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Abstract
Hormone-receptor positive (HR+) breast cancer (BC) (including the luminal A and the luminal B subtypes) is the most 
common type of tumor in women diagnosed with early-stage BC (EBC). It represents a highly heterogeneous subgroup that 
is characterized by different risks of relapse. The aim of this review is to discuss the possible role played by the immune 
response in predicting this risk, along with the most common clinical and pathological factors and molecular tools that have 
been developed and are already in use. As opposed to what has previously been observed in the most aggressive human 
epidermal growth factor receptor 2 (HER2)-positive and triple-negative breast cancer (TNBC) subtypes, a high proportion 
of tumor-infiltrating lymphocytes (TILs)—reflecting a spontaneous and pre-existing immune response to the tumor—has 
been linked to a worse prognosis in HR+ EBC. This work provides some immune biological rationale explaining these find-
ings and provides the basics to understand the principal clinical trials that are testing immunotherapy in HR+ (luminal) BC.
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Key Points 

In luminal/HER2-negative tumors, a high proportion of 
tumor-infiltrating lymphocytes was a negative prognostic 
factor.

Several trials are currently testing the efficacy of immune 
checkpoint blockade in hormone-receptor positive breast 
cancer, and it is hoped that the results will confirm the 
potential therapeutic role of immunomodulation in this 
subgroup of patients.

1 Introduction

Breast cancer (BC) is the second leading cause of cancer 
death in women (with about 143,000 deaths per year in 
Europe) [1], and with over 2 million new cases worldwide 
in 2018, it is the most common tumor in women [2]. BC 
patients with a known stage are usually diagnosed early 
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in 79–87% of cases (stage I or II), with 13–21% of diag-
noses made at a late stage (stage III or IV). Up to 7% of 
BC patients have metastases at diagnosis (stage IV) [3–5]. 
Despite early diagnoses, particularly after the introduction 
of the mammographic screening and surgery that allows a 
cure of most cases of early-stage BC (particularly luminal 
tumors), recurrence still occurs.

Therefore, adjuvant treatments (i.e., radiotherapy (RT), 
chemotherapy (CT), hormone therapy (HT), and anti-human 
epidermal growth factor receptor 2 (HER2)-targeted thera-
pies), aiming to eradicate early systemic dissemination of 
microscopic disease, are commonly used to reduce the risk 
of relapse. Despite this progress, about 15% of patients will 
present a loco-regional relapse (i.e., tumor localized in breast 
and/or regional lymph nodes (LNs)) in the following 5 years 
[6]. Seventy-eight percent of women are predicted to survive 
for 10 years or more, as shown by age-standardized net sur-
vival for patients diagnosed with BC during 2010–2011 in 
England and Wales (Cancer Research UK Cancer Survival 
Group, London School of Hygiene and Tropical Medicine. 
Personal communication, 2014) and 10-year overall survival 
(OS) is about 86% and 78%, respectively [7].

A variety of clinical, pathological and molecular tools 
are used nowadays for treatment decisions in the adjuvant 
setting in luminal BC (e.g., whether CT administration is 
appropriate or not, based on the risk of relapse). In addi-
tion, novel biomarkers are under evaluation. Among them, a 
high proportion of tumor-infiltrating lymphocytes (TILs), as 
assessed on hematoxylin and eosin (H&E)-stained slides, in 
luminal primary BC was associated with a worse outcome, 
this is different from what was observed in the most infil-
trated and aggressive BC subtypes (HER2-positive (HER2+) 
and triple negative BC (TNBC)), where high TILs predicted 
a better prognosis [8]. Thus, it could be speculated that, as 
opposed to HER2+ and TNBC, an efficient immune escape 
might represent one of the factors influencing recurrence in 
hormone receptor (HR)+ (= luminal) EBC.

Further, cancer immunotherapy through immune check-
point blockade (ICB) has recently gained some success par-
ticularly in the treatment of TNBC patients in the metastatic 
and neoadjuvant settings [9, 10]. By incorporating immu-
notherapy into the standard TNBC treatment the revolution 
has been initiated, bringing new challenges, such as the 
assessment of responses to treatments with different tim-
ings and heterogeneous patterns of toxicity in a variety of 
organs [11–15], as well as the biggest issues of patient selec-
tion and the identification of ideal combinational drugs that 
might enhance the efficacy of ICB [9, 16–20]. In this light, 
luminal BC still remains an orphan with regard to immuno-
therapy options. It is becoming clearer that the heterogeneity 
of the various BC subtypes (luminal vs. HER2+ vs. TNBC) 
possibly explains the marked diversity of the spontaneous 
immune-related mechanisms that are generated, making it 

likely that their manipulation through ICB or other strategies 
(i.e., vaccines) will vary depending on the subtype [21, 22].

The aim of this review was to investigate the prognos-
tic and predictive roles of the tumor immune environment, 
particularly with regard to the adaptive immunity in HR+ 
EBC patients.

2  Prognostic and Predictive Factors 
in Early‑Stage Breast Cancer (BC)

2.1  Prognostic Factors

There are several strong prognostic factors for recurrence 
in EBC: tumor size (= T) [23], LN involvement (= N) [24], 
histological tumor grade [25], and the degree of tumor pro-
liferation (= Ki67) [26]. There is also strong evidence for 
specific clinical and pathological factors, such as in the case 
of inflammatory BC, which is associated with a worse out-
come [27], whereas tubular and mucinous carcinomas have 
a better prognosis [28]. HR status is both a prognostic and a 
predictive factor in EBC [29, 30]. While positivity of HR is 
associated with better prognosis, tumors with an overexpres-
sion of HER2/neu, which are found in 16–19% of cases, have 
a significantly worse prognosis (i.e., disease-free survival 
(DFS) and OS) [31].

Moreover, in 2000 Perou et al. proposed the “molecu-
lar profiling in BC,“ categorizing tumors into four molec-
ular subtypes: (1) luminal A (= ER+ and/or PR+ and 
HER2− and low level of Ki67), (2) luminal B (ER+ and/
or PR+ and/or HER2+ and high level of Ki67), (3) HER2-
enriched (ER− and PR−/HER2+), and (4) basal-like 
(ER− and PR− and HER2−) [32]. Based on the assess-
ment of these molecular subtypes through gene-expression 
profiling, we might more precisely assess prognosis and 
improve the prediction of benefit from CT in luminal sub-
types. Indeed, different median durations of survival with 
distant metastases were shown in Luminal A (= 2.2 years), 
Luminal B (= 1.6 years), Luminal/HER2+ (= 1.3 years), 
HER2 enriched (= 0.7 years), and basal-like (= 0.5 years) 
[33]. However, recent data from trials on cyclin-dependent 
kinases (CDK)4/6 inhibitors administered in metastatic 
luminal BC reveal that OS could be superior, up to 3 years, 
in this group of patients [34, 35]. In addition, distinct pat-
terns of metastatic spread within the different BC subtypes 
were observed. With the only exception being in the basal-
like subtype, bone was the most common site of metastases. 
A higher rate of brain, lung, and LN metastases was specifi-
cally observed in basal-like tumors [33].

So far, a variety of gene-expression-profiling methods, 
such as Oncotype DX [36], MammaPrint [37], PAM50 [38], 
Breast Cancer Index [39], PREDICT score [40, 41], IHC4-
score [42, 43], Clinical Treatment Score (CTS) [44], Magee 
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equation [45], and EndoPredict [46] have been developed to 
increase the accuracy on the prediction of the risk of recur-
rence, in order to guide treatment decisions (mainly adjuvant 
CT vs. no) in luminal subtypes. Unfortunately, none of these 
tests are currently used in clinical practice. A genomic signa-
ture provides stratification for early versus late recurrences in 
HR+ EBC. However, it has been internally but not externally 
validated [47]. Usually, in HR+ HER2− tumors (luminal A 
and B), systemic adjuvant therapy is based on HT, which is 
different between pre- and post-menopausal women. While 
the luminal A subtype is usually associated with a very 
good prognosis and the systemic adjuvant therapy is most 
likely HT alone, luminal B HER2− tumors can benefit from 
adjuvant CT. Indeed, the decision on what type of adjuvant 
treatment should be used in order to avoid over- or under-
treatment in clinical practice remains very challenging. For 
instance, the phase III prospective randomized clinical trial 
“Microarray In Node-negative Disease may Avoid Chemo-
therapy” (MINDACT) aimed to dissect the issue of omission 
of adjuvant CT in patients with “discordant features,” which 
means having high clinical (based on the traditional clin-
icopathological criteria, i.e., T, grade, presence or absence 
of HR, LN involvement) but low genetic risk of recurrence 
(evaluated with the MammaPrint signature). The absolute 
benefit from adding CT in this selected patient population 
was less than 2% in 5-y OS (98.8% vs. 97.0%), and less 
than 5% in 5-y DFS (93.3% vs. 88.8%), although the trial 
was not powered for such comparisons [48]. Furthermore, 
in the HR+ population, despite—or perhaps “due to”—hav-
ing very good prognosis, late relapses (i.e., taking place > 5 
years after diagnosis) still occur depending on risk factors 
mentioned above, as well as on the “impact of treatment” 
[49]. Despite all these efforts, adjuvant CT is not able to 
reduce late recurrences in HR+ EBC. As a consequence, 
several randomized trials were performed to evaluate the 
benefit from extended adjuvant HT and justify its use in cer-
tain conditions [50–53]. However, the real benefit remains 
small, if any, and it is further reduced by the occurrence of 
adverse events [54]. Therefore, we return to the question of 
(1) how to identify patients with a high risk of late recur-
rence, and (2) how to treat them.

Ethier et al. conducted a systematic review with meta-
analysis regarding the prognostic role of neutrophil-to-
lymphocyte ratio (NLR) in breast cancer [55]. Fifteen 
studies comprising a total of 8,563 patients were included 
[55]. Higher NLR was associated with worse OS (HR 2.56, 
95% CI 1.96–3.35; p < 0.001) and DFS (HR 1.74, 95% CI 
1.47–2.07; p < 0.001) [55]. This association was similar in 
studies including only early-stage disease and those com-
prising patients with both early-stage and metastatic dis-
ease. NLR had greater prognostic value for DFS in HR− and 
HER2− breast cancer, but no subgroup showed an influence 
on the association between NLR and OS.

The tumor cell dormancy phenomenon could explain the 
capability of disseminated tumor cells (DTCs) that give rise 
to metastases. These cells create non-proliferating dormant 
micro metastases for long periods of time, through immune 
escape or switch to angiogenesis [56]. Kim et al. performed 
a 49-gene signature specific for the analysis of tumor-cell 
dormancy (gene profiles including tumor cell quiescence 
and angiogenic regulation) in both BC cell lines and primary 
BC tumors, with the aim of finding the correlation between 
the dormancy gene profile and BC outcome. They defined 
the dormancy score by considering upregulated as posi-
tive genes and downregulated as negative genes in dormant 
cells. Among HR+ tumors, a higher dormancy score was 
significantly associated with a lower hazard of metastasis. 
Remarkably, a correlation between the dormancy score and 
the survival in HR+ tumors was observed. This was not the 
case for HR− tumors. Additionally, by comparing the dor-
mancy scores of luminal A versus luminal B tumors, it was 
shown that the median score was significantly lower in the 
luminal B compared to the luminal A tumors [57].

2.2  Predictive Factors

So far, only three validated predictive factors of benefit from 
standard (neo)-adjuvant treatments exist in EBC: (1) estro-
gen receptor (ER), (2) progesterone receptor (PgR), and (3) 
HER2 (over)-expression. These factors are routinely used for 
the selection of patients for HT (with the presence of ER+ 
and/or PgR+ tumors) and anti-HER2 therapies (in HER2 
overexpressing tumors), respectively. The TAILORx trial 
demonstrated the negative predictive role to chemotherapy 
in early HR+ breast cancer for tumor with a recurrence score 
lower than 25 [58]. In any case, its application is still limited 
in clinical practice in European Countries.

3  The Tumor Microenvironment in Luminal 
BC

The tumor microenvironment (TME) includes a variety 
of non-immune and immune cells producing many factors 
that can drive a chronic inflammatory, differently balanced 
situation: either a pro- and an anti-tumor or pro-angiogenic 
tumor environment [59] (Fig. 1). Among the non-immune 
cells, the stromal components of the TME consist of cancer-
associated fibroblasts (CAFs), endothelial cells, and peri-
cytes. Immune cells are particularly abundant in the stroma 
and less numerous in intra-tumoral areas [59]. They are 
composed of macrophages [tumor-associated macrophages 
(TAMs)], dendritic cells (DCs), myeloid-derived suppressor 
cells (MDSC), natural killer (NKs) cells, mast cells (MCs), 
granulocytes, plus the cells of the adaptive immunity, B and 
T lymphocytes. Naïve T cells represent the minority, while 
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memory T cells are the majority of cells, including cytotoxic 
 CD8+ T cells (CTL) and different subsets of  CD4+ T helper 
(Th) and immunosuppressive regulatory T cells (Tregs) [60]. 
It is noteworthy that B and T lymphocytes can be organized 
in tertiary lymphoid structures (TLS) whose role in BC has 
not been clearly defined yet [61, 62]. One can speculate that, 
potentially, all of these cells could have different impacts at 
different times and/or phases of tumor progression to control 
the (pro- or anti-) balance of the TME.

Immune cells can have pro-tumor or anti-tumor activity 
depending on how they communicate with tumor cells and 
with the other immune cells via the “inflammatory cross-
talk network.” It is evident that the BC-TME is different 
within the various subtypes, due to their marked heterogene-
ity. Furthermore, luminal BC was classified into three sub-
groups, beyond Luminal A and Luminal B subtypes, using 
the expression of 130 immune-related genes: high-TIL, 
low-TIL, and high-Interferon Stimulated Genes (ISG) [63]. 
Thus, we can observe different clinical patterns, prognostic 
characteristics, and biologic behaviors [63].

The role of TME components in modulating the response 
to anti-estrogen therapy in HR+ BC has not been fully clari-
fied. However, pre-clinical data validated several cytokines 
that drive resistance to HT (i.e., Fibroblast Growth Factor 2 
(FGF2) and Neuregulin 1 (NRG1)) [64].

3.1  Clinical Significance of Tumor‑Infiltrating 
Lymphocytes in HR+ BC

A standardized methodology for evaluating TILs is a prereq-
uisite for integrating this parameter in standard histopatho-
logical practice, in a research setting as well as in clinical 
trials [59]. This approach was established by Salgado et al. 
in 2015 and recommends reporting TILs as the stromal com-
partment (= % stromal TILs) [59]. The denominator used to 
determine the % stromal TILs is the area of stromal tissue 
(i.e., area occupied by mononuclear inflammatory cells over 
total intratumoral and stromal area), not the number of stro-
mal cells (i.e., fraction of total stromal nuclei that represents 
mononuclear inflammatory cell nuclei) [59].

Fig. 1  The role of tumor microenvironment in hormone receptor-
positive breast cancer. The tumor microenvironment of luminal breast 
cancer includes a variety of non-immune and immune cells produc-
ing many factors that can drive a chronic inflammatory, differently 

balanced situation: either a pro- and an anti-tumor or pro-angiogenic 
tumor microenvironment. TAM-1 tumor-associated macrophages type 
1, TAM-2 tumor-associated macrophages type 2, FGF2 fibroblast 
growth factor 2, Fas-L Fas ligand, Fas Fas receptor
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Recently, Criscitiello et al. evaluated the extent of TILs in 
a retrospective mono-institutional case-cohort series of 987 
patients with early ER+/HER2− BC [65]. In multivariable 
regression analysis, TILs correlate with higher Ki67 expres-
sion; at univariate Cox regression analysis, TIL level (≥ 5% 
vs. < 5%) was not associated with distant DFS (DDFS) 
(p = 0.62) [65]. Indeed, high TILs (≥ 5%) were associated 
with better DDFS only in patients treated with adjuvant 
chemotherapy (p = 0.006) [65].

Moreover, Denkert et al. showed that the presence of TILs 
assessed on H&E-stained slides is an independent predictor 
of response to neoadjuvant CT in all subtypes, particularly 
in TNBC and HER2-positive BC [66]. They further analyzed 
the association between the amount of TIL and the long-
term outcomes (event-free survival and OS) in 2,560 patients 
with EBC undergoing neoadjuvant therapy. While increased 
TILs were associated with a survival benefit in HER2-posi-
tive and TNBC, in luminal/HER2-negative tumors high TIL 
was a negative prognostic factor, raising the question of the 
role played by the immune system in these tumors. Similar 
results were reached by Gao et al. and Waks et al., analyz-
ing the association between pCR and survival, and TILs in 
HR+ BC [67, 68]. Further, another issue is how achiev-
ing a pathological complete response (pCR) correlates with 
long-term outcome in HR+ HER2-negative BC. Indeed, a 
recent meta-analysis by Spring et al. showed that patients 
with HR+ BC with pCR had only a trend towards a lower 
risk for recurrence versus patients without pCR [69]. A sig-
nificant positive correlation was found between pCR and 
long-term outcomes for high-grade HR+ tumors only [69].

A meta-analysis of 25 studies comprising 22,964 patients 
showed that TILs improve OS in TNBC (HR 0.82; 95% CI 
0.76–0.88 for DFS; HR 0.79; 95% CI 0.71–0.87 for OS) and 
HER2+ patients (HR 0.90; 95% CI 0.82–0.99 for DFS), but 
not in estrogen-receptor positive (ER+) patients (HR 1.01; 
95% CI 0.94–1.07 for DFS; HR 1.09; 95% CI 0.98–1.21 for 
OS) [70].

Mahmoud et al. explored the prognostic value of tumor-
infiltrating CTL in unselected BC patients with long-term 
follow-up [71]. They found a positive correlation between 
the total number of  CD8+ cells (= density) and higher grade, 
and a negative correlation with a patient’s age at diagnosis, 
ER and PgR expression [71]. In HR− and basal phenotype 
tumors, remarkably the total  CD8+ counts were associated 
with better BC-specific survival, although in HR+ tumors 
the total number of infiltrating  CD8+ cells was not signifi-
cantly associated with patient outcome [71].

3.2  FOXP Family and the Immune Response to BC

Preclinical studies showed that forkhead box P3  (FOXP3+) 
regulatory T cells (Tregs) can inhibit the anti-tumor immune 
response [72]. In BC, tumor-infiltrating  FOXP3+ Tregs play 

a crucial role in immune escape [73, 74]. However, their 
prognostic value remains unclear. Mahmoud et al. analyzed 
the density of  FOXP3+ cells in a series of 1,445 cases of 
well-characterized primary invasive BC cases with long-
term follow-up. The total number of  FOXP3+ cells showed 
a significant negative correlation with higher grade and 
HR. In addition, FOXP3 infiltration positively correlated 
with HER2 expression and the basal phenotype. The pres-
ence of intra-tumoral  FOXP3+ cells was associated with a 
worse prognosis on univariate analysis, but no significant 
prognostic role was found in multivariate analysis [75]. The 
meta-analysis performed in HR+ BC revealed lower OS in 
patients with high versus low tumor-infiltrating  FOXP3+ T 
cells but not in the HR− population [76]. Further, Liu et al. 
confirmed that the presence of high levels of  FOXP3+ TIL 
is associated with young age, high grade, HR negativity, 
concurrent  CD8+ TIL infiltration, HER2 positivity, and core 
basal subtypes. However, in HR+ BC lacking  CD8+ T-cell 
infiltrates, a high level of  FOXP3+ TIL was significantly 
associated with a poor survival [77]. This might signify that 
the balance between different subsets of immune cells can 
have a different impact on prognosis according to the various 
BC subtypes. Previously, Bates et al. showed that by quanti-
fication of  FOXP3+ Tregs we could identify patients at risk 
of late relapse within the HR+ subgroup [78].

An emerging member of the FOXP subfamily, FOXP1 
(similar to the well-known FOXP3 whose role in regula-
tory T cells has been extensively studied [79]) is abnormally 
expressed in diverse human tumors including BC [80]. The 
FOXP1 gene is located in a tumor suppressor locus at 3p14.1 
and the loss of its expression in BC (as well as in endome-
trial, prostate, and renal cell carcinomas) has been associated 
with a worse outcome [81, 82].

In the immune system, information on FOXP1 is cur-
rently limited but rapidly growing, with studies showing that 
it functions as an essential transcriptional regulator of B cell 
lymphopoiesis [82] and plays a critical role in monocyte 
differentiation and macrophage function [83, 84]. In murine 
models, conditional deletion of the FOXP1 gene in  CD4+ 
 CD8+ thymocytes revealed it is also essential for the genera-
tion of quiescent naïve T cells [85, 86].

This is also further elaborated by the work of Garaud 
et  al., demonstrating the key role of FOXP1 in human 
peripheral blood  CD4+ T-cell quiescence and T-helper (Th) 
cell differentiation [87]. Further, Shi et al. found that FOXP1 
upregulates the expression levels of cytotoxic T lymphocyte 
antigen -4 (CTLA-4) in conventional  CD4+ T cells abrogat-
ing their differentiation into follicular helper T cells in vivo 
[88]. With regard to FOXP1 expression in  CD8+ T cells, a 
study demonstrated that upregulation of FOXP1 in breast 
tumor-derived  CD8+ T cells drives T-cell unresponsiveness 
by blocking proliferation and major T-cell functions, includ-
ing degranulation of cytotoxic granules and cytokine release. 
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This state, which is distinct from anergy and exhaustion, 
involves FOXP1 and Smad2/Smad3 interactions, both trans-
located to the nucleus in response to transforming growth 
factor-beta (TGFβ) signaling [89]. Moreover, a recent study 
showed that FOXP1 serves an essential function in Tregs 
to maintain their suppressive action by enforcing FOXP3-
mediated regulation of gene expression [90].

FOXP1 is normally expressed by normal breast tissues 
and its expression is dysregulated in breast tumor epithelial 
cells [91]. Stromal cells also express FOXP1; these include 
fibroblasts, inflammatory cells, and endothelial and pericyte 
lining vessels. Over the past decades, several studies have 
demonstrated the significance of FOXP1 expression in BC 
and its link to prognosis since its discovery in 2001 [81]. 
FOXP1 may partly be regulated by ER expression, and it 
was shown previously that increased FOXP1 expression had 
a significant positive association with ER expression in pri-
mary human BC [91]. This correlation was further investi-
gated to seek the transcriptional regulation of FOXP1 by ER 
in the ER+ MCF7 BC cell line where it was found that estro-
gen stimulation could significantly upregulate FOXP1 within 
a short time period [92]. Apart from ER regulation, a study 
demonstrated that it may be regulated via the PI3K/Akt/
p70S6K signaling pathway [93]. Few studies showed that 
FOXP1 expression has been associated with better prognosis 
exploring in ER+ BC [91, 92, 94]. There is also information 
on breast cancer gene (BRCA ) status and FOXP1, where 
negativity for FOXP1 was associated with a significantly 
worse OS in BRCA2 cancers [94]. However, recent reports 
suggest FOXP1 as an oncogene in ER− BC [93, 95].

3.3  CTLA‑4: A Key Actor in Cancer Immune Evasion

CTLA-4 is predominantly expressed in  FOXP3+ Tregs or 
activated conventional T cells [96]. Expression of CTLA-4 
was also described on  CD8+ Tregs [97] that are able to sup-
press the anti-tumor immune response by inhibiting the 
proliferation of effector T lymphocytes (participating in the 
regulatory mechanisms of interleukin (IL)-35) [98] and by 
inhibiting dependent allogenic responses [99].

Preclinical research on mice models injected with poorly 
immunogenic metastatic mouse mammary carcinoma 4T1 
cells was performed to test the hypothesis of the efficacy 
of radiotherapy (RT) in primary tumor with CTLA-4 ICB. 
It was shown that RT alone blocked the progression of the 
primary tumor but in the absence of the anti-CTLA-4 mon-
oclonal antibody (mAb) there was no benefit in survival. 
Indeed, CTLA-4 mAb alone did not have any effect on the 
primary tumor growth or survival. However, mice treated 
by combined therapy had a statistically significant survival 
benefit [100]. These observations suggest the role of pos-
sible systemic effects of RT when given in association with 
ICB [101].

The role of CTLA-4 expression was investigated by Mao 
et al. in breast tissues. The immunohistochemical (IHC) 
staining and reverse transcriptase polymerase chain reac-
tion (RT-PCR) were performed in 60 BC patients and in 30 
normal controls. The strong expression of CTLA-4 at both 
protein and mRNA levels was detected in tumor cells and a 
higher mRNA level of CTLA-4 was associated with worse 
LN involvement [102].

Further, in primary breast tumor tissues a significant 
hypomethylation of CpG islands in the promoter region of 
CTLA-4 compared with normal tissues was observed, signi-
fying an upregulation of the CTLA-4 gene [103].

At the protein level, expression of CTLA-4 by IHC was 
found in both immune cells (at the cytoplasmic level) and 
tumor cells in around 50% of BC analyzed in a retrospective 
study including 93 tumors [104]. Interestingly, another retro-
spective study analyzed the clinical impact of the expression 
of CTLA-4 by different cells of the TME in BC showing 
that the group of patients with high CTLA-4 expression on 
interstitial lymphocytes and with a low CTLA-4 expression 
on tumor cells had the best outcomes (DFS and OS) [105]. 
CTLA-4 expression in both tumor cells and TILs was asso-
ciated with worse DFS and OS in luminal B HER2− BC 
[106]. A flow cytometry study investigating the intracellular 
protein expression of CTLA-4 by BC  CD4+ TILs revealed 
its almost low expression in the luminal versus HER2-pos-
itive and TNBC subtypes, as a consequence of their lower 
baseline immune infiltration [107].

3.4  Highlights of PD1/PD‑L1 and HR+ BC

One of the well-recognized immune-checkpoints associated 
with immune evasion in BC is programmed cell death-1 
(PD-1) and its ligand PD-L1 axis [108]. PD-1, which is 
mainly expressed on the surface of the T-cell membrane, 
when combined with PD-L1 induces T-cell apoptosis and 
promotes T-cell differentiation towards Tregs [109].

Innate absence of PD-L1 expression is associated with 
immune hyperactivity against self, such as that observed in 
autoimmune diseases such as systemic lupus erythematosus 
[110]. Consequently, it has been thought that the upregula-
tion of PD-L1 in tumor cells (a rare phenomenon in BC) 
could be related to tumor immune evasion [61, 111]. PD-L1 
mRNA was found to be expressed in at least 20% of BC cells 
[112] and the majority of tumors that upregulated PD-L1 are 
HR− (52% vs. 48%) [112, 113]. Many studies have relatively 
consistently reported that PD-L1 represents a good survival 
prognostic factor in TNBC [114–119], whereas the clini-
cal role of PD-L1 is not clear in HR+ patients [61]. About 
8−45% of HR+ BC express PD-L1 [60]. Interestingly, Wu 
et al. recently demonstrated that in HR+ patients, PD-L1 
expression was associated with better pCR (p = 0.022), but 
with poor DFS (p = 0.018) [120]. Considering that PD-L1 
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expression is positively correlated with the extent of TILs, 
these findings are in line with the meta-analysis by Denkert 
et al. revealing that high TILs are associated with worse 
survival outcomes in luminal BC. Further, a large compre-
hensive meta-analysis revealed that whereas in HER2-pos-
itive and TNBC we can observe a statistically significant 
correlation between pCR and survival, in HR+ BC, there 
is no correlation [121]. Moreover, PD-L1 seems to provide 
additional favorable prognostic value to 21- and 70-gene 
scores in HR+ BC [122].

Based on these considerations, we may deduce that high 
TIL luminal BC are more likely to respond to neo-adjuvant 
chemotherapy compared to low TIL BC, but present more 
aggressive features that confer a worse prognosis. The expla-
nation of this phenomenon might be found by examining the 
composition of the immune infiltrate.

3.5  The Role of Fas/Fas‑Ligand (FasL) Pathway in BC 
Immunoevasion

The role of Tregs in the process of immune evasion is cru-
cial. Tumor cells release the chemokines that attract Tregs 
into the tumor. Once these suppressive cells are recruited, 
they start to inhibit the function of Th cells stimulated 
against cancer cells, thus having a pro-tumoral effect. For 
example, they can induce Th cell apoptosis activating the 
Fas-Fas Ligand (FasL) pathway.

Fas (also known as APO-1 or CD95) belongs to the sub-
group of the tumor necrosis factor receptor (TNF-R) family 
that contains an intra-cellular “death domain,” and can trig-
ger apoptosis. Its physiological ligand, FasL (CD95L), is a 
member of the corresponding TNF cytokine family [123].

The Fas death receptor is displayed on the surfaces of 
several types of lymphocytes, and by the activation of this 
extrinsic apoptotic pathway (=Fas-FasL) CTL are destroyed. 
Tumor cells can produce and release soluble forms of 
the apoptosis-inducing protein CD95L (FasL, APO-1L, 
CD178), thus eliminating TIL and suppressing anti-tumor 
immune responses, a phenomenon called “tumor counter-
attack” [124]. The upregulation of FasL often occurs fol-
lowing CT, from which tumor cells have attained apoptosis 
resistance [125].

Interestingly, in a TiRP melanoma model, Zhu J et al. 
showed that TIL apoptosis was mediated by polymorpho-
nuclear-myeloid-derived suppressor cells (PM-MDSCs) 
through FasL. Similarly, Tregs trigger apoptosis of  CD8+ 
cells by the high expression of FasL determining immune 
tolerance [126].

Several studies suggest that the downregulation of Fas 
in EBC is associated with a worse prognosis [127]. Mot-
tolese et al. revealed that the DFS was significantly longer 
in patients with Fas-positive tumors compared to the Fas-
negative ones [128]. These results were further confirmed 

by Reimer et al. and Botti et al., who found that the FasL:Fas 
ratio > 1 was related to a significantly shorter DFS [129, 
130].

Furthermore, T and FasL:Fas ratio were of independent 
predictive significance in the multivariate model for DFS 
and OS in that subgroup. Among postmenopausal patients 
(n = 148), these factors retained independent prognostic sig-
nificance in the multivariate model for DFS [129]. Based on 
these considerations, we can conclude that the expression 
of FasL is associated with a worse prognosis in HR+ EBC.

4  Clinical Trials with Immune Checkpoint 
Blockade (ICB) in HR+ BC

Several early phase trials have tested the safety and efficacy 
of immunotherapy alone or in combination with other agents 
in luminal BC patients (Tables 1, 2). In the neoadjuvant set-
ting, pembrolizumab—in combination with chemotherapy—
increased the pCR rates, varying from 15 to 30%, depending 
on the chemotherapy backbone [131]. In the advanced set-
ting, ORR ranges from 12% for pembrolizumab alone [132] 
to 34% in association with eribulin [133] and 29% when 
combined with the CDK4/6i, abemaciclib [134]. As main-
tenance therapy, durvalumab (i.e., anti-PD-L1 antibody) 
improved OS compared to chemotherapy in HR+ BC (21.7 
vs. 17.9) [135]. 

In order to improve the efficacy of immune activation in 
this subset of patients, several studies are currently testing 
the efficacy of ICB in this subtype. They are summarized in 
Table 3. Most of the trials are administering combination 
regimens in order to synergize the ICB effect. In this con-
text, anti-PD-L1 is provided with anti-CTLA4 monoclonal 
antibodies (mAbs) (NCT03132467, NCT03608865) or with 
oncolytic virus (i.e., in the NCT03802604 trial), adminis-
tered with the aim of increasing the immune infiltration at 
the tumor site.

Scientists are also trying to use the immunomodulatory 
and antigenic exposure effect of CT in order to enhance the 
activity of ICB. Previous findings demonstrated that the 
therapeutic efficacy of doxorubicin treatment is dependent 
on IL-1b, IL-17, and interferon gamma (IFNγ) production, 
and  CD8+ cell recruitment. The efficacy of eribulin may 
be attributed to its biological effects on the immune sys-
tem, such as the reduction of PD-L1 and FOXP3 expression 
[136, 137], shifting the balance from a pro- to an anti-tumor 
immune response. Furthermore, the immune-modulating 
effects of taxanes appear to synergize with ICB. In par-
ticular, the reduction in Tregs and MDSCs paired with the 
recruitment of T cells and mature DCs to the tumor could 
render ICB-induced T cells more effective within the TME 
[138].
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Based on these considerations, the following trials are 

testing the efficacy of CT in association with ICB, in both 
the early and the advanced settings of the HR+ disease. 
They are: NCT03515798, NCT02957968, NCT03815890, 
NCT03356860,  NCT03875573,  NCT02999477, 
NCT02018458,  NCT03725059,  NCT03591276, 
NCT03841747,  NCT03222856,  NCT03409198, 
NCT02614833. Furthermore, the radiation-induced activa-
tion of the immune system has been increasingly recognized 
in recent years, suggesting that RT could also elicit immune-
mediated anti-tumor responses [139, 140]. In fact, the role 
of T lymphocytes in the local tumor control induced by RT 
was demonstrated in a murine fibrosarcoma model more 
than 30 years ago [139, 140]. Other studies have found that 
this immune-mediated anti-tumor effect of RT could also 
trigger the regression of metastatic tumors that were distant 
from the irradiated field, which is the so-called abscopal 
effect [139, 141]. Consequently, RT has been associated 
with ICB in several clinical trials enrolling HR+ BC patients 
(NCT03366844 and NCT03051672).

Moreover, the HT aromatase inhibitors—in particular 
letrozole—seem to reduce the presence of intratumoral 
 FOXP3+ Tregs [142]; in this context, several trials are 
administering ICB in combination with aromatase inhibi-
tors (NCT03874325, NCT02997995, NCT02204098, 
NCT03804944,  NCT02971748,  NCT03879174, 

NCT03393845,  NCT03225547,  NCT02990845, 

NCT02648477, NCT03430479, NCT03430466).
Preclinical evidence suggests that CDK4/6 inhibitors 

(CDK4/6i) promote anti-tumor immunity by increasing 
antigen processing and presentation [143]. They may also 
modulate NK cell activity, augment T-cell effector func-
tion, and markedly suppress the proliferation of Tregs. A 
phase Ib study of the anti-PD-1 pembrolizumab plus abe-
maciclib in heavily pretreated patients with PD-L1-positive 
HR+ advanced BC showed an acceptable safety profile and 
a clinical activity (overall response rate: 14.3% at 16 weeks 
with a 75% disease control rate) [144]. Considering these 
results, further studies are now ongoing combining ICB and 
CDK4/6i (NCT02778685, NCT03147287, NCT03294694).

5  Conclusions

In summary, TME has a peculiar role in HR+ BC which 
seems to differ from other BC subtypes. In particular, in 
luminal/HER2-negative tumors, high TIL extent was a nega-
tive prognostic factor, and the total number of infiltrating 
 CD8+ cells was not significantly associated with patient out-
come. Conversely, high tumor-infiltrating  FOXP3+ T cells 
has been associated with shorter OS, identifying patients 
with high risk of late-relapse within this subgroup. CTLA-4 

Table 1  Completed clinical trials with immune checkpoint inhibitors in hormone receptor-positive early breast cancer

AE adverse event, pCR pathological complete response, NR not reported, TNBC triple negative breast cancer

ClinicalTrials.
govIdentifier

Setting Phase Treatment arm(s) ORR (%) Survival (months) Grade 3/4 AE
prevalence (%)

NCT01042379 Neoadjuvant 2 Pembrolizumab four-arm /placebo + paclitaxel fol-
lowed by doxorubicin + ciclofosfamide

NR pCR 30% vs. 13% 25

NCT01042379 Neoadjuvant 2 Pembrolizumab 8 weekly paclitaxel x 12 wks + 
pembrolizumab q3 wks x 4 followed by pembroli-
zumab q3 wks x 4

NR Non TNBC pCR 15 NR

Table 2  Completed clinical trials with immune checkpoint inhibitors in hormone receptor-positive advanced breast cancer

AE adverse event, PFS progression-free survival, OS overall survival

ClinicalTrials.
govIdentifier

Setting Phase Treatment arm(s) ORR (%) Survival (mths) Grade 3/4 AE 
prevalence (%)

NCT02054806 2L+ 1b Pembrolizumab 12 mDOR 12
mPFS 1.8
mOS 8.6

16

NCT03051659 2L+ 2 Pembrolizumab + eribulin vs. Eribulim 25 vs. 34 mPFS 4.1 vs. 4.2 54.6 vs
NCT02299999 1L or 2 L 2 In patients with CR/PR/SD after 6–8 CT cycles and 

no targetable molecular alteration randomization 
to durvalumab or maintenance CT

39.7 vs. 42.6 ITT
mPFS 2.7 vs. 4.6
mOS 21.7 vs. 17.9

13.2 vs. 15.9

NCT02779751 2L 1b Pembrolizumab + abemaciclib 28.6 NR NR



417Immune System and Luminal Breast Cancer

Table 3  Currently ongoing clinical trials with immune checkpoint inhibitors in hormone receptor-positive early breast cancer

ClinicalTrials.
gov Identifier

Setting Phase Primary endpoint(s) Treatment arm(s)

NCT03515798 Neoadjuvant 2 pCR, DLT Experimental arm: pembrolizumab+(F)EC 
followed by paclitaxel. Control arm: (F)EC 
followed by paclitaxel

NCT02957968 Neoadjuvant 2 TIL Decitabine+pembrolizumab followed by dose-
dense ACx4 followed by paclitaxel weekly 
x12

NCT03395899 Neoadjuvant 2 2-fold Increase in GzmB+ CD8+ T cell 
levels

Control arm: atezolizumab. Three experimental 
arms: (1) atezolizumab + cobimetinib, (2) 
atezolizumab + ipatasertib, (3) atezolizumab 
+ cobimetinib + bevacizumab

NCT03815890 Neoadjuvant 2 Immune activation after pre-operative 
nivolumab

Cohort 1: nivolumab; cohort 2: 
nivolumab+doxorubicin

NCT03132467 Neoadjuvant 1 Feasibility, Safety Durvalumab+tremelimumab
NCT03356860 Neoadjuvant 1/2 Toxicity, pCR Experimental arm: durvalumab + chemo-

therapy (paclitaxel then EC). Control arm: 
chemotherapy (paclitaxel then EC)

NCT03874325 Neoadjuvant 2 Rate mPEPI score of 0 Durvalumab + aromatase Inhibitor
NCT02997995 Neoadjuvant 2 pCR Tremelimumab + exemestane, followed by 

durvalumab + exemestane
NCT03875573 Neoadjuvant 2 Safety, residual cancer burden Control arm: paclitaxel followed by dose-dense 

doxorubicin-cyclophosphamide (ddAC) 
and pre-operative RT. Experimental arm 
1: durvalumab + control arm treatment. 
Experimental arm 2: oleclumab + control 
arm treatment

NCT02999477 Neoadjuvant 1 Change in PD-L1 expression by IHC from 
baseline biopsy to biopsy after 2-week 
treatment

Pembrolizumab + nab-paclitaxel

NCT03366844 Neoadjuvant 1 Safety, changes in TIL Pembrolizumab+RT
NCT02204098 Neoadjuvant 1 Safety Control arm Cohort 1: neoadjuvant endocrine 

therapy. Experimental arm Cohort 2: neoad-
juvant endocrine + mammaglobin-A DNA 
vaccine. Control arm Cohort 3: neoadjuvant 
chemotherapy. Experimental arm Cohort 4: 
neoadj chemotherapy + mammaglobin-A 
DNA vaccine.

NCT02018458 Neoadjuvant 1/2 Safety DC vaccine + chemotherapy AC
NCT03802604 Neoadjuvant 2 Gene signature CD8 Tc Talimogene laherparepvec + atezolizumab
NCT03804944 Neoadjuvant/Adjuvant 2 Safety, clinical and pathological RR Arm 1: RT; Arm 2: RT + pembrolizumab; Arm 

3: RT+CDX301; Arm 4: RT + pembroli-
zumab + CDX301 (all arms: Letrozole until 
surgery, and thereafter decided by the treating 
physician)

NCT03725059 Neoadjuvant/ Adjuvant 3 pCR, EFS Experimental arm: Pembrolizumab + chemo-
therapy (KX/KA[E]C). Control arm: Placebo 
+ chemotherapy (PX/PA[E]C)

NCT02971748 Adjuvant 2 DFS Pembrolizumab + hormonal therapy
NCT03879174 Advanced 2 PFS, ORR Pembrolizumab + tamoxifen
NCT03393845 Advanced 2 ORR Pembrolizumab + fulvestrant
NCT03225547 Advanced 2 ORR Pembrolizumab + mifepristone
NCT03591276 Advanced 1 Safe dose doxil, ORR Pembrolizumab + pegylated liposomal doxo-

rubicin
NCT03841747 Advanced 2 PFS, OS Experimental arm: pembrolizumab + pacli-

taxel. Control arm: paclitaxel
NCT02990845 Advanced 1/2 PFS at 8 months Pembrolizumab + exemestane + leuprolide
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expression in both tumor cells and TILs was associated with 
worse DFS and OS in luminal B HER2-negative BC. Simi-
larly, PD-L1 expression was associated with poor DFS. Sev-
eral studies suggest that the downregulation of Fas in HR+ 
EBC is also associated with worse prognosis.

Based on the previous observations, several trials are cur-
rently testing the efficacy of ICB in HR+ BC and results 
are awaited to confirm the potential therapeutic role of the 
immunomodulation in this subgroup of patient. As the 
majority of the observations regarding the TME and its role 
in HR+ BC are retrospective, we strongly encourage pro-
spective, translational trials aimed to dissect this topic.
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Table 3  (continued)

ClinicalTrials.
gov Identifier

Setting Phase Primary endpoint(s) Treatment arm(s)

NCT03222856 Advanced 2 CBR Pembrolizumab + eribulin
NCT02778685 Advanced 2 ORR Pembrolizumab + letrozole + palbociclib
NCT02648477 Advanced 2 Safety, ORR in cohort 1, ORR in cohort 2 Pembrolizumab + AI
NCT03566485 Advanced 1/2 DLT, MTD, RP2D, ORR Arm 1: atezolizumab + cobimetinib; Arm 2: 

atezolizumab + idasanutlin
NCT03280563 Advanced 1/2 ORR Control arm: fulvestrant. Experimental arm: 

atezolizumab-containing doublet or triplet 
combination (enotinostat/ipatasertib/ipata-
sertib + fulvestrant/fulvestrant/bevacizumab 
+ ET) (stage 1). Subsequent triplet combina-
tion (stage 2)

NCT03409198 Advanced 2 Toxicity, PFS Control arm: pegylated liposomal doxorubicin 
+ cyclophosphamide. Experimental arm: 
pegylated liposomal doxorubicin + cyclo-
phosphamide +ipilimumab + nivolumab

NCT03430479 Advanced 1/2 DLT Nivolumab + radiotherapy + hormonal therapy
NCT03608865 Advanced 2 ORR Durvalumab + tremelimumab
NCT03430466 Advanced 2 ORR Durvalumab + tremelimumab + fulvestrant
NCT03147287 Advanced 2 PFS Control arm: fulvestrant. Experimental arm 1: 

Palbociclib + fulvestrant. Exlerimental arm 
2: avelumab + Palbociclib + fulvestrant

NCT02614833 Advanced 1/2 RP2D, PFS Control arm: paclitaxel + placebo. Experimen-
tal arm: paclitaxel+IMP321

NCT03051672 Advanced 2 ORR Pembrolizumab+RT
NCT03294694 Advanced 1 MTD/RP2D Cohort A: Ribociclib + PDR001; cohort B: 

Ribociclib + PDR001 + fulvestrant

pCR pathological complete response, TIL tumor-infiltrating lymphocytes, IHC immunohistochemical, DFS disease-free survival, PFS progres-
sion-free survival,
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in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other 
third party material in this article are included in the article’s Creative 
Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons 
licence and your intended use is not permitted by statutory regula-
tion or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit 
http:// creat iveco mmons. org/ licen ses/ by- nc/4. 0/.
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