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Network analysis identifies DAPK3
as a potential biomarker for lymphatic
invasion and colon adenocarcinoma prognosis

Huey-Miin Chen1 and Justin A. MacDonald1,2,*

SUMMARY

Colon adenocarcinoma is a prevalent malignancy with significant mortality.
Hence, the identification of molecular biomarkers with prognostic significance
is important for improved treatment and patient outcomes. Clinical traits and
RNA-Seq of 551 patient samples in the UCSC Toil Recompute Compendium of
The Cancer GenomeAtlas TARGET andGenotype Tissue Expression project data-
sets (primary_site = colon) were used for weighted gene co-expression network
analysis to reveal the association between gene networks and cancer cell inva-
sion. One module, containing 151 genes, was significantly correlated with
lymphatic invasion, a histopathological feature of higher risk colon cancer.
DAPK3 (death-associated protein kinase 3) was identified as the pseudohub of
themodule. Gene ontology identified gene enrichment related to cytoskeletal or-
ganization and apoptotic signaling processes, suggestingmodular involvement in
tumor cell survival, migration, and epithelial-mesenchymal transformation.
Although DAPK3 expression was reduced in patients with colon cancer, high
expression ofDAPK3was significantly correlatedwith greater lymphatic invasion
and poor overall survival.

INTRODUCTION

Adenocarcinomas of the colon and rectum, collectively referred to as colorectal cancer (CRC), are highly

aggressive and common contributors to global cancer morbidity and mortality (Malki et al., 2020; Dekker

et al., 2019; Marmol et al., 2017). The likelihood of CRC diagnosis is about 5%, and risk factors include age

and sex as well as diet and other lifestyle habits (Marmol et al., 2017). The distinction between colon and

rectal cancer is largely anatomical, but the tumor location does impact both surgical and therapeutic man-

agement strategies as well as prognosis. In 2018, adenocarcinoma of the colon was the fourth most com-

mon malignancy and was documented to account for >10% of all diagnosed cancers globally (Ferlay et al.,

2019). Colorectal adenocarcinomas are caused by genomic instability and mutations that occur in tumor

suppressor genes, oncogenes, and genes related to DNA repair. Genetic and epigenetic alterations

contribute to molecular events that lead to the neoplastic transformation of healthy colorectal epithelium

which then progresses to malignancy (Fearon and Vogelstein, 1990). Several canonical signaling pathways

are known to be affected by genomic aberrations in CRC (i.e., mitogen-activated protein kinases (MAPKs),

phosphoinositide 3-kinase (PI3K), transforming growth factor (TGF)-b, tumor protein P53 (TP53), and wing-

less and Int-1 (Wnt/b-catenin) and ultimately lead to changes in fundamental cellular processes that drive

tumor development, including differentiation, apoptosis, cell cycle, cell proliferation, and survival (Malki

et al., 2020; Marmol et al., 2017).

In addition, cancer cell migration is particularly important to the process of metastasis, by which cancer

cells escape from the primary tumor and travel to distant sites to invade a new niche (Chow et al., 2012).

Two important pathologic processes for cancer cell migration include lymphovascular and perineural inva-

sion, whereby tumor cells invade nervous tissue (perinuclear invasion, PNI) or small lymphatic and vascular

tissues (lymphovascular invasion, LVI), respectively. Patients with locally advanced rectal cancer who

demonstrated PNI and/or LVI had significantly higher risk of recurrence and poorer survival outcomes

(Sun et al., 2019). Moreover, LVI and PNI had detrimental effects on survival after diagnosis of stage II or

III adenocarcinoma of the colon (Mutabdzic et al., 2019; Skancke et al., 2019). In patients with stage III colon

cancer, increased lymph node involvement was also associated with a need for adjuvant therapy with
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worsening overall survival and shorter time to recurrence (Sjo et al., 2012). Thus, an improved understand-

ing of the genes associated with PNI and/or LVI of colon adenocarcinomamay reveal candidate biomarkers

and novel therapeutic opportunities by identifying predictive and/or prognosis markers for metastatic in-

vasion events.

In this study, we assess the ubiquity between tumor and LVI molecular markers that are associated with co-

lon cancer to improve prediction of cancer cell migration and invasion with links to overall survival.

Weighted gene co-expression network analysis (WGCNA) is commonly used to explore next-generation

RNA-Seq datasets for correlations among genes and clinical phenotypes (Li et al., 2018; Langfelder and

Horvath, 2008; Zhang and Horvath, 2005). WGCNA can provide insights into the molecular networks that

connect clinical features of tumor progression and has been previously used to identify candidate prog-

nostic biomarkers or therapeutic targets (Chen et al., 2019; Zou and Jing, 2019; Qin et al., 2019; Zhai

et al., 2017; Yang et al., 2014). Co-expression modules were constructed using normalized RNA-Seq

data and then related to clinicopathological outcomes for patients with colon adenocarcinoma. Search

tool for the retrieval of interacting genes/proteins (STRING) network analysis and gene ontology (GO)

enrichment analysis were performed to identify hub genes and the primary biological function of selected

modules that were aligned with LVI and PNI characteristics of colon adenocarcinoma.

RESULTS

The primary objective of our study was to resolve tumor-associated molecular markers by their linkage to

lymphatic invasion and overall survival. To achieve this, we used a schema that is outlined in Figure 1.

Figure 1. Workflow scheme. The workflow for data acquisition, preparation, processing, and analyses
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WGCNA identified a gene network associated with lymphovascular invasion in colon

adenocarcinoma

The presence of tumor cells within the lymphatics or blood vessels is associated with increased risk of axil-

lary lymph node and distant metastases. To identify candidate biomarkers for lymphatic invasion, we per-

formedWGCNA on RNA-Seq data obtained from The Cancer Genome Atlas (TCGA) with the |primary_site|

originating from colon, |histological_type| limited to colon adenocarcinoma, and non-protein-coding

genes excluded. When the soft thresholding was set at 10, the scale-free topology fit index reached

0.95 (Figures 2A and 2B). Modules of co-expressed genes were determined with hierarchical clustering

and the dynamic tree cut procedure, and each of the modules was marked by a color. In all, 24 different

modules resulted from WGCNA with the clustering dendrograms of genes shown in Figure 2C. Merging

of modules with similar expression profiles was completed with a cut height of 0.25, corresponding to a

0.75 correlation; however, this did not reduce the number of modules. The darkgreymodule was the small-

est, with 100 genes, while the turquoise and blue modules were the largest, with 2,005 and 1,742 genes,

respectively (Table S1). All genes were assigned, and no genes were grouped in gray (i.e., the module

reserved for genes with no assigned classification).

The clinical features of patients colon adenocarcinoma, including lymphatic invasion, venous invasion, and

perineural invasion occurrence, as well as pathological stage and pathological T (tumor, T), pathological N

(node, N), and pathological M (metastasis, M) staging categories were extracted from the TCGA dataset

and then related to the module eigengenes (MEs). As shown in Figure 3, MEdarkred was correlated with

Figure 2. Weighted gene co-expression network analysis (WGCNA) of primary tumors from colon

adenocarcinoma

A range of soft-thresholding power (b) was screened within the WGCNA pipeline (A), and the plot shows the scale-free

topology fit index for different b powers. The mean connectivity for various soft-thresholding powers is also provided (B).

Hierarchical clustering and module assignment was completed based on a topological overlap matrix to calculate the

corresponding dissimilarity (dissTOM). In (C), the connected genes were grouped into colored modules with the dynamic

tree cut method. Highly correlated modules were merged based on a cut height of 0.25.
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lymphatic invasion (r = 0.13, p = 0.04) and venous invasion (r = 0.14, p = 0.04). Additional correlations were

observed for MEdarkred with pathology N (r = 0.14, p = 0.03) and pathological stage (r = 0.17, p = 0.01).

Notably, the darkred module contained DAPK3 (death-associated protein kinase 3) along with 150 other

genes (Table S2). DAPK3 expression is attenuated in several squamous cell carcinomas (Kake et al.,

Figure 3. Module-trait relationship matrix correlating MEs with clinical traits

For the module-trait relationships, each row in the matrix corresponds to a module eigengene (ME) and each column to a

clinical trait. Each cell contains the corresponding correlation with the p values of the correlations in parentheses. Each

module-trait relationship is color-coded by correlation as indicated in the color legend on the right; blue indicates a

negative correlation, while red represents a positive one. The MEdarkred (outlined in green) had the highest correlation

with lymphatic invasion and contains DAPK3.
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2017; Das et al., 2016; Li et al., 2015; Kocher et al., 2015; Bi et al., 2009). Moreover, loss-of-function muta-

tions or deletion of DAPK3 promote increased cell survival, proliferation, cellular aggregation, and

increased resistance to chemotherapy (Brognard et al., 2011). Considering this evidence, DAPK3 is now

implicated as a tumor-suppressing kinase.

To further validate the module-clinical trait relationships, we completed additional examination of the cor-

relation between the gene significance (GS) and the module membership (MM) measures. Five modules

possessed a greater proportion of gene members with positive significance toward lymphatic invasion,

including the darkred module (r = 0.29; p = 0.0003), as well as blue, cyan, pink, and lightyellow modules

(Figure 4). As the module of primary interest, darkred contained a majority of members (79%) with positive

gene significance toward lymphatic invasion. MEs were also used as representative profiles to assess mod-

ule similarity by eigengene correlation. Construction of the eigengene network provided the identification

of groups of correlated eigengenes termed meta-modules. MEdarkred, MEblack, MEmidnightblue, and

MElightyellow modules were highly related. The mutual correlation of these four MEs was much stronger

than their correlation with lymphatic invasion; however, lymphatic invasion was present as a part of the

meta-module (Figure S1).

The gene module associated with lymphovascular invasion is linked to apoptosis and actin

cytoskeleton processes

Functional enrichment analysis was conducted with topGO R on the darkredmodule, and the enriched GO

biological processes were found to be dominated by regulation of apoptosis and cellular architecture (Fig-

ure 5A). Importantly, the significantly enriched pathways were aligned with ‘‘Actin cytoskeleton organiza-

tion; GO:0030036,’’ the ‘‘Positive regulation of apoptotic signaling pathway; GO:2001235,’’ the ‘‘Regulation

of mitochondrion organization; GO:0010821,’’ and the ‘‘Regulation of mitochondrial membrane perme-

ability involved in apoptotic process; GO:1902108’’.

DAPK3 is revealed as the pseudohub gene in the module associated with lymphovascular

invasion

Differential expression analysis is routinely used to interpret the biological importance of transcriptomics

experiments (Crow et al., 2019). RNA-Seq data from TCGA and Genotype Tissue Expression project (GTEx)

were analyzed to obtain a list of differentially expressed genes (DEGs). Based on the threshold of |log2(FC)|

> 0.58 and an adjusted p value cut-off of 5%, 9,390 DEGs were identified. For a stricter definition of signif-

icance, the treat method was used to calculate the p values from empirical Bayes-moderated t-statistics

with a minimum |log2(FC)| requirement (McCarthy and Smyth, 2009). The number of DEGs was reduced

to a total of 8,479 when treat testing required a |log2(FC)| greater than 0.58. Among the 8,479 DEGs,

3,579 were significantly upregulated in CAC samples, whereas 4,900 were significantly downregulated in

CAC samples (Figure 5B). The list of DEGs generated via the limma R pipeline was amalgamated with

WGCNA-derived modules. An examination of the consolidated analyses revealed 57 of 151 (38%) genes

in the darkredmodule to be differentially expressed. The R function coxph |survival| was used to determine

the association between differential gene expression and overall survival. This analysis identified 18 of 151

(12%) genes in the darkred module that passed the |log_rank = 0.05| threshold. Of this subset, 6 of 151

genes were significantly differentially expressed and significantly associated with overall survival (Figure 5C

and Table S2).

As shown in Figure 6, genes within the darkred module were used as input for protein-protein interaction

network construction with the STRING database. Intramodular connectivity was used to identify putative

intramodular hub genes with the top five candidates having greater than 25 intramodular connections

(i.e., RHOT2, mitochondrial Rho GTPase 2; RIPK3, receptor-interacting serine/threonine-protein kinase

3; SSH3, slingshot homolog 3; PIDD1, p53-induced-death-domain-containing protein 1; and TELO2,

telomer length regulation protein TEL2 homolog). Importantly, none of the five hub candidates were

both differentially expressed and linked to overall survival probability. Of genes that were differentially ex-

pressed and were significant for overall survival, DAPK3 was revealed as the pseudo-hub gene of the

network (Figure 6). It also possessed a high degree of connectivity as revealed by degree distribution

and closeness centrality (Table S3). In addition to DAPK3, ANKRD13D (ankyrin-repeat-domain-containing

protein 13D), ENKD1 (enkurin-domain-containing protein 1), DEF8 (differentially expressed in FDCP 8 ho-

molog),NOL3 (nucleolar protein 3), and ARRDC1 (a-arrestin-domain-containing protein 1) exhibited differ-

ential expression profiles that significantly impacted overall survival probability.
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Figure 4. Intramodular analysis for modular membership versus gene significance

(A) The correlation between the gene significance (GS) andmodule membership (MM)measures was explored. Shown are

the Pearson correlations for modules with p values (two-tailed) indicating significance.

(B) Scatterplots of GS versus MM for lymphatic invasion. GS is the relationship between the gene and the clinical trait, and

the MM describes the correlation between the ME and the expression profile of a given gene with said module.

Highlighted in green are modules with a majority of members having positive GS toward lymphatic invasion. Red

highlights modules with most members having negative GS toward lymphatic invasion.
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To investigate DAPK3 expression in human colon cancer, the Toil recomputed expression of DAPK3 in

GTEx and TCGA (healthy colon vs. colon adenocarcinoma, primary tumor) was juxtaposed via unpaired t

test with Welch’s correction. As shown, the level of DAPK3 expression is significantly downregulated (Fig-

ure 7A;�0.825G 0.089, p < 0.0001) in colon adenocarcinoma. A subsequent analysis of DAPK3 expression

(healthy colon vs. colon adenocarcinoma, primary tumor; unified by Wang et al., 2018) generated consis-

tent results and verified reduced DAPK3 expression in colon cancer samples (Figure 7B; �0.879 G

0.048, p < 0.0001). Thus, the gene expression analysis further substantiates DAPK3 as a candidate tumor

suppressor gene. Survival data were also retrieved as part of the UCSC dataset downloaded from Xena

and subjected to Kaplan-Meier analysis to determine the significance of DAPK3 expression on survival

probability in patients with colon adenocarcinoma. Figure 8A shows that high DAPK3 expression

(>10.92, upper quartile) strongly correlates with poor overall survival probability when compared with

low DAPK3 expression (<10.39, lower quartile). However, DAPK3 expression does not make a significant

impact on disease-specific survival (Figure 8B). One feasible explanation for this discrepancy is an exper-

imentally defined role for DAPK3 in the actin filament and focal adhesion dynamics (Nehru et al., 2013),

as well as cellular migration (Li et al., 2015; Komatsu and Ikebe, 2004), which may play unfavorably within

the context of colon cancer metastasis. Invasion data were not available for the Toil Recomputed Compen-

dium; however, an examination of DAPK3 expression versus invasion for the ‘TCGA Colon Cancer’ dataset

Figure 5. Biomolecular characteristics of the darkred module

(A) Gene ontology (GO) enrichment analysis was conducted for genes in the darkred module. Biological process (BP) GO terms are listed along the y axis.

GO terms were deemed significant when |p value| % 0.01 and |total number of annotated genes| R 30.

(B) A volcano plot of differentially expressed genes (DEGs, n = 8,479) derived from the TCGA and GTEx datasets and plotted as the log2-fold change

differences (log2FC) between the compared samples. The upregulated (red) and downregulated (blue) genes were assessed for statistical significance using

the treat method with empirical Bayes-moderated t-statistics (-log(FDR)).

(C) Six genes were revealed to be differentially expressed and be significantly associated with overall survival. Kaplan-Meier survival analysis by log-rank test

was used to examine survivability with respect to high or low expression of (i) ANKRD13D, ankyrin repeat domain-containing protein 13D; (ii)DAPK3, death-

associated protein kinase 3; (iii) ENKD1, enkurin domain-containing protein 1; (iv) ARRDC1, arrestin domain-containing protein 1; (v) DEF8, differentially

expressed in FDCP 8 homolog; and (vi) NOL3, nucleolar protein 3.
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via Xena does reveal correlation between DAPK3 expression and metastatic invasion occurrence. In this

case, incidents of venous, lymphatic, and perineural invasions were paradoxically associated with higher

DAPK3 expression (Figure 8C).

Differential correlation of DAPK3 in normal and tumor samples revealed loss of correlation

with genes linked to cell migration and cell adhesion

Genes that are functionally related tend to have similar expression profile; therefore, differential gene cor-

relation analysis (DGCA) comparing expression correlation in normal and disease samples can illuminate

DAPK3-dependent biological processes and/or molecular pathways that may be distinctly involved be-

tween the two states. DGCA was used to compare gene expression correlation in normal and colon adeno-

carcinoma disease samples, and the outcomes were sorted into nine possible categories (Figure S2). Of the

8,528 protein-coding genes surveyed, 8,222 (93%) were found to be differentially correlated with DAPK3

Figure 6. Biomolecular interaction network constructed for DAPK3 and other gene products of the darkred module

Genes within the darkredmodule were used as input for protein-protein interaction network construction using the search tool for the retrieval of interacting

genes/proteins (STRING). The network was visualized with Cytoscape. The node size reflects the degree of interactions (i.e., edges) linked to a given gene.

The node color describes the differential expression: blue, downregulation; orange, upregulation; and white, not differentially expressed. The node border

color is reflective of the association with overall survival: red, |log_rank <0.05| and blank, not significant. Genes that were differentially expressed and

significantly associated with overall survival are noted in red text.
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between healthy controls and colon cancer conditions. When compared against the GTEx normal healthy

population, DAPK3 lost correlation with 46% of the genes surveyed and gained correlation with 47%.

Finally, 6% of the surveyed genes had no significant correlation in either condition (healthy colon or colon

adenocarcinoma) or had nonsignificant differential correlation. GO enrichment analysis was used to iden-

tify the biological processes and/or molecular pathways wherein differential correlation of DAPK3 was

implicated (Figure 9). DAPK3 differential correlations changed most within the biological process of

‘‘Organic acid catabolic process; GO:0016054,’’ ‘‘Cell projection assembly; GO:0030031, and ‘‘Muscle or-

gan development; GO:0007517’’ and the molecular pathways of ‘‘Endoribonuclease activity; GO:0004521’’

and ‘‘Extracellular matrix structural constituent; GO:0005201.’’

DISCUSSION

Several patient and disease characteristics are known to affect survival of patients with colon cancer,

including age, sex, primary tumor location, tumor grade, and lymph node involvement (Dienstmann

et al., 2019; Weiser et al., 2011). In addition, LVI and PNI are histopathological features associated with

higher risk colon cancer (Skancke et al., 2019; Mutabdzic et al., 2019; Cienfuegos et al., 2017; Liebig

et al., 2009). However, themolecular biomarkers that distinguish between normal and invasive colon cancer

are not well described. In this study, we used theWGCNAmethod to evaluate the system-level functionality

of genes with clinical invasion features of colon adenocarcinoma.

The power of WGCNA lies in its ability to reveal gene modules (i.e., gene co-expression networks) and

identify the central players (i.e., hub genes) within modules that are usually related to biological functions

(Li et al., 2018; Langfelder and Horvath, 2008; Zhang and Horvath, 2005). RNA-Seq data and clinical infor-

mation obtained from the TCGA database were included in the WGCNA to identify robust co-expression

modules associated with tumor invasion characteristics. A total of 24 distinct gene co-expression modules

that included 9,750 protein-coding genes were identified from primary tumors of patients with colon can-

cer. After examining the associations between the modules and clinical invasion traits, darkred was iden-

tified to be a clinically significant gene module that required further interrogation. Significantly the module

was linked with positive gene correlation toward lymphatic and venous invasion as well as pathological

stage. The 151 genes within this module were considered to possess functional associations with each

other and, thus, could potentially identify important molecular pathways and hub genes that could advance

understanding, detection, and/or treatment opportunities for colon cancer.

Functional annotation of the darkredmodule revealed a core set of genes that were involved in the ‘‘Actin

cytoskeleton pathway.’’ Moreover, the enrichment of GO terms ‘‘Cell projection assembly’’ and

Figure 7. DAPK3 expression in the colon of healthy normal and primary colonic adenocarcinoma tumors

The expression of DAPK3 in the healthy colon (GTEx) and colon adenocarcinoma primary tumor (TCGA) was examined in

UCSC Toil RNA-Seq Recompute Compendium (A) and MSKCC unified (B) datasets. Statistical significance was identified

by Welch’s t test for two independent samples of unequal variance. Data are presented as a violin plot showing the

median (dashed line) along with the upper and lower limits of the interquartile range between the 25th and 75th

percentiles (dotted lines). The n values are indicated on the figure. TCGA, The Cancer Genome Atlas.
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‘‘Extracellular matrix structural constituent’’ in differential correlations identified forDAPK3 are of particular

interest. These terms are associated with the molecular dynamics of cell migration and adhesion, which are

particularly important to the process of metastasis. The cytoskeleton, especially the contractile tension

generated by actomyosin, is also inherent to the pathogenesis and metastasis of tumors. Indeed, there

is growing appreciation that a wide range of cellular activities that are highly relevant to tumorigenesis

are dependent on the composition and organization of the cytoskeletal architecture, including tumor

cell migration and invasion (Fletcher and Mullins, 2010; Vasiliev, 2004), epithelial-mesenchymal transforma-

tion (Rana et al., 2018; Lamouille et al., 2014), nuclear dysmorphia and genome stability (Takaki et al., 2017;

Irianto et al., 2016; Chow et al., 2012), and tumor cell survival under hemodynamic shear stress (Xin et al.,

2019). Furthermore, genes in the darkredmodule were also enriched in processes related to ‘‘Positive regu-

lation of apoptotic signaling pathway’’ and ‘‘Regulation of mitochondrial membrane permeability involved

in apoptotic process.’’ It is well known that the attenuation of apoptotic signaling is a hallmark of tumor

biology (Zhang and Yu, 2013; Yang et al., 2009), and a plethora of alterations have been revealed in key

apoptotic pathways that increase tumor cell survival and reduce the efficacy of chemotherapy. Enhanced

invasiveness is also observed in cancer cells that experience failed apoptosis (Berthenet et al., 2020) or

incomplete mitochondrial outer membrane permeabilization (Ichim and Tait, 2016).

Figure 8. High DAPK3 expression is associated with poor overall survival of patients with colon adenocarcinoma

Overall survival data (A) and disease-specific survival data (B) were retrieved as part of the UCSC Toil Recompute dataset

and subjected to Kaplan-Meier analyses. In (C), a comparison of DAPK3 expression in patients with colon

adenocarcinoma with or without incidents of venous (i), lymphatic (ii), or perineural (iii) invasion was completed using data

retrieved from the Xena TCGA data hub (https://tcga.xenahubs.net). Statistical significance was identified by Welch’s t

test for two independent samples of unequal variance (n = 245 (venous), 251 (lymphatic), and 171 (perineural)). Data are

presented as boxplots showing the median (solid line) along with the upper and lower limits of the interquartile range

between the 25th and 75th percentiles (box) and Tukey whiskers. TCGA, The Cancer Genome Atlas.
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When the genes in the darkredmodule weremapped using STRING,DAPK3was identified as a pseudohub

gene. However, RHOT2 (mitochondrial Rho GTPase 2; also known as MIRO2) was the true core hub based

on node degree when the (i) differential expression or (ii) Kaplan-Meier overall survival estimate was disre-

garded. RHOT2 is amitochondrial GTPase involved inmitochondrial trafficking and serves as a docking site

for parkin (PRKN)-mediated mitophagy. While the RhoA GTPase family is closely associated with cancer

progression, there are few studies on the role of the RHOT2 protein in tumor cell movement. In one pub-

lished study, however, mitochondrial trafficking to the cortical cytoskeleton and tumor cell invasion were

suppressed when siRNA-mediated silencing of Miro2 in LN229 glioma cells was used under conditions

of cellular stress (Caino et al., 2016).

The RHOT2 network also included ENKD1, ARRDC1, NOL3, DAPK3, ANKRD13D, and DEF8. Each of these

genes was differentially expressed in colon adenocarcinoma and was correlated with patient prognosis for

overall survival analysis. The ANKRD13D protein possesses a ubiquitin-interacting motif (UIM) and forms a

complex with other ANKRD13 family members to bind the Lys63-linked ubiquitin chains appended to

epidermal growth factor receptor (EGFR) to regulate the internalization of ligand-activated EGFR (Mattioni

et al., 2020; Tanno et al., 2012). ANKRD13 has also been used in a panel of DNA methylation markers to

identify colorectal cancer (CRC) in cell-free DNA samples obtained from patients (Cho et al., 2020). The

Figure 9. Differential gene correlation analysis of DAPK3-dependent biological processes

DGCA R was used to compare gene expression correlation in normal and colon adenocarcinoma disease samples. GO enrichment analysis was completed

using |minSize| = 30, |p value cutoff| = 0.01, and |filterSigThresh| = 0.01. GO, gene ontology.
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ARDDC1 protein controls the generation of endosomal microvesicles that bud from the plasma membrane

(Nabhan et al., 2012), a type of protein cargo (Anand et al., 2018), and, consequently, signal transduction by

receptors subjected to endosomal sorting mechanisms. Other studies suggest that ARRDC1 may act as a

tumor suppressor by modulating the levels of Yes-associated protein (YAP) 1 and other membrane recep-

tors (Xiao et al., 2018). NOL3 is an RNA-binding protein that has been implicated in tumorigenesis and

metastasis. NOL3 was associated with worse prognosis in CRC and was overexpressed in patients with

CRC with lymph node metastasis (Zhang et al., 2020; Toth et al., 2016). Finally, the gene products of

ENKD1 and DEF8 are poorly described in the literature, so it is unclear how these gene products may

act to impact tumor cells.

The emergence of DAPK3 as a pseudohub gene in the darkred network with differential expression and

significant linkage to survival outcome was particularly interesting. DAPK3 (also known as zipper-interact-

ing protein kinase, ZIPK) is a serine/threonine protein kinase that acts as a molecular switch for a multitude

of cellular processes, including the induction of apoptotic and autophagic cell death, cell proliferation,

actomyosin contraction, and cellular migration (Shiloh et al., 2014). The proapoptotic influence of

DAPK3 is aligned with its association with promyelocytic leukemia (PML) oncogenic domains, nuclear struc-

tures implicated in transcription of regulation of apoptotic factors (Kawai et al., 2003). A marked drop in

basal apoptosis is observed at the polyp-to-adenoma stage of colon cancer, suggesting that resistance

to apoptotic programming is acquired early in tumorigenesis (Termuhlen et al., 2002). The reduced expres-

sion of DAPK3, as a tumor-suppressing kinase, could provide a means for metastatic colon cancer cells to

exhibit resistance to particular pathways of apoptosis. In addition, DAPK is associated with autophagic cell

death; DAPK3 interaction with autophagy-related (ATG)-1 protein kinase allows for regulation of autopha-

gosome formation via actomyosin activation (Tang et al., 2011). DAPK3 was also found to phosphorylate

and increase the activity of Unc-51-like autophagy activating kinase (ULK1; the mammalian homolog of

ATG1), thereby driving autophagy induction (Li et al., 2021). Further to this finding, the co-expression of

ULK1 and DAPK3 was correlated with favorable survival outcomes in patients with gastric cancer (Li

et al., 2021). DAPK3 promotes actin reorganization and actomyosin contraction by controlling the phos-

phorylation of myosin-regulatory light chain (Moffat et al., 2011) which has a broad range of cellular im-

pacts, including cell migration, focal adhesion regulation, stress fiber bundling, and autophagic cell death.

In addition, DAPK3 can attenuate myosin light chain phosphatase activity (Borman et al., 2002; MacDonald

et al., 2001), and the loss of myosin phosphatase was further linked to cancer cell nuclear dysmorphia and

genome instability (Takaki et al., 2017).

Although DAPK3 displays tumor suppressor properties (Li et al., 2015, 2021; Das et al., 2016; Kocher et al.,

2015; Brognard et al., 2011; Bi et al., 2009), it also plays an oncogenic role with regulation of transcriptional

and translational programs that are tightly connected to cell survival, proliferation, and growth. In this re-

gard, DAPK3 promotes epithelial-mesenchymal transition (Kake et al., 2017; Li et al., 2015). DAPK3 also

provides transcriptional regulation of canonical Wnt/b-catenin signaling through an interaction with

Nemo-like kinase to drive enhanced proliferation of colon carcinoma cells (Togi et al., 2011). Additionally,

DAPK3 can directly enhance the transcriptional activity of both STAT3 and the DNA-binding androgen re-

ceptor (Felten et al., 2013; Sato et al., 2006). As previously hypothesized by Kake et al (Kake et al., 2017),

DAPK3 may change from a tumor suppressor into a tumor promoter during the course of tumor progres-

sion. In the present study, we show that DAPK3 expression is reduced in samples obtained from patients

with colon cancer; however, there is significant correlation for DAPK3 association with LVI and PNI proper-

ties and worse survival probability. Further investigations will be required to solve the incongruity observed

with respect to the proapoptotic role of DAPK3 in tumor suppression versus its proliferative influence on

tumorigenesis.

TCGA database is frequently used to uncover molecular mechanisms and potential biomarkers associated

with CRC progression and prognosis. For instance, Liu et al utilized TCGA to show that the prognostic

power of the cancerous inhibitor of protein phosphatase 2A (CIP2A) was linked to activating transcription

factor 6 (ATF6)-dependent ER stress signaling in CRC (Liu et al., 2018). By the same token, V-set and trans-

membrane-domain-containing 2A (VSTM2A) was identified as one of the most significantly downregulated

secretory proteins in CRC, with low expression levels equating to worse overall survival in patients with CRC

by way of Wnt signaling suppression (Dong et al., 2019). As well, the TCGA database was used by Taha-

Mehlitz et al to support their discovery of adenylosuccinate lyase (ADSL) as a contributor to mitochondrial

dysfunction within the context of CRC (Taha-Mehlitz et al., 2021). Finally, TCGA has facilitated the
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construction of prognostic indices (Hou et al., 2018) and nomograms (Lee et al., 2019) for CRC which

outperform conventional prediction tools that are based solely on clinicopathological risk factors such

as age and Tumor, Node, Metastasis (TNM) staging.

WGCNA of TCGA data has been used in multiple studies to derive system-level properties, to identify genes

and/or gene modules associated with specific clinicopathological variables, or to relate prespecified genes

and/or gene sets to pathways or functions within the context of CRC. Application of WGCNA to TCGA data

byWang et al revealed patients with CRCwithmedian immunity to have enhanced activation of TGF-b, vascular

endothelial growth factor (VEGF), andMAPK signaling pathways and have better survival outcome; in contrast, a

low-immunity subgroup displayed the worst prognosis (Wang et al., 2020). Similarly, Su et al found that higher

neutrophil scores associate with poorer prognosis and that a SOD2-CXCL8 neutrophil recruitment axis may play

a role in CRC progression (Su et al., 2021). Recently, Jiang et al combined the power of TCGA and WGCNA to

investigate the oncogenic functions of B-cell lymphoma 9 (BCL9). This investigation uncovered a b-catenin-inde-

pendent function of BCL9 in a poor-prognosis subtype of CRC tumors that enhances tumor progression through

its interaction with paraspeckle proteins (Jiang et al., 2020).

Some studies that utilize WGCNA to identify modules of highly correlated biomolecules restrict the data

input to include only differentially expressed transcripts. A study by Zhou et al. constructed miRNA-gene

interaction networks, and the authors subsequently identified two important gene modules with 11 of the

20 hub genes demonstrating prognostic value in survival analyses (Zhou et al., 2018). Although not the

focus of the study, LVI was associated with both gene modules and subsequent KEGG analysis (i.e., Kyoto

Encyclopedia of Genes and Genomes) identified extracellular matrix (ECM)-receptor interaction, focal

adhesion, and vascular smooth muscle contraction as significantly enriched pathways. A study by Wu

et al. cross-referenced DEGs with target genes for differentially expressed miRNAs from which GCNT4,

EDN2, and miR-1295 were observed as network hubs (Wu et al., 2017). Given the theoretical distinction be-

tween differential expression and differential correlation and the process by whichWGCNA determines in-

tramodular hub genes, filtering genes by differential expression before WGCNA can result in loss of infor-

mation. This information is pertinent to gene network construction, the loss of which may negatively impact

the integrity of the co-expression network analysis (Langfelder and Horvath, 2008). Nevertheless, differen-

tial gene expression is a valuable component in network analyses that look to pinpoint candidate bio-

markers, therapeutic targets, and/or gene signatures for diagnosis or prognosis.

One viable method of integrating differential gene expression into a co-expression network that is constructed

with all genes (i.e., DEGs and non-DEGs) is to project the DEGs post hoc onto said network after the identifica-

tion of gene modules. An example of this approach is apparent in the study conducted by Jiang et al, where

candidate BCL9-interacting proteins and genes downstream of BCL9 were projected onto a WGCNA correla-

tion matrix constructed with all genes (Jiang et al., 2020). The authors found that most of the genes downstream

of BCL9, but not the BCL9-interacting proteins, mapped into specific gene modules involved in processes such

as ECM remodeling, neuron differentiation, and wound healing. Similarly, we applied the WGCNA method to

systematically identify co-expression network modules associated with lymphatic invasion in colon adenocarci-

noma.Our co-expression networkwas constructed using all genes (minus those removedduring quality control),

and theDEGswere thenprojectedonto thegenemodulewith the highest significant correlationwith LVI. Finally,

for our differential expression analysis, we compared TCGA tumor samples against GTEx normal samples that

were reanalyzed using the same RNA-Seq pipeline to eliminate batch effects (Vivian et al., 2017). This eliminates

potential noises of tumor microenvironments stemming from the proximity of ‘‘TCGA solid tissue normal’’ to

‘‘TCGAprimary tumor’’ samples. Toour knowledge, nopreviouspublished studies have investigatedLVI in colon

adenocarcinoma utilizing the methods described in the present study.

Limitations of the study

The presented analyses were completed using the TCGA and GTEx RNA-Seq datasets. Although these da-

tasets excel at having sufficient observations for statistically sound correlation studies, similar analyses

need to be repeated on additional datasets to confirm our findings. The described networks characterized

a core gene set associated with invasion and survival of tumor bulk tissues. Given that genes may demon-

strate diverse functions across different cell types, gene sets identified from averaged dataset need to be

reexamined in a cell-specific manner for the identification of susceptible cell types and converged path-

ways among different cells. The described networks were based on the analysis of gene-to-gene correla-

tions, which did not indicate causal relationships.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Requests for further information should be directed to and will be fulfilled by the lead contact, Justin A.

MacDonald (jmacdo@ucalgary.ca).

Materials availability

This study did not generate new unique reagents.

Data and code availability

1. Data

This study analyzes existing, publicly available RNA-Seq data. The sources for the datasets are listed in the

key resources table.

2. Code

This study does not report original code. All codes were used in this study in alignment with recommenda-

tions made by authors of R packages in their respective user’s guide, which can be accessed at https://

bioconductor.org.

3. Additional information requests

Any additional information required to reanalyze the data used in this study is available from the lead con-

tact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

RNA sequencing data (RNA-Seq) for the GTEx (https://gtexportal.org/home/) and TCGA (https://portal.

gdc.cancer.gov) were retrieved from the Xena Toil RNA-Seq Recompute Compendium (https://toil.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

TCGA TARGET GTEx study Xena Toil RNA-Seq Recompute Compendium https://toil.xenahubs.net

TCGA survival data Xena TCGA data hub https://tcga.xenahubs.net

COAD clinicalMatrix data Xena TCGA data hub https://tcga.xenahubs.net

Software and algorithms

R (v4.0.2) The R Project https://www.r-project.org

RStudio (1.3.1093-1) RStudio Team http://www.rstudio.com

Cytoscape (v3.8.2) Shannon et al. (2003) https://cytoscape.org

Limma (v3.48.0) Ritchie et al. (2015) https://bioconductor.org

stringApp Doncheva et al. (2019) http://apps.cytoscape.org/apps/stringapp

topGO (release 3.13) Alexa et al. (2006) https://bioconductor.org

Xena browser Computational Genomics Lab of the

University of California Santa Cruz

http://xena.ucsc.edu

ggplot2 (v3.3.3) Wickham (2016) http://ggplot2.tidyverse.org

DGCA (v1.0.2) McKenzie et al. (2016) https://cran.rproject.org/web/packages/

DGCA/index.html
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xenahubs.net) on 30 November 2020. Although TCGA includes normal samples, these ‘‘solid tissue

normal’’ samples are derived from normal tissues located proximal to the tumor. Consequently, they

may also possess tumor transcriptomic profiles. In contrast, samples from the GTEx project provide expres-

sion data from the normal tissue of healthy, cancer-free individuals. The datasets from the two projects

cannot be compared directly, so the ‘‘TCGA TARGET GTEx study’’ with samples restricted to |Primary_-

site| = ‘‘colon’’ was retrieved from the Xena Toil data hub where TCGA, TARGET, and GTEx samples

were reanalyzed (i.e., realigned to hg38 genome with expressions defined using RSEM and Kallisto

methods) by the same RNA-Seq pipeline. The Toil Compendium provides recomputed TCGA and GTEx

expression raw data based on a uniform bioinformatic/RNA-Seq pipeline to eliminate batch effect due

to different computational processing (Vivian et al., 2017). The Xena Toil pipeline utilized STAR for uniform

realignment (Dobin et al., 2013); RSEM and Kallisto were used to produce quantification data (Li and

Dewey, 2011). The realignment also enabled the removal of degraded samples before quantification

and batch effect correction after quantification. In addition, TCGA survival data and COAD clinicalMatrix

information of patients with colon cancer were retrieved from the Xena TCGA data hub (https://tcga.

xenahubs.net). The Xena browser (http://xena.ucsc.edu), hosted by the Computational Genomics Lab of

the University of California Santa Cruz (UCSC; https://cglgenomics.ucsc.edu), was utilized to compare

gene expressions (Goldman et al., 2020). Data retrieval was completed via the UCSCXenaTools R package.

METHOD DETAILS

Data preprocessing

The log-transformed expected count retrieved from Xena Toil was back-transformed via the |round(((2^x)-

1),0)| function. The data were further refined to include only ‘‘Normal Tissue’’ from the GTEx gene sets and

only ‘‘Primary Tumor’’ with |histological_type| = ‘‘Colon Adenocarcinoma’’ from the TCGAgene sets. TCGA

and GTEx datasets were filtered to exclude non-protein-coding genes. The TARGET dataset was excluded

to permit focus on adult samples. Data from metastatic and recurrent tumors were also excluded owing to

small sample sizes. After these preprocessing steps, the dataset included 551 patient samples and 18,205

genes. Data processing was completed using the R (v4.0.2) programming language. All codes used in this

study align with recommendations made by authors of R packages in their respective user’s guide, which

can be accessed at https://bioconductor.org.

Identification of DEGs

The limma workflow was used to detect DEGs between cancer and normal samples (Robinson et al., 2010;

Ritchie et al., 2015; Law et al., 2016). The input data (18,205 genes, 551 samples) were screened with func-

tion |filterByExpr.default| to eliminate outliers and lowly expressed genes. Scaling factors were computed

with function |calcNormFactors.upperquartile|. The final DGEList object contained 15,164 genes and 547

samples (303 GTEx, 244 TCGA). Heteroscedasticity was removed via function |voom|. Expression values

of TCGA were then compared with that of GTEx through linear modeling; namely, the limma functions |

lmFit|, |contrasts.fit|, and |eBayes|. All functions were operated with default settings. The transformed

expression values, generated by |voom|, were exported for subsequent analyses.

Weighted gene co-expression network analysis

To identify candidate biomarkers for lymphatic invasion within the colon adenocarcinoma subset, we

applied WGCNA to voom-transformed expression values (Langfelder and Horvath, 2008). Genes with

negative normalized expression levels were removed, and then, the WGCNA function |goodSamples-

Genes| was used to identify genes with zero variance. Sample outliers were detected via function |hclust|

and then removed with the WGCNA function |cutreeStatic.minSize=10|. The data input for WGCNA con-

sisted of 231 TCGA samples and 9,750 genes. The network topology was calculated for a range of soft-

thresholding power (b). Then, the scale-free topology fit index was plotted as a function of the soft-thresh-

olding power, and the mean connectivity as a function of the soft-thresholding power was determined.

Although b = 9 was the lowest power for which the scale-free topology fit index reached an R2 value of

0.90, b = 10 was ultimately used as it was recommended as the minimum soft-threshold power to be

used for a signed network (Langfelder and Horvath, 2008). The co-expression similarity was raised to

achieve scale-free topology with this soft-thresholding power. Co-expression similarity and adjacency

were calculated for a signed network, transformed into a topological overlap matrix (TOM) to calculate

the corresponding dissimilarity (dissTOM) which in turn was used to conduct hierarchical clustering. Mod-

ule identification was completed with the function |cutreeDynamic| with method=hybrid,
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minClusterSize=100, deepSplit=4, pamStage=TRUE, and pamRespectDendro=FALSE. Any highly similar

modules with the height of clustering lower than 0.25 were merged. A clustering dendrogram was used

to display the results.

Generation of module-trait relationships and pathway enrichment analysis of genes

Correlations between modules generated by WGCNA and clinical parameters were determined by mod-

ule-trait relationship (MTR) analysis. MEs were calculated and related to clinical features via standard

WGCNA pipeline. GO enrichment analysis was completed with topGO [algorithm=elim, statistic=fisher]

to facilitate biological interpretation (Alexa et al., 2006). Finally, intramodular connectivity was analyzed us-

ing genes within the darkred module as search inputs. STRING (Doncheva et al., 2019) and the Cytoscape

plugin NetworkAnalyzer (Shannon et al., 2003) were used for computation of topological parameters for an

undirected network with protein query as the data source.

Survival analysis

Survival data were retrieved as part of the TCGA dataset downloaded from Xena and were subjected to

Kaplan-Meier analysis in R. The Cox proportional-hazards model was used to investigate the association

between survival time and candidate biomarkers for lymphatic invasion. Z-scale cut-offs were set at R

0.647 for high expression and % 0.647 for low expression. Survival time cut-off was set at 10 years. The

coxph R function was used in combination with the |log-rank| test for comparison of the high/low survival

curves. Survival curves were plotted to show the differences in patient mortality between high- and low-

expression groups.

Differential gene correlation analysis

Using the R package DGCA (McKenzie et al., 2016), the differential correlation between DAPK3 and a

filtered list of human protein-coding genes (8,528 genes; exclusion criteria: bottom 25th percentile of me-

dian expression and/or dispersion index of expression) was computed with the |ddCorAll| function with

[nPerms=100]. This pipeline provided the Pearson coefficient (r) and the corresponding p values for

each pair of genes across samples (n=547). Significant changes in differential correlation between the

two conditions (healthy colon vs. colon adenocarcinoma) were then identified using a Fisher’s Z-test.

GO term enrichment analysis of differential correlation-classified genes was completed with the DGCA

function |ddcorGO| with [adjusted=TRUE, conditional=TRUE, calculateVariance=TRUE].

QUANTIFICATION AND STATISTICAL ANALYSES

Statistical analyses were performed within specific R packages. For DGCA, the pipeline provided Pearson

coefficient (r) and the corresponding p values for each pair of genes across samples (n=547). Significant

changes in differential correlation between the two conditions (healthy colon vs. colon adenocarcinoma)

were then identified using a Fisher’s Z-test. For survival analyses, the Kaplan-Meier method was used to

estimate the survival cure, univariate Cox analyses was used to compute hazard ratios, and outputs from

log-rank testing was used to describe overall significance of the model. For the differential expression

of genes analysis, the treat method with a nonparametric empirical Bayes approach for the analysis of

factorial data provide a paired t-test for every gene within the limma R environment (McCarthy and Smyth,

2009). For the comparison of DAPK3 expression levels, Welch’s t-test for two independent samples of un-

equal variance was used. Data were plotted using GraphPad Prism 8.3.0 (GraphPad Software, La Jolla, CA).

DAPK3 expression levels are presented graphically with median values along with the upper and lower

limits of the interquartile range (IQR) between the 25th and 75th percentiles. The statistical tests used to

assess experimental results are provided within the figure legends. Statistical test results (i.e., p values)

are provided for all comparisons in figures, and p values < 0.05 were considered significant. The ‘n’ value

represents the number of patient samples obtained from the RNA-Seq datasets and is marked within the

figure or in the figure legend. As detailed earlier, RNA-Seq data were filtered to include only samples from

adults and to exclude non-protein-coding genes; in addition, data for metastatic and recurrent tumors

were excluded owing to small sample sizes.
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