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ABSTRACT

Any given human individual carries multiple ge-
netic variants that disrupt protein-coding genes,
through structural variation, as well as nucleotide
variants and indels. Predicting the phenotypic con-
sequences of a gene disruption remains a signifi-
cant challenge. Current approaches employ informa-
tion from a range of biological networks to predict
which human genes are haploinsufficient (meaning
two copies are required for normal function) or es-
sential (meaning at least one copy is required for
viability). Using recently available study gene sets,
we show that these approaches are strongly bi-
ased towards providing accurate predictions for well-
studied genes. By contrast, we derive a haploinsuffi-
ciency score from a combination of unbiased large-
scale high-throughput datasets, including gene co-
expression and genetic variation in over 6000 hu-
man exomes. Our approach provides a haploinsuffi-
ciency prediction for over twice as many genes cur-
rently unassociated with papers listed in Pubmed as
three commonly-used approaches, and outperforms
these approaches for predicting haploinsufficiency
for less-studied genes. We also show that fine-tuning
the predictor on a set of well-studied ‘gold standard’
haploinsufficient genes does not improve the pre-
diction for less-studied genes. This new score can
readily be used to prioritize gene disruptions result-
ing from any genetic variant, including copy number
variants, indels and single-nucleotide variants.

INTRODUCTION

The cost of sequencing has decreased sharply in the last
few years, making it possible to examine the genetic con-
tribution to disease encoded within the exomes of tens of
thousands of patients. However, as apparently healthy in-
dividuals also possess multiple genetic variants that dis-
rupt protein-coding genes (1,2), distinguishing those loss-
of-function (LoF) variants that influence the phenotype of

a given patient from those that do not remains a signifi-
cant challenge. Nonetheless, this prediction remains a cru-
cial bottleneck in a variety of applications, such as identi-
fying disease-causing de novo variants, or assessing muta-
tional loading onto genes or biological pathways in case-
control studies.

Approaches to predict the systemic or organismal effect
of individual protein-coding gene disruptions frequently
make use of existing information regarding gene function
(3,4). However, genes in the genome have been studied very
unevenly (Supplementary Figure S1). Consequently, the in-
formation used in a particular method is often available
only for a subset of genes. For example, Gene Ontology (5)
is one of the largest databases with functional annotations
for genes; nonetheless, high-quality Gene Ontology gene
annotations based on experimental data or trusted author
statements are currently only available for less than 14 000
genes. Unfortunately, it is inevitably the less-studied genes
that are of particular interest when making predictions. By
contrast, the sets of haploinsufficient (HIS) genes used to
both train and test different methods consist predominantly
of very well-studied genes.

Here, we show that the study biases inherent in many bi-
ological networks affect the ability of existing methods to
predict how likely each protein-coding gene is to be HIS
(3) (meaning that two gene copies are needed to maintain
normal function) or essential (4) (meaning that at least one
gene copy is needed for normal function). Consequently,
we devise a haploinsufficiency score for genes by integrat-
ing large-scale data without study bias, such as gene co-
expression networks and a novel score derived from exonic
variation in over 6000 individuals. Taking advantage of re-
cently available less-biased gene sets for evaluation, we com-
pare this method to previously published methods (3,4,6).
We show that the new score characterizes a higher number
of genes that are not well represented within published stud-
ies and performs significantly better on available sets of such
less-studied genes, thereby providing a less-biased approach
for this critical step in disease genomics.
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MATERIALS AND METHODS

A list of 23 019 human protein-coding genes with Ensembl
gene IDs was downloaded from Ensembl 70.

Two hundred ninety-seven known HIS genes were taken
from a paper by Dang et al. (7). A list of haplosufficient
(HS) genes was compiled as 3794 human genes which are
disrupted by deletion CNVs in healthy individuals (8). In
particular, a gene was defined as disrupted if a CNV over-
lapped an exon in all transcripts of the gene.

Huang et al. data

We obtained predicted haploinsufficiency probabilities
from a paper by Huang et al. (3), considering the predic-
tions for 17 082 genes based on imputation of missing in-
formation; we refer to his score as ‘Huang HIS score’. Con-
verting gene symbols to Ensembl gene IDs, we retained
predictions for 17 069 genes. Moreover, we obtained the
HumanNet v1 integrated functional linkage network from
http://www.functionalnet.org/humannet/. After conversion
of Entrez gene IDs to Ensembl gene IDs, we retained 15
827 unique genes and 469 383 links. For each gene, we cal-
culated the number of links in the networks, and the sum
of link weights to 302 known HIS genes (7,9) as done by
Huang et al. (3).

Khurana et al. data

We obtained the predicted indispensability score from a pa-
per by Khurana et al. (4) for 21 863 human genes, which we
refer to as ‘Essentiality score’. Converting gene symbols to
Ensembl gene IDs yielded scores for 18 386 genes. More-
over, for each of these genes, the authors provided the num-
ber of links (or gene degree) in various networks, namely
in protein−protein interaction (PPI), metabolic, genetic in-
teraction, phosphorylation, regulatory and signalling net-
works, as well as in the integrated network ‘Multinet’ (4).
For each gene, the authors also provided the number of
these networks that the gene was part of, as well as a ‘dis-
ease significance score’ (three for known essential genes, two
for genes with disease annotations in HGMD, one for LoF
tolerant genes and zero for all other genes) (4).

Petrovski et al. data

We obtained the Residual Variance Intolerance Score
(RVIS) from a paper by Petrovski et al. (6) for 16 956 hu-
man genes. Converting gene symbols to Ensembl gene IDs,
we retained the RVIS for 16 572 human genes.

Pubmed papers

For each human gene, the list of Pubmed papers citing that
gene was obtained from Pubmed on 20 May 2014. Pubmed
gene IDs were converted to Ensembl gene IDs using the
conversion file supplied by Pubmed. We then calculated the
total number of Pubmed papers for each gene.

Gene coding-sequence length

The coding-sequence (CDS) length of 22 878 human
protein-coding genes with Ensembl gene IDs were down-

loaded from Ensembl 72. The CDS of each gene was set to
the CDS of the longest transcript.

Co-expression networks

We downloaded the COEXPRESdb human gene co-
expression network v13.1 on 03/03/2014. Entrez gene IDs
were converted to Ensembl gene IDs. Moreover, we only
considered gene links with correlation r ≥ 0.3, yielding 3
566 815 unique links between 15 277 genes.

We downloaded the GTEx Pilot 1 data on 29 April 2013.
We excluded genes with RPKM < 1 in >95% of the samples
and calculated gene co-expression using weighted Pearson
correlation as in COEXPRESdb [http://coxpresdb.jp/help/
coex cal.shtml, 3 March 2014]. We only considered gene
links with correlation r ≥ 0.3, yielding 23 278 495 unique
links between 15 949 genes.

For each human gene, we obtained the distance to known
HIS genes in a co-expression network as the sum of the
20 highest links weights to the 297 known HIS genes. The
choice of this threshold did not strongly influence the re-
sults as the distances were highly correlated with distances
from the 10, 30 highest or all links (Spearman � > 0.99 for
COEXPRESdb, � > 0.88 for GTEx).

NoVaDs

We downloaded human gene variation data from over
6000 exomes from the NHLBI exome server on 8 April
2014. Hugo gene symbols were converted to Ensembl gene
IDs; we only considered variants that passed original QC
filters. Similar to Petrovski et al. (6), we defined ‘rare’
variants as those with minor allele frequency (MAF) ≤
0.1% combined in all samples, and ‘common’ variants
as those with MAF > 0.1%. Non-synonymous variants
were defined as variants annotated by the terms ‘missense’,
‘missense-near-splice’, ‘splice-3’, ‘splice-5’, ‘stop-gained’,
‘stop-gained-near-splice’, ‘stop-lost’ and ‘stop-lost-near-
splice’. Synonymous variants were defined as variants an-
notated by ‘coding-synonymous’ or ‘coding-synonymous-
near-splice’.

We obtained the Petrovski et al. ‘RVIS’ (6) for genes as the
studentized residuals from regressing the number of com-
mon non-synonymous variants on the total number of vari-
ants in genes.

We also obtained a Non-synonymous Variation Deple-
tion score (‘NoVaDs’) as the ratio of the number of com-
mon to the number of rare non-synonymous variants in
each gene. Notably, the NoVaDs is strongly correlated with
the RVIS (Spearman � = 0.77, p < 10−100), but not affected
by different codon usage between genes.

We also examined how the NoVaDs was affected by the
chosen cut-off of MAF > 0.1% for common variants. To
this end, we considered the alternative with cut-off MAF
> 1% for common variants (denoted ‘NoVaDs 1%’) and
the alternative with cut-off MAF > 0.01% for common
variants (denoted ‘NoVaDs 0.01%’). Both the NoVaDs 1%
and the NoVaDs 0.01% were highly correlated with the No-
VaDs (Spearman � = 0.69 and � = 0.62, respectively) and
were significantly worse than the NoVaDs at distinguishing
disease genes (see Supplementary Data). Consequently, we

http://www.functionalnet.org/humannet/
http://coxpresdb.jp/help/coex_cal.shtml
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proceeded with the NoVaDs defined with MAF > 0.1% for
common variants.

Evolutionary constraint

To calculate evolutionary constraint dN/dS, we down-
loaded dN and dS values for 16 511 human genes with one-
to-one orthologues in macaque from Ensembl 62. If either
dN or dS was 0, the value was set to 0.001 (1057 genes for
dN, 35 genes for dS).

F2A gene expression

For human gene expression data, we used GNF’s gene at-
las for the MAS5-condensed human U133A and GNF1H
chips (10). Expression levels were mapped to LocusLink
identifiers and to 17 226 Ensembl genes using the annota-
tion tables supplied by GNF. For each gene, the ratio of gene
expression in foetal to adult tissue (referred to as ‘F2A ex-
pression ratio’) was derived by dividing the median expres-
sion level in four foetal tissues (Supplementary Table S1) by
the median expression level in 31 adult tissues (Supplemen-
tary Table S1).

Study bias

We calculated Spearman correlation coefficients of indices
depicted in Figure 1 with the number of Pubmed papers for
each gene; dN/dS; and the NoVaDs using R (see Supple-
mentary Table S2).

Construction of genome-wide haploinsufficiency score
(GHIS)

A support vector machine (SVM) was used to construct a
genome-wide haploinsufficiency score (GHIS) for human
genes. We used the function ‘svmt’ in the e1071 library in
R with options ‘decision.values = T’ and ‘probability = T’.
Features were specified as distance to HIS genes in the CO-
EXPRESdb co-expression network, distance to HIS genes
in the GTEx co-expression network, the NoVaDs, dN/dS
and F2A expression ratio. Missing values were replaced by
0 for the distance in co-expression networks, the median for
the NoVaDs and dN/dS, and the mean for the F2A expres-
sion ratio.

We used a linear kernel SVM and performed 100 random-
izations by sub-sampling 297 HS genes.

In each randomization, we used 10-fold cross-validation:
we divided the 297 HIS, 297 HS genes into 90% training,
10% test set; fit an SVM to the training set and obtained
GHIS predictions for the test set (using the ‘predict’ func-
tion in the e1071 library in R with option ‘decision.values
= T’). This was repeated 30 times. We then averaged pre-
dicted values from the 30 repeats and evaluated the predic-
tions using a Receiver Operator Characteristic (ROC) curve
and the area under the curve (AUC) metric. The ROC curve
is a plot of true positive versus false positive rate, while the
AUC is the area under that curve. We obtained the AUC
using the ‘trapz’ function in the R ‘ROCR’ library. To test
the performance of this method, we used extensive random-
izations and 10-fold cross-validation. When using 90% of

the HIS and HS genes, the performance on the remaining
10% yielded a mean area under the ROC curve (AUC) of
0.67 (standard deviation 0.02) after excluding six random-
izations with AUC < 0.5 (Supplementary Figure S8).

Subsequently, we fit an SVM to all 297 HIS, 297 HS genes
and calculated the HIS score for all human genes using the
‘predict’ function in the e1071 library in R with options ‘de-
cision.values = T’ and ‘probability = T’.

The final GHIS for each gene was obtained by averaging
the predicted values for those 94 randomizations with AUC
> 0.5 on the test set.

We checked that 100 randomizations were sufficient: the
score obtained by repeating the process had Spearman cor-
relation � > 0.996 with the GHIS. The predicted GHIS val-
ues are included in Supplementary Table S3.

We also considered using an SVM with radial kernel; the
results were similar (see Supplementary Data).

Known disease genes

We obtained the following tests lists from the paper by
Petrovski et al. (6): 175 genes annotated as HIS in OMIM
(‘OMIM HI’); 108 genes annotated as HIS with known de
novo mutations in OMIM (‘OMIM HI de novo’).

Moreover, we obtained a list of 818 genes annotated as
autosomal dominant (AD) disease genes in the Clinical Ge-
nomics Database (CGD) on 5 June 2014. After conversion
of gene symbols to Ensembl gene IDs, 803 ‘CGD AD’ genes
remained. While some of these genes might cause disease
through gain of function due to the observed variants, this
information was not available.

In addition, we also considered the consequences of gene
disruptions of human orthologues in the mouse given the
broad conservation of associated characteristics (11). We
obtained the phenotypes exhibited by mouse models pos-
sessing a targeted heterozygous disruption of a protein-
coding gene from Mouse Genomics Informatics (MGI),
downloaded on 18 April 2014.

Similarly to Petrovski et al. (6), we considered genes for
which heterozygous disruption yields embryonic, pre- or
perinatal lethality phenotypes (‘MGI Lethality’), and a set
of genes for which heterozygous disruption yields seizures
(‘MGI Seizures’). Using human-mouse gene one-to-one or-
thologue information, we mapped these genes to 146 human
‘MGI Lethality’ genes and 56 human ‘MGI Seizures’ genes.

We also downloaded a list of mouse genes for which
heterozygous disruption of the gene yielded significantly
reduced viability at weaning from the Sanger Mouse Re-
sources Portal on 7 April 2014. Using human-mouse gene
one-to-one orthologue information, we mapped these genes
to 311 human genes (‘SMP Viability’).

Finally, we obtained a list of all human genes whose one-
to-one mouse orthologue when disrupted yields an abnor-
mal mouse phenotype from the MGI database on 10 De-
cember 2012. We obtained a subset of the ‘SMP Viability’
genes not contained in the list downloaded from MGI, and
refer to this list as the ‘SMP Viability new’ genes.

After removal of the genes we used for training the SVM
as well as the genes Khurana et al. (4) used for training,
we retained 55 ‘OMIM HI’ genes; 32 ‘OMIM HI de novo’
genes; 550 ‘CGD AD’ genes; 88 ‘MGI Lethality’ genes; 37



e101 Nucleic Acids Research, 2015, Vol. 43, No. 15 PAGE 4 OF 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G
e

n
e

ti
c
 in

te
ra

c
ti
o

n
s
 †

  
  

  
(2

6
9
)

D
is

e
a

s
e

 s
ig

n
if

ic
a

n
c
e

 s
c
o

re
 (

1
8

,7
6

2
)

S
ig

n
a

li
n

g
 n

e
t †

  
  

  
(5

2
7

)

N
u

m
b

e
r 
o

f 
 i

n
te

rf
a

c
e

s
  

 (
1

,0
8

3
)

P
u

b
m

e
d

C
it
a

ti
o

n
s
 (

1
9

,9
5

7
)

P
P

I †
  

 (
9

,2
9

1
)

M
u

lt
in

e
t †

 (
1

3
,2

9
4

)

P
h

o
s
p

h
y
re

la
ti
o

n
 n

e
t †

  
 (

2
,2

7
2

)

N
u

m
b

e
r 
o

f 
n

e
tw

o
rk

s
  

(1
8

.7
6

2
)

H
u

m
a

n
N

e
t *

* 
(1

5
,8

2
7

)

R
e

g
u

la
t o

ry
 n

e
t  †

  
 (

8
,2

4
5

)

F
2

A
  

(1
7

,2
2

7
)

E
s
s
e

n
ti
a

lit
y
 s

c
o

re
  

(1
8

,7
6

2
)

C
O

E
X

P
R

E
S

d
b

 *
  

(1
5

,2
7

7
)

H
u

a
n

g
 H

IS
 s

c
o

re
  

(1
7

,0
8

0
)

M
e

ta
b

o
li
c
 n

e
t 
†

  
 (

1
,0

2
9

)

R
V

IS
  

(1
6

,6
1

3
)

N
o

V
a

D
s
  

(1
7

.8
3

8
)

d
N

/d
S

  
(1

6
,5

0
7

)

G
T

E
x
 *

  
(1

9
,2

3
7

)

S
p

ea
rm

an
 |ρ

|

Pubmed papers

dN/dS

NoVaDs

|ρ(Pubmed papers) / ρ(dN/dS)|
|ρ(Pubmed papers) / ρ(NoVaDs)|

0 1 10

scale

21.1 9.94 5.15 7.58 4.62 3.04 3.01 1.79 2.73 2.40 2.19 2.20 1.62 1.03 0.84 0.93 0.75 0.73 0.22 0.29

1.98 9.97 10.8 7.59 3.91 2.78 2.71 3.62 2.24 2.37 1.87 1.26 1.72 1.23 1.25 1.13 0.36 0.26 0.62 0.17

Figure 1. The presence and gene degree in biological networks is strongly correlated with study bias. The bar plot shows the Spearman correlation of
various indices with the number of Pubmed papers, evolutionary constraint dN/dS and the NoVaDs. Almost all correlations are significant (p-values see
Supplementary Table S2). The lower panel shows the ratios obtained from Spearman correlation coefficients for each index, |ρ(Pubmed papers)/ρ(dN/dS)|
and |ρ(Pubmed papers)/ρ(NoVaDs)|. Red colour highlights the indices with strong study bias (see colour scale). †= gene degree in network; ** = proximity
to HIS genes from (7,9) as in (3); * = proximity to HIS genes from (7); Essentiality score = Khurana et al. (4) gene indispensability score; RVIS = Petrovski
et al. (6) Residual Variance Intolerance Score; Huang HIS score = Huang et al. (3) haploinsufficiency probabilities. We underlined the datasets used to
construct the genome-wide haploinsufficiency score (GHIS). For each index, the number in parentheses shows the number of genes with values for the
index.

‘MGI Seizures’ genes; 198 ‘SMP Viability’ genes; 124 ‘SMP
Viability new’ genes.

Disease candidate genes

We obtained the following lists of disease candidate genes:
59 genes disrupted by de novo LoF mutations in autism
probands (12) (‘ASD1’); 65 genes disrupted by de novo
LoF mutations in other sets of autism probands (13–15)
(‘ASD2’); 122 genes as the union of ASD1 and ASD2
(‘ASD12’). After removal of the genes we used for training
the SVM as well as the genes Khurana et al. (4) used for
training, we retained 50 ‘ASD1’ genes, 49 ‘ASD2’ genes and
98 ‘ASD12’ genes.

We also considered 18 genes disrupted by de novo LoF
mutations in at least two autism probands from a larger
study (16) (which included the probands from (12) and (13–
15)). This set, referred to as ‘ASD M’ was only used as
showcase for practical application, so the training genes
were not excluded (the conclusions from results for 12 genes
not in the training sets remain unchanged throughout).

Comparison of predictions

For each of the seven lists of known disease genes and
for each of the three lists of disease candidate genes, we
compared the predictions from three previously published
scores (‘Huang HIS score’ (3), ‘Essentiality score’ (4), RVIS

(6)) to the GHIS. We used the AUC and Matthew’s Correla-
tion Coefficient (MCC) metrics. For each set of predictions
and each gene list, we compared the gene list to 100 ran-
dom lists with the same number of genes, matching genes
for CDS length. The matching for CDS length was done
by taking each gene on the list and substituting it with one
of 100 genes with the closest CDS length. When consid-
ering gene sets based on human-mouse one-to-one ortho-
logues, we considered random gene sets chosen from 15 765
human genes with one-to-one human-mouse orthologues
only, again matching for CDS length.

The MCC was obtained defining the 25% of genes with
the highest deleteriousness score from a method as ‘pre-
dicted HIS’, all other genes as ‘predicted HS’ genes. For
each list of known or candidate disease genes and a list
of matched random genes, the MCC is then equal to

TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

, where TP means ‘predicted

HIS’ disease genes, TN means ‘predicted HS’ random
genes, FP means ‘predicted HIS’ random genes and FN
means ‘predicted HS’ disease genes. For each gene list, we
then compared the AUC and the MCC for the GHIS to the
three other methods using the Mann–Whitney rank test in
R.

For the ASD M set of 18 autism candidiate genes as an
example for a practical application, we evaluated how many
fell into the top 1, 2, . . . , 99% percentile among the scored
genes for the GHIS and the three other scores. Due to small
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numbers, this was descriptive only and no statistical analysis
was performed.

RESULTS

We sought a gene haploinsufficiency score that would not
be influenced by how well-studied individual genes are. To
construct this score, we first considered a range of biological
datasets and existing predictions relevant to this aim.

Study bias in biological methods and existing approaches

We first evaluated study bias in the gene-network ap-
proaches to predicting HIS genes employed by Khurana
et al. (4) as well as that employed by Huang et al. (3) in de-
tail. Khurana et al. employed six different types of networks
and ‘Multinet’, a network integrating all of the six networks
(4) (see Figure 1). For each gene, they calculated the num-
ber of connections in each network (the gene ‘degree’), and
the number of networks that the gene was part of. These
biological networks are partially constructed based on low-
throughput experiments carried out only for genes of spe-
cific interest. However, the selection of ‘biologically inter-
esting’ genes for small-scale experiments is known to im-
pact which functional relationships (links) between genes
are identified, and thus included in current representations
of biological networks (17). We used the number of Pubmed
papers associated with a gene as a measure of how well-
studied genes are.

When we considered the extent to which study bias influ-
ences gene degree, we compared the correlation of a given
score (such as gene degree) with the number of Pubmed pa-
pers per gene to the correlation of the score with human-
macaque dN/dS, a measure of evolutionary conservation
known to be higher for HIS genes (3) (Figure 1, Supple-
mentary Table S2).

Indeed, we found a significant correlation with the num-
ber of Pubmed papers in each of the networks considered
by Khurana et al. (Figure 1). Importantly, for all but the
metabolic network, the gene degree has 1.8-fold to 21-fold
higher correlation with number of Pubmed papers than
with human-macaque dN/dS.

Similarly, the number of networks each gene participates
in is 2.7-fold more strongly correlated with the number of
Pubmed papers than with evolutionary conservation. No-
tably, the number of networks each gene participates in is
the strongest predictor for the final score by Khurana et al.
(‘Essentiality score’) and strongly correlated with this score
(Spearman � = 0.85, p < 10−100). Consequently, the Es-
sentiality score is 1.6-fold more strongly correlated with the
number of Pubmed papers per gene than with evolutionary
conservation.

In an alternative network-based approach, Huang et al.
(3) considered the functional linkage network ‘Human-
Net’ which integrates protein–protein interactions, gene co-
expression, gene co-citation and other data to indicate how
functionally similar pairs of genes are likely to be. The
haploinsufficiency probability predicted by Huang et al.
(‘Huang HIS score’) was largely based on the proximity of
a query gene to known HIS genes in the HumanNet net-
work (Spearman � = 0.59, p < 10−100). However, the prox-
imity to known HIS genes in HumanNet also shows 2.4-fold

stronger correlation with the number of Pubmed papers per
gene than with evolutionary conservation (Supplementary
Table S2).

To directly demonstrate the impact of the study bias on
the performance of the scores for predicting HIS genes, full
knowledge of the phenotypic consequences of gene disrup-
tion for all human genes would be required. As such data are
currently not available, we compared the performance of the
Essentiality score and the Huang haploinsufficiency score
for predicting a set of well-studied HIS genes from OMIM
(‘OMIM HI’; Table 1) and a set of less-studied human one-
to-one orthologues of HIS mouse genes from the Sanger
Mouse Project (‘SMP Viability’; Table 1). The OMIM HI
genes have a significantly higher number of Pubmed papers
per gene than the SMP Viability genes (Mann–Whitney p
< 10−8; Supplementary Figure S2), with greater than 2-fold
difference in the median. We used MCC and the area under
the ROC curve (AUC) as performance metrics, comparing
scores for genes in the study set to scores of random genes
matched for CDS length (see Methods). Both the Essential-
ity score and the Huang haploinsufficiency score have sig-
nificantly higher AUC and MCC for the OMIM HI set than
the SMP Viability set (Figure 2a and c, Supplementary Ta-
bles S4 and S5). The better performance of these methods
on the well-studied genes is consistent with the study bias
inferred above.

Large-scale datasets without study bias

To develop haploinsufficiency predictions less affected by
study bias, we wished to consider large-scale biologi-
cal datasets that were obtained from genome-wide data.
Following a similar ethos, Petrovski et al. (6) proposed
to measure whether each gene is depleted in common
(MAF>0.1%) non-synonymous variation based on data
from over 6000 exomes. They defined the RVIS as the
studentized residual when the number of common non-
synonymous variants was regressed on the total number of
variants in each gene. However, we found that the deriva-
tion of the RVIS induced a strong correlation between gene
CDS length and the absolute size of the RVIS (Pearson r =
0.5, p < 10−100; see Methods). Moreover, both the highest
and lowest RVIS values were preferentially attained by the
longest genes (Supplementary Figure S3a). This is largely
due to the construction of the score, as we found similar
dependence on CDS when randomizing the proportion of
common non-synonymous variants among genes (see Sup-
plementary Data, Supplementary Figure S4). Hence, the ef-
fects of CDS and intolerance to gene disruptions on the
RVIS are difficult to disentangle. Moreover, the RVIS does
not account for potential differences in the relative numbers
of possible synonymous and non-synonymous mutations in
genes.

Consequently, we instead derived an alternative score for
the relative depletion of common functional variation in
each gene: the ratio number of common nonsynonymous variants

number of rare nonsynonymous variants (see
Methods), which we call the ‘Non-synonymous Variation
Depletion Score’ or NoVaDs. Intuitively, the intolerance
of a population to functional variants in a given gene will
act to decrease the MAF of such variants, thus decreasing
the NoVaDs. The NoVaDs is not correlated with the CDS
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Figure 2. Comparison of four gene deleteriousness scores based on known disease genes and mouse models (Table 1) as well as candidate disease genes. (a)
Comparison of scores based on known disease genes and mouse models using the MCC metric. (b) Comparison of scores based on known disease genes
and mouse models using the AUC metric. (c) Comparison of gene scores based on candidate disease genes using the MCC metric. (d) Comparison of gene
scores based on candidate disease genes using the AUC metric. The MCC takes values between −1 and 1, with higher values indicating better performance.
The AUC gives the probability that a randomly chosen gene from the set has a higher score than a randomly chosen gene from the genome (accounting
for length, see Materials and Methods section). Hence possible values lie between 0 and 1, with higher values indicating better performance. Each gene set
was compared to random gene sets of equal size, accounting for coding-sequence length (see Materials and Methods section). The bar plots show mean
values for 100 random comparison gene sets, error bars indicate standard errors. Mann–Whitney p- and q-values for comparison of scores are listed in
Supplementary Tables S4 and S5.

Table 1. Gene sets used to evaluate the genome-wide haploinsufficiency score and three state-of-the-art approaches

Gene set Description Number of genes

OMIM HI Online Mendelian Inheritance in Man (OMIM) haploinsufficient genes (as in (6)) 55
OMIM HI de novo OMIM haploinsufficient genes with de novo mutations listed in OMIM (as in (6)) 32
CGD AD Clinical Genomic Database (CGD) autosomal dominant disease genes 550
MGI Lethality Human genes for which the heterozygous disruption of the one-to-one orthologue in

mouse causes lethality (taken from Mouse Genome Informatics (MGI) database;
analogous to (6))

88

MGI Seizures Human genes for which the heterozygous disruption of the one-to-one orthologue in
mouse causes seizures (taken from MGI; analogous to (6))

37

SMP Viablity Genes for which the heterozygous disruption of the one-to-one orthologue in mouse
yielded significantly reduced viability by weaning (taken from the Sanger Mouse
Resources Portal (SMP))

198

SMP Viability new SMP Viability genes without MGI phenotype records prior to 10 December 2012 124
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length of genes (r = −0.04, p < 10−5; Supplementary Fig-
ure S3b). Importantly, when gene length is accounted for,
the NoVaDs distinguishes disease genes from random hu-
man genes better than the RVIS (Supplementary Figure S3c
and d, Supplementary Table S6).

As expected, the NoVaDs is 1.36-fold more highly corre-
lated with evolutionary conservation (Spearman � = 0.35,
p < 10−100) than with Pubmed papers per gene (� = −0.26,
p <10−100), thus not showing study bias.

As the correlation between NoVaDs and evolutionary
conservation is only moderate, we also applied the NoVaDs
to evaluate the biological networks considered by Khurana
et al. (4) and Huang et al. (3) for study bias (Figure 1,
Supplementary Table S2). The results showed evidence for
study bias entirely consistent with the observations based
on evolutionary conservation, hence providing additional
evidence for bias in those networks.

By contrast, we found no evidence for study bias in large-
scale gene co-expression networks (Figure 1, Supplemen-
tary Table S2), specifically COEXPRESdb (based on mi-
croarray data (18)) and a network constructed from the
pilot 1 phase RNA-sequencing data of the Gene-Tissue
Expression Consortium (GTEx (19)). Similarly to the ap-
proach of Huang et al. (3), we considered how strongly each
gene is co-expressed with 297 known HIS genes (7) (see
Methods). This value is strongly correlated with the gene
degree in the networks (COEXPRESdb: � = 0.92; GTEx:
� = 0.77; both p < 10−10), and does not show a study bias
(Supplementary Table S2).

Unbiased haploinsufficiency score predictions

To derive a score indicating how likely each human gene
is to be HIS, we applied a machine learning method (an
SVM; see Methods) to a range of gene features. Based on
the results above, we used gene features that did not show
study bias for the predictions, namely the co-expression
with known HIS genes in the COEXPRESdb and GTEx
co-expression networks; the NoVaDs; evolutionary conser-
vation; and the ratio of gene expression in fetal to adult tis-
sue (see Methods). As with other methods, to train the SVM
we used HIS genes taken from a review (7) while HS genes
were obtained as genes disrupted by deletion copy number
variants in healthy individuals (8) (see Methods). HS genes
were subsampled 100 times, averaging predicted HIS scores
for each gene (see Methods). As our method is applicable
to genes irrespective of their degree of study, we called the
resulting score ‘Genome-wide haploinsufficiency score’ or
GHIS.

We wanted to compare the GHIS to previously published
methods, denoting the latter scores as ‘Essentiality score’
(4), RVIS (6) and ‘Huang HIS score’ (3) (see Methods). The
GHIS provides a score for a higher number of genes than
previously published methods (Table 2). Crucially, of the
genes with a provided score, the GHIS includes about twice
as many genes currently unassociated with any Pubmed pa-
pers as each of the three previously published methods, both
in absolute numbers and as a proportion of the total predic-
tions (Table 2).

Predictions for genes with disease association

In the next step, we evaluated the different scores on gene
sets with known disease association (Table 1).

These genes have higher CDS length than general human
genes (Supplementary Figure S5a). Consequently, we com-
pared each gene set to 100 random gene sets with the same
number of genes, matching genes for CDS length (see Meth-
ods). As in previous studies, MCC was used as primary com-
parison metric, assessing how many disease genes versus
random genes fell into the genes predicted to be among the
25% most intolerant to disruption (cut-off chosen as used
by Petrovski et al. (6); see Methods). We compared scores
with the Mann-Whitney rank test.

The GHIS performed as well as or significantly better
than the RVIS on all gene sets, and at least as well as the Es-
sentiality score on all but the ‘OMIM HI’ and ‘MGI Lethal-
ity’ gene sets (all q < 10−9; Figure 2a, Supplementary Table
S4).

The Huang HIS score outperformed the GHIS on the
‘OMIM HI’, ‘OMIM HI de novo’, ‘CGD AD’ and ‘MGI
Lethality’ gene sets (all q < 10−10). However, these are
some of the most studied human genes (median >50
papers/gene; Supplementary Figure S2a). By contrast, per-
formance of the Huang HIS score declined steadily for
less-studied genes, and the GHIS performed better than all
published methods when predicting the considerably less-
studied ‘SMP Viability’ and ‘SMP Viability new’ genes, as
well as the ‘MGI Seizure’ genes (all q < 10−10).

The results were similar when considering the area un-
der the ROC curve (AUC; see Figure 2b, Supplementary
Table S5), although with better relative performance of the
RVIS and Essentiality score. Notably, the GHIS again sig-
nificantly outperformed all of the three other scores on the
‘SMP Viability’ and ‘SMP Viability new’ genes, as well as
the ‘MGI Seizure’ genes (all q < 10−10).

Predictions for disease candidate genes

Finally, we considered these methods’ predictions made
for sets of disease candidate genes from recent exome se-
quencing studies. Autism probands have an elevated rate
of de novo LoF mutations than unaffected individuals (20);
around half of the de novo LoF mutations are expected to
be causal (20), suggesting that the corresponding genes are
HIS. As only about 50% of the ASD genes are likely to
be causal, even with a score that distinguishes perfectly be-
tween HIS and HS genes, the MCC and AUC are expected
to be lower than 1 for the ASD genes. Under the best-case
scenario, we would expect the MCC to be around 0.38 and
the AUC around 0.75 (see Supplementary Data).

We considered two independent sets of de novo LoF genes
in autism (‘ASD1’, n = 50 (12); ‘ASD2’, n = 49 (13–15)) and
their combination (‘ASD12’, n = 98). Genes with de novo
mutations tend to have high CDS length (Supplementary
Figure S5b), hence we accounted for CDS as for the disease
gene sets above. As expected, the MCC and AUC for all
four scores considered in this study are lower than under
the best-case scenario (Figure 2c,d).

However, the GHIS significantly outperformed all three
previously published scores on all three autism gene sets us-
ing the MCC metric (Mann–Whitney q < 10−6 for all three
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Table 2. The genome-wide haploinsufficiency score evaluates a higher number of genes than three previously published methods, as well as a higher number
of less-studied genes

Score Total Without Pubmed paper Percent without Pubmed paper

GHIS 19 701 4621 23.46%
Huang HIS score 17 069 2064 12.09%
Essentiality score 18 386 1525 8.29%
RVIS 16 572 1774 10.70%

Essentiality score = Khurana et al. (4) gene indispensability score; RVIS = Petrovski et al. (6), Residual Variance Intolerance Score; Huang HIS score =
Huang et al. (3) haploinsufficiency probabilities.

comparisons, Figure 2c, Supplementary Table S4), as well
as using the AUC metric (Mann–Whitney q < 10−10 for all
three comparisons; Figure 2d, Supplementary Table S5).

For the genes in the ASD1, ASD2 and ASD12 sets, we
do not know which are causal, and therefore cannot eval-
uate the accuracy of the methods further. Consequently, as
another example of practical application, we considered 18
genes disrupted by de novo LoF mutations in at least two
autism probands from a larger study (16) (‘ASD M’). All of
these genes are associated with autism at <10% FDR based
on de novo and transmitted genetic variants (16). There-
fore, these genes should rank highly on a HIS score. We
asked how many of the 18 ASD M genes fell into the genes
with the top 1, 2, . . . , 99% score for the GHIS and the
three previously published scores. These genes have high
CDS lengths (Supplementary Figure S6a), and their CDS
is strongly correlated with their RVIS (Spearman � > 0.8)
in agreement with the CDS length bias described above.
Consequently, the results for the RVIS and the CDS are ex-
tremely similar (Supplementary Figure S6a) and it is diffi-
cult to quantify to which extend the ranking of these genes
is confounded by mutations being more frequent in longer
genes. While we accounted for the CDS-bias in the above
analyses through randomizations, for this straightforward
application, no like-for-like comparison of the RVIS to the
three other methods was possible.

Of the remaining three scores, the GHIS performs at least
as well as the Huang HIS score and the Essentiality Score
across all possible cut-offs (Supplementary Figure S6b).

These results suggest that none of the methods consid-
ered in this study are accurate enough for use in a clinical
setting, but that the GHIS has relatively the best perfor-
mance on the best autism candidate genes.

DISCUSSION

In this study, we have shown that the biological net-
works previously employed to predict haploinsufficiency
are strongly impacted by study bias: well-studied genes are
both part of more networks and have more links in indi-
vidual networks. In particular, manual gene annotations
based on low-throughput studies lead to both highly ac-
curate, but also very biased networks (17,21). By contrast,
systematic genome-wide assays aim to deliver information
without study bias. Consequently, we used large-scale gene
co-expression networks and information from thousands of
exomes to construct a haploinsufficiency score (‘Genome-
wide haploinsufficiency score’, GHIS) for over 19 700 hu-
man genes, of which over 23% are not at all well-studied.
Subsequently, we showed that the GHIS outperforms pre-

viously published methods when assessing several disease
gene sets that include less-studied genes.

While we found that the scores affected by study bias
perform better on the well-studied genes considered here,
this does not mean that such scores are preferable even on
better-studied genes: if not accounted for, the bias could
still lead to confounded and thus misleading results. By con-
trast, the GHIS is not affected by study bias (see also Sup-
plementary Table S2), and is thus preferable to confounded
scores.

There are limitations to our approach. Firstly, while we
aimed to construct a haploinsufficiency score unaffected
by study bias, the ‘gold-standard’ set of HIS genes used
for training is very well-studied. Indeed, we found that a
haploinsufficiency score constructed on unbiased data but
tuned to the training set more strongly (see Supplemen-
tary Data) had a significantly better performance on well-
studied genes, but a significantly worse performance for
less-studied genes, and made predictions for fewer genes
without Pubmed papers. Intuitively, fitting a predictor to
capture known genes and thus their corresponding biologi-
cal processes does not make the predictor more likely to suc-
cessfully predict new genes with different biological mecha-
nisms.

Secondly, even the less-studied test sets considered here
have a median of over 30 Pubmed papers per gene, and are
thus very well-studied compared to the majority of genes in
the genome. Unfortunately, due to limited availability, we
could not use mammalian HIS genes obtained from unbi-
ased screens as training and test sets. Hence, we considered
known human disease genes and genes whose one-to-one
orthologue’s disruption in the mouse indicates haploinsuf-
ficiency. However, most of the currently available models
were constructed for well-studied human genes, and the in-
formation is limited to human genes with one-to-one or-
thologues in mice. Notably, the presence and severity of the
phenotypes in mice might not transfer directly to humans
(22).

Thirdly, our haploinsufficiency scores currently do not
take the genetic background in individuals into account.
This is a major limitation as genetic variants do not act
in isolation: the genetic background has been shown to
have an effect on animal models of gene disruption (23),
and the disruption of multiple genes within the same bi-
ological pathway can increase the risk for a disorder (24).
Higher-order models to predict the cumulative phenotypic
impact of multiple genetic variants would require an exten-
sive training set based on knowledge of the specific out-
comes from various combinations of variants. A compro-
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mise might be to predict the phenotypic penetrance of gene-
disruptive variants. The necessary data could become avail-
able from surveys of large numbers of well-phenotyped hu-
man individuals.

Finally, we note that none of the scores considered in this
study had a very high performance (AUC>0.8) on any of
the test sets. Hence, we would suggest that the GHIS could
be used to test for enrichment of genes with high scores in a
particular gene set of interest and/or to prioritize genes for
further study; in the latter case, further scrutiny of individ-
ual gene predictions would be warranted.

In summary, we present an approach to predict haploin-
sufficiency for a broader range of human genes, without
study biases inherent to previous methods.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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