-positive cells (hybrid contribution) are shown in ectodermal,
mesodermal, and endodermal tissues of the sectioned E13.5 chimeric embryos formed from chimeric
blastocysts (using EPSC-NSC hybrids). Scale bars: 500 µm. (E,F) Immunocytochemistry images of XEN
cells and TSC populations directly converted from EPSC-NSC hybrid cells. (E) XEN cells from hybrid
cells express representative primitive endoderm marker SOX17 (red) without pluripotency marker OCT4
(green). Scale bars: 200 µm. (F) TSCs derived from hybrid cells were shown to express EOMES and CDX2
(red), but not OCT4 (green). Scale bars: 100 µm.
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Next, we investigated whether EPSC-NSC hybrid cells could be converted into ex-
traembryonic stem cell lineages, TSCs, and XEN cells, in vitro, which is the distinct feature
of EPSCs that distinguishes them from conventional pluripotent stem cells [11,36]. Dur-
ing in vitro differentiation through EB formation, we examined CDX2-positive cells in
differentiating EPSCs and hybrid cells, but these were rarely examined in differentiat-
ing ESCs (Figure S3B). After differentiation in XEN cell-derivation medium, hybrid cells
were converted into XEN cells, which were positive for SOX17 without the expression
of pluripotency markers such as OCT4 and NANOG (Figure 3E). On the other hand, un-
der TSC-derivation conditions, hybrid cells could also be converted into TSCs expressing
EOMES and CDX2 without pluripotency marker expression (Figure 3F). Taken together,
these results suggest that EPSC-NSC hybrid cells can recapitulate the in vivo and in vitro
developmental potency of EPSCs.

3.4. Global Gene Expression Patterns of EPSCs, ESCs, NSCs, and EPSC-NSC Hybrid Cells

We performed RNA sequencing analysis and compared the global gene expression
patterns of the EPSCs, NSCs, and EPSC-NSC hybrid cells. The global gene expression
patterns of EPSC-NSC hybrid cells were very similar to those of EPSCs; only 200 genes
were differentially expressed, in comparison with the 3781 genes for EPSC-NSC hybrid
cells vs. NSCs and 604 genes for EPSCs vs. ESCs (FPKM > 2, fold change > 2). Among
the 200 genes differentially expressed between hybrid cells and EPSCs, 69 genes were
overexpressed in EPSC, whereas 131 genes were abundantly expressed in EPSC-NSC
hybrid cells (Figure 4A). The PCA plot and correlation matrix analysis revealed that the
overall gene expression profile of hybrid cells was distinct from that of ESCs and NSCs, but
similar to that of EPSCs (Figure 4B,C). Furthermore, the Gene Ontology-biological process
(GO: BP) analysis revealed that both EPSCs and EPSC-NSC hybrid cells, compared to ESCs,
overexpressed in terms of “response to mechanical stimulus”, “collagen fibril organization”,
and “cell differentiation”. whereas they were downregulated in “multicellular organism
development”, “defense response to virus”, and “negative regulation of viral genome
replication” (Figure S4A). There were 2070 of the DEGs that were clustered into five
hierarchical clusters by GO:BP analysis (Figures 4D and S4B). Notably, clusters 2 and 3
showed the upregulated and downregulated gene sets, respectively, in both EPSCs and
hybrid cells. EPSCs and hybrid cells clustered together and were highly enriched in
terms associated with “translation” and “RNA processing”. However, genes enriched
in NSCs, such as “biometabolic and biosynthetic process of lipid, steroid, fatty acid, and
cholesterol” and “axonogenesis”, were not observed in reprogrammed fusion hybrid cells
(Figures 4D and S4B). These results indicate that EPSC-NSC hybrid cells successfully acquired
the transcriptional characteristics of EPSCs after cell-fusion-induced reprogramming.

Next, we verified whether the transcriptional memory of NSCs was erased after
reprogramming by cell fusion. Reprogrammed hybrid cells no longer expressed early
ectodermal and NSC markers (Figures 4E and S5), whereas they expressed EPSC-specific
markers (Figure 4F), suggesting that the NSC genome was successfully reprogrammed and
the somatic transcriptional memory completely erased after fusion with EPSCs.

Furthermore, we compared the differences in expression patterns for developmental
potential toward extraembryonic trophoblast lineages among EPSCs, NSCs, ESCs, and
EPSC-NSC hybrid cells (Figures 4G and S6). EPSCs and EPSC-NSC hybrid cells showed
expression patterns similar to those of genes associated with embryonic placental develop-
ment, extraembryonic membrane development, and trophectodermal differentiation. These
results may explain the favorable differentiational/developmental potency of EPSCs and
EPSC-NSC hybrid cells to the extraembryonic lineage (placental contribution in the chimera
assay and conversion ability to TSCs). Consequently, we demonstrated that the somatic
memory of NSCs was erased and reprogrammed to the state of an extended pluripotent
fusion partner through cell–cell fusion.
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Figure 4. RNA sequencing analysis of ESCs, EPSCs, NSCs, and EPSC-NSC hybrid cells. (A) Scatter plot
analysis showing the pairwise comparisons between EPSCs and hybrid cells, ESCs and EPSCs, and NSCs
and hybrid cells. (B) Two-dimensional PCA analysis of ESCs, EPSCs, NSCs, and EPSC-NSC hybrid cells.
(C) Correlation matrix analysis of ESCs, EPSCs, NSCs, and EPSC-NSC hybrid cells. (D) Hierarchical
heatmap cluster of DEGs among ESCs, EPSCs, NSCs, and EPSC-NSC hybrid cells. (E) Heatmap of
expression of ectoderm (left) and NSC marker genes (right) in ESCs, EPSCs, NSCs, and EPSC-NSC hybrid
cells. (F) Heatmap of expression of EPSC marker genes in ESCs, EPSCs, NSCs, and EPSC-NSC hybrid
cells. (G) Heatmap of expression of genes related to placenta development in ESCs, EPSCs, NSCs, and
EPSC-NSC hybrid cells. (H) Ratio of Mfn2/Dnm1l in EPSCs, NSCs, and EPSC-NSC hybrid cells. Data are
presented as the mean ± SD for n = 2 independent experiments and every dot indicates the expression
value of each sample. Student’s t-test: ns, non-significant, ** p < 0.01.

Lastly, we assessed the transcriptional similarity between EPSCs and hybrid cells
by analyzing the genes associated with differentiation and mitochondrial dynamics. We
previously devised an index to measure the extent of differentiation using the expression
levels of the mitochondrial-dynamics-related genes Mfn2 and Dnml1 [37]. The Mfn2/Dnm1l
ratio was relatively higher in more differentiated cells. For example, the Mfn2/Dnm1l ratio
in differentiated somatic cells is higher than that in pluripotent stem cells. Consistently, the
Mfn2/Dnm1l ratio in NSCs was much higher than that in EPSCs (Figure 4H). Notably, EPSC-
NSC hybrid cells showed a similar Mfn2/Dnm1l ratio to EPSCs (Figure 4H), indicating that
EPSCs and hybrid cells have the same extent of differentiation.

3.5. Mitochondrial Dynamics of EPSC-NSC Hybrid Cells Recapitulate That of EPSCs

In addition to transcriptional dynamics, intracellular organelles are also remodeled
during the reprogramming process [38]. Therefore, we compared the morphology of
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the nucleus and mitochondria of ESCs, NSCs, EPSCs, and EPSC-NSC hybrid cells using
transmission electron microscopy (TEM). ESCs and EPSCs have a relatively higher nucleus-
to-cytoplasm ratio than NSCs (Figure 5A), which is consistent with previous reports that
pluripotent stem cells have a higher nucleus-to-cytoplasm ratio than differentiated cells [39].
There were no significant differences between EPSCs and ESCs. Notably, EPSC-NSC
hybrid cells also showed a nucleus-to-cytoplasm ratio similar to that of EPSCs and ESCs
(Figure 5A), indicating the recapitulation of mitochondrial dynamics during fusion-induced
reprogramming. Moreover, EPSC-NSC hybrid cells showed multiple nucleoli with denser
nucleolar structures than diploid cells, which are typical characteristics of tetraploid cells
(Figure 5A).
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Figure 5. Analysis of mitochondrial morphology among ESCs, NSCs, EPSCs, and EPSC-NSC hybrid
cells. (A) Representative images of the intracellular ultrastructure of each cell type were observed
using transmission electron microscopy (TEM). Black arrows indicate the nucleoli in the nuclei of
each cell type. Nuclei (N). Scale bars: 2 µm. (B) Representative images of mitochondria of each
cell type observed through transmission electron microscopy (TEM). Yellow dotted lines indicate
the morphology of mitochondria. Scale bars: 0.4 µm (NSC), 1 µm (ESCs, EPSCs, hybrid cells).
(C) Illustration of the criteria for the measurement of mitochondrial axes’ length. (D) Analyzed
mitochondrial length of each axis using the criteria. Data are presented as the mean ± SD for 29
independent mitochondrial samples. A,B Uppercase indicates significant differences among different
groups at p < 0.0001. Data were analyzed using one-way ANOVA and Dunn’s post hoc with SAS®

software, version 9.4, (Institute of INC, Cary, NC, USA). (E) The ratio of the c-Max and c-Min axes
of mitochondria. Data are presented as the mean ± SD for 29 independent mitochondrial samples.
A,B Uppercase indicates significant differences among different groups at p < 0.0001. Data were
analyzed using one-way ANOVA and Dunn’s post hoc with SAS® software, version 9.4, (Institute of
INC, Cary, NC, USA).
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Next, we compared the mitochondrial morphology in each cell type. ESCs showed
globular mitochondria with poorly developed cristae, as expected. Meanwhile, NSCs had
relatively elongated, rod-like mitochondria with dense, well-developed cristae structures
(Figure 5B). The mitochondrial morphology of EPSCs was globular, with immature cristae,
similar to that of ESCs (Figure 5B). Given that mitochondrial morphology is maintained
as globular during embryogenesis until the preimplantation stage [40], it is reasonable
to say that EPSCs derived from the eight-cell stage also have the same mitochondrial
morphology. The mitochondrial morphology of NSCs was remodeled into immature and
round pluripotency-like states during reprogramming by fusion with EPSCs (Figure 5B).
Next, we measured the “calculated-maximum (c-Max)” and “calculated minimum (c-Min)”
to more accurately analyze the mitochondrial morphology (Figure 5C–E). The mean values
of “c-Max/c-Min” in ESCs (1.21) and EPSCs (1.24) were almost the same, while those of
NSCs (3.02) were much higher (Figure 5C–E). As expected, the mean value of “c-Max/c-
Min” in the EPSC-NSC hybrid cells (1.22) was almost the same as that in ESCs and EPSCs
(Figure 5C–E). Taken together, these results indicate that reprogramming to extended
pluripotency by cell fusion entails the complete remodeling of intracellular organelles.

3.6. Bioenergetic Metabolism Profiles of NSCs Were Remodeled to the State of EPSCs after
Reprogramming by Cell Fusion with EPSCs

Metabolic remodeling in mitochondria represents an altered cellular state and plays a
crucial role in the reprogramming process [38,41]. For example, in partially reprogrammed
cells, the metabolic phenotype was distinct from that of pluripotent iPSCs, indicating a
failure to acquire a bioenergetic system for maintaining pluripotency [42]. Therefore, we
investigated the energy metabolism of EPSCs, hybrid cells, and NSCs using the Seahorse
XFp analyzer to determine whether extended potential reprogramming by cell fusion en-
tailed metabolic remodeling, as shown by changes in the molecular signature. To determine
metabolic state, the oxygen consumption rate (OCR), which represents oxidative phospho-
rylation (OXPHOS) activity, was analyzed in EPSCs, hybrid cells, and NSCs (Figure 6A).
The three cell types showed similar levels of basal respiration (Figure 6A,B). However, when
cells were treated with FCCP, which maximizes mitochondrial respiration by collapsing the
mitochondrial membrane potential, EPSCs showed nearly twice the maximal respiration
compared to NSCs, indicating that the OXPHOS respiration capacity was more active in
EPSCs than in NSCs (Figure 6A,C). As expected, the hybrid cells showed a level of maximal
respiration almost equal to that of the EPSCs. In addition, EPSCs and hybrid cells exhibited
a similar spare respiratory capacity (SRC) level, which was much higher than that of NSCs
(Figure 6A–D). The ATP-coupled respiration rate was similar in all samples (Figure 6E). To
confirm the correlation between energy metabolism and molecular signatures, we investi-
gated the transcriptomes related to OXPHOS and the ATP-production-associated electron
transfer chain (ETC). Consistent with the OCR results, EPSCs and hybrid cells showed
higher levels of genes related to OXPHOS and ETC than NSCs (Figures 6F and S7).

Next, the glycolytic activity of these cells was compared using the extracellular
acidification rate (ECAR). In contrast to OCR, EPSCs exhibited higher levels of basal
glycolysis than NSCs did (Figure S8A,B). Compensatory glycolysis after treatment with
rotenone/antimycin A (Rot/AA), an inhibitor of electron transfer chain complexes I and
II, was also higher in EPSCs than that in NSCs (Figure S8A,C). Additionally, EPSCs exhib-
ited an upregulated glycolytic proton efflux rate (glycoPER) ratio compared with NSCs.
Interestingly, the hybrid cells showed almost identical levels of EPSCs in basal glycolysis,
compensatory glycolysis, and glycoPER. As glycoPER represents the glycolytic contribution
to total extracellular acidification, these results indicate that EPSCs and hybrid cells actively
use glycolysis for energy production (Figure S8A,D). Along with the results of the OCR
analysis, these results indicate that EPSCs and hybrid cells actively use both OXPHOS and
glycolysis for energy production and that this metabolic state can be faithfully remodeled
toward EPSCs by fusion-induced reprogramming (Figures 6A–E and S8A–D).
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4. Discussion

In this study, we suggested that somatic cells, NSCs, could be directly reprogrammed
to the extended pluripotent state by fusion with EPSCs. Reprogrammed hybrid cells exhib-
ited extended pluripotential properties, including the expression of extended pluripotency
markers, trophoblast lineage contribution in chimeric embryos, conversion into extraembry-
onic lineage stem cells (TSCs and XEN cells), and mitochondrial morphological remodeling
and metabolic remodeling to the EPSC state. Furthermore, global gene expression patterns
analyzed by RNA sequencing confirmed that the overall transcriptomic profile of hybrid
cells was similar to that of EPSCs in terms of hierarchical clustering and GO terms, and
they were distinguishable from traditional pluripotent stem cells (ESCs). Taken together,
the somatic memory of NSCs was erased and extended pluripotency was established after
fusion with EPSCs.

Fusion-induced reprogramming has previously been conducted using pluripotent
stem cells such as ESCs, EGCs, ECCs, and induced PSCs (iPSCs), which can successfully
reprogram somatic cells to a pluripotent state after cell fusion [19,20]. In the present study,
we report for the first time that EPSCs can transfer extended pluripotency to somatic cells
via cell fusion, although it remains as an open question if extended pluripotency can be
transferred to terminal differentiated somatic cells such as fibroblasts. Furthermore, the
reprogramming pathway toward extended pluripotency is yet to be elucidated. EPSCs,
which were originally generated from eight-cell-stage embryos, could also be derived
from ESCs or iPSCs by culturing in the LCDM condition for several passages, indicating
reversibility between pluripotency and extended pluripotency [11]. Additionally, Liu et al.
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confirmed that human EPSCs could be directly established from fibroblasts by transduction
of reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) under the LCDM culture condi-
tion [43]. Therefore, reprogramming into extended pluripotency may be a stepwise process
by which reprogrammed cells first acquire a pluripotent state and further acquire extended
pluripotency during culture. However, it is not known whether the same stepwise process
occurs in cell fusion reprogramming because it is a very fast and efficient reprogramming
process; pluripotency marker activation and epigenetic reprogramming occur only 2 days
after fusion [33]. Therefore, further research on the extended pluripotent reprogramming
pathway is required.

In reprogramming toward pluripotency, chromosome-wide remodeling occurs 24–48 h
after fusion, although epigenetic reprogramming takes more time [44]. In this study, we
detected Oct4-GFP-positive hybrid cells 48 h after fusion with EPSCs. However, epigenetic
reprogramming of extended pluripotency cannot be guaranteed with Oct4-GFP reactiva-
tion. Since DNA demethylation and reactivation of the X chromosome are the slowest
reprogramming events [33,45], it is expected that these events may also occur relatively
slowly during extended pluripotential reprogramming. Given that EPSCs have distinct
epigenomic networks compared to naïve ESCs [11,46], observing time-course changes
during cell-fusion-induced reprogramming may provide novel epigenetic and mechanis-
tic insights into a totipotent state. For example, Mai et al. identified a novel transient
reprogramming regulator, NKX3-1, using a cell-fusion-mediated heterokaryon model [47],
suggesting that fusion-induced reprogramming could be a promising model for identifying
early reprogramming factors [48].

By determining the developmental potency of hybrid cells, we showed that hybrid
cells could contribute to the placenta and embryonic tissues. Placental contribution was
observed in all 13.5 chimeric embryos (3/3), demonstrating a greater ability to contribute
to placental tissues (Figure 3D and Figure S3A). In our previous studies, we showed that
pluripotent hybrid cells formed by the fusion of somatic cells with ESCs could also develop
into the placenta in chimeric embryos [17,49]. Therefore, not only the extraembryonic
developmental potential, but also the tetraploidy of hybrid cells may contribute to the
higher contribution ratio to the placenta.

However, differentiation efficiency toward trophoblast lineages in vitro was signifi-
cantly less efficient. We showed that, although homogeneous XEN cell lines were easily
established from hybrid cells in vitro, the conversion of hybrid cells into TSCs was relatively
inefficient because homogenous TSCs were not induced, even after serial selection of TSC
colonies. These results are consistent with previous reports that the formation of blastoids,
or synthetic preimplantation embryos, using EPSCs resulted in a rare trophectoderm-like
population compared to hypoblast- and epiblast-like contents [12,13]. In fact, the differen-
tiation potential of EPSCs toward extraembryonic ectodermal lineages is highly diverse
depending on the culture conditions [46,50], suggesting the importance of setting optimal
differentiation conditions toward extraembryonic ectoderm.

We also demonstrated that the mitochondrial morphology and energy metabolism
phenotype were remodeled to the state of EPSCs after cell-fusion-induced reprogramming.
Mitochondrial shape and energy metabolism are cell-type-specific and contribute to the
developmental potential of cells [51]. Therefore, changes in mitochondrial morphology and
the consequent changes in metabolic patterns are highly dynamic in reprogramming and
differentiation processes [51]. In this study, we showed that EPSCs and EPSC-NSC hybrid
cells had a similar mitochondrial morphology, as well as bivalent bioenergetic activity, with
higher levels of both OXPHOS and glycolysis than NSCs. Notably, EPSC-NSC hybrid cells
exhibited an almost equivalent energy metabolism phenotype to EPSCs, but different from
their fusion partners, NSCs, indicating faithful bioenergetic reprogramming. We expected
that the OCR level would be higher in NSCs and the glycolytic level would be higher in
EPSCs because pluripotent stem cells are more dependent on glycolysis than OXPHOS
for energy metabolism [51,52]. However, EPSCs and EPSC-NSC hybrid cells showed a
bivalent energy metabolism phenotype involving both OXPHOS and glycolysis. As this
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bivalent metabolic state is also observed in naïve pluripotent stem cells [41,53], EPSCs
and naïve PSCs may share similar metabolic states. One possible reason for the bivalent
energy phenotype of EPSCs and EPSC-NSC hybrid cells could be partially due to the
inhibition of poly (ADP-ribose) polymerase-1 (Parp1) by minocycline hydrochloride (MiH)
supplemented in the LCDM culture condition [11]. Parp1 is not only associated with various
pathways underlying pluripotency and reprogramming, but is also considered a crucial
regulator for the maintenance of EPSC potency [11,54]. Given that Parp1-knockout mouse
ESCs showed altered expression of metabolism-related genes and preferential contribution
to extraembryonic lineages [55], it is possible that Parp1 affects the bioenergetic metabolism,
as well as the potency of EPSCs.

5. Conclusions

In the present study, somatic cells could be rapidly reprogrammed into an extended
pluripotential state through cell-fusion-induced reprogramming with EPSCs. Fusion hybrid
cells reconstructed EPSC-like characteristics, which entail transcriptional profile, acquisition
of extraembryonic developmental potential, remodeling of mitochondrial morphology,
and bivalent bioenergetic metabolism, with the erasure of somatic memory. In conclusion,
we demonstrated that the extended pluripotential properties of EPSCs, including dual
developmental potential and metabolic traits, could be faithfully transferred to somatic
cells by cell-fusion-induced reprogramming.
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