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Emergence of dynamic patterns in the form of oscillations and waves on the

cortex of single cells is a fascinating and enigmatic phenomenon. Here we out-

line various theoretical frameworks used to model pattern formation with the

goal of reducing complex, heterogeneous patterns into key parameters that are

biologically tractable. We also review progress made in recent years on the

quantitative and molecular definitions of these terms, which we believe

have begun to transform single-cell dynamic patterns from a purely observa-

tional and descriptive subject to more mechanistic studies. Specifically, we

focus on the nature of local excitable and oscillation events, their spatial coup-

lings leading to propagating waves and the role of active membrane. Instead of

arguing for their functional importance, we prefer to consider such patterns as

basic properties of dynamic systems. We discuss how knowledge of these pat-

terns could be used to dissect the structure of cellular organization and how

the network-centric view could help define cellular functions as transitions

between different dynamical states. Last, we speculate on how these patterns

could encode temporal and spatial information.

This article is part of the theme issue ‘Self-organization in cell biology’.
1. Introduction
Rhythmic dynamics of the cell cortex have been noted since light microscopy was

used to observe living cells. When cells are changing shape, be it cell migration,

spreading, growth or division, the changes in the cortex often happen in a pulsatile

manner with different degrees of regularity. In different parts of the cell, these

pulses are not always synchronized, thereby giving rise to a plethora of spatiotem-

poral patterns with the more coherent ones appearing to be wave-like. There are

vintage examples describing compelling cortical rhythm and waves in fibroblasts

[1], leucocytes [2], Dictyostelium discoideum [3], Physarum polycephalum (an enor-

mous amoeba with neuron-like morphology) [4], eggs and embryos [5], all of

which can be considered as model systems for single-cell patterns. With recent

advances in visualization and biosensor development, cortical patterns can now

be seen in more systems beyond these motile or large cells (see reviews in [6–10]).

Examining single-cell systems offers exciting opportunities for a molecular under-

standing of the pattern formation process, which is typically studied in chemical

systems [11] or multicellular developmental systems. Yet, the majority of cell biol-

ogists likely consider these patterns to be curious and exotic phenomena.

Frequent questions include: Do these patterns only happen in specialized systems

or circumstances? Are patterns functionally significant? Why do cells make patterns?
2. Basic theoretical frameworks of pattern formation
To start thinking about these existential problems, one first needs to appreciate that

in theory patterns could spontaneously develop as the result of interactions and

feedback mechanisms inherent in very simple but nonlinear dynamical systems.

For temporal oscillations, the earliest model is the predator–prey model,
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developed in ecology almost a century ago [12,13]. The para-

digm for excitable and oscillatory behaviours is the Hodgkin–

Huxley (HH) model, which was developed in 1952 to describe

the kinetics of action potentials in electrically excitable cells

using only four ordinary differential equations [14]. The HH

model and the later, more generalized, FitzHugh–Nagumo

equations [15,16] are empirical models that are mathematically

but not biologically tractable (the constants used in the model

do not all have physical meanings). In addition, spatial patterns

(propagation of the action potential from localized activation)

were not addressed. However, the models illustrate how stimu-

lation above a threshold induces a pulse of action potential

followed by a refractory phase before returning to the base-

line—a typical trajectory for excitable systems (see reviews in

[10,17]). They also define the mathematical criteria for the exist-

ence of oscillatory dynamics [15]. These so-called limit cycle

oscillations (which refers to a closed trajectory in phase space

when all the states are illustrated) require negative feedback

and an open system as well as an unstable steady state [18]. If

the steady state is stable, the system returns to steady state

after being excited, instead of continuing with another cycle.

The breakthrough for spatial pattern formation took place in

the same year as the HH model, when Turing proposed his now

well-known reaction–diffusion (RD) model [19]. With two par-

tial differential equations to describe interacting reactants and

their diffusions in space, a large number of spatiotemporal pat-

terns in developmental biology could be readily obtained.

Turing’s model was largely unknown to the biology community

until Meinhardt and Gierer proposed their pattern formation

theory based on short-range activation and long-range inhi-

bition in the 1970s [20,21]. The Meinhardt–Gierer model is

considered to be largely equivalent to Turing’s model (for

their differences, see [22]), but their papers are more accessible

to biologists [18]. These papers demonstrate that stable spatial

patterns can form if the inhibitor has a longer range than the acti-

vator, temporal oscillations can form if the inhibitor has a longer

life time than the activator, and a travelling wave can form if a

baseline inhibitor suppresses the spontaneous activation and

the activator spreads faster than the inhibitor [23].

RD models assume chemical diffusion as the main mechan-

ism of spatial-coupling but the conceptual framework could

be applied to other types of coupling, including electrical and

mechanical coupling [19,24]. One can generalize this further

by considering spatial pattern formation as the result of synchro-

nization or partial synchronization of a population of coupled

oscillators [25]. Here, the system is composed of phase-shifted

oscillating reactions, which is mathematically described as a

phase function without assuming the physical nature of the

phase shifts. Coupled-oscillator models have been applied to

many synchronization phenomena occurring in nature, such

as the rhythmic blinking of fireflies in the dark, applause of con-

cert audiences, and how a walking crowd caused the wobbling

of London’s Millennium Bridge [26]. Many of these systems

are composed of discrete units of oscillatory reactions but

Kuramoto showed that a coupled-oscillator model could also

apply to continuous medium, such as the diffusion-coupled

Belousov–Zhabotinskii reaction (the founding reaction that

introduced non-equilibrium thermodynamics to chemistry

and inspired models of nonlinear behaviour) [27].

Mathematically, coupled-oscillator models are more suitable

to study weakly coupled (short-range) limit cycle oscillations.

Thus, applying coupled-oscillator models rigorously in non-

oscillating excitable systems, or in systems with non-local
long-range coupling, would be non-trivial [28]. Biologically,

coupled-oscillator models are attractive for developmental sys-

tems and can be argued as conceptually different from RD

models [29]. In RD models, differential cell fate leading to spatial

patterns originates from ‘prepatterns’ in the embryos, such as

a spatially distributed morphogen. Coupled-oscillator models,

on the other hand, employ the temporal order to generate spatial

patterns. For instance, Goodwin & Cohen proposed that phase

shifts between the coupled cellular oscillators can encode size

and positioning information required for developmental pat-

terning [30]. Cooke & Zeeman also hypothesized that an

endogenous oscillator of the cell can function like a clock and

the propagation of the wavefront of this clock can generate per-

iodic structures with regular spacing (the clock and wavefront

model) [31,32].

Spatiotemporal patterns in single cells are typically studied

with RD models and are less frequently discussed as coupled

oscillators. Apart from technical difficulties in modelling, tra-

velling waves are considered to originate more readily from

excitable systems than oscillatory systems [7,33]. Intuitively,

the coupled-oscillator is easily understood in discrete systems

(tissue made of many single cells) as opposed to continuous

systems (cortex of a single cell). The concept of the cell is

deeply ingrained in our minds so it is easy to consider the

cell as a discrete functional unit with autonomous properties.

It does not bother us that on the time scale of the development,

cells do migrate and lose their positions, and cells do divide,

differentiate, and lose their identities. On the other hand, the

unit of cortex is much more abstract. Whatever this unit

might be, it is hard to imagine its identity with constant diffu-

sion, flow and transport. The visual impression of the waves

really challenges the spatial identity of any cortical unit. There-

fore, it is not surprising that coupled oscillators are only

occasionally discussed in single cells when different regions

are grossly uncoupled [34,35]. However, it is important to

note that a continuous and coherent system can be readily trea-

ted as weakly coupled oscillators if the diffusion terms are

small compared with the reaction terms [28,36,37]. This scen-

ario could be plausible in single cells but has not been

quantitatively assessed experimentally.

Here we summarize these basic frameworks of pattern for-

mation in order to convey a few key points. First, excitable and

oscillatory dynamics and their spatial patterning can be readily

explained by various models with little assumption as regards

biological details. Therefore, formation of spatiotemporal pat-

terns should be considered as ubiquitous properties of

dynamical systems. This point is important because the very

question of the function of the pattern is phrased within the clas-

sic framework of Darwinism, where the only source of order is

through natural selection based on fitness advantages (func-

tion). If patterns are basic properties of dynamical systems in

the same sense that the wave is a property of light, their existence

should not be justified from a functional perspective. Rather,

they reveal a tendency of self-organization in biological systems,

which is likely more fundamental than any specialized function.

Whether self-organization, in general, fits in the current frame-

work of Darwinism or requires an expanded framework is a

more profound open question than what we can discuss here

[38]. Second, because well-ordered patterns have specific

requirements, they represent a particular dynamical state of

the cell. As such, they are not expected to occur all of the time

when cells experience different states. Lastly, while different

frameworks can potentially reproduce phenomenologically
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Figure 1. Spatiotemporal patterns in the cortex of a single cell. (a) Total internal reflection fluorescence image showing FBP17-EGFP waves in rat basophil leukaemia
cell. The overlay image shows the time projection of waves. Scale bar, 10 mm. Inverted lookup table is used in the first three images. (b) (i) Kymograph of cortical
waves in a cell co-transfected with FBP17-EGFP (green) and mCherry-actin (magenta). (b) (ii) Waves appear by phase shifts in the local oscillations.
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similar patterns, one needs to differentiate between empirical

and mechanistic models. Because all of these models were devel-

oped long before any of the biological details were known, they

provide justification for the existence of the pattern but not

enough constraints to predict the biological mechanisms.

There are still plenty of spaces within what is theoretically plaus-

ible, which likely corresponds to the diversity of the patterns and

the uncertainty in their interpretations. Understanding how

these patterns happen in any real biological setting is still chal-

lenging and will require a combination of quantitative biology

and mechanistic models.
3. The zoo of cortical oscillation and waves
Molecular characterizations of the cortical pattern at the single-

cell level are primarily focused on actin. Actin as a cortical pat-

tern marker is both unifying and confusing. We highlight the

importance of understanding the local excitable or oscillatory

dynamics prior to understanding the spatial pattern formation.

When upstream factors marking the nucleation site of actin

polymerization are used, it is clear that cortical waves represent

clusters of discrete loci oscillating at different phases (figure 1).

Sequential assembly and disassembly of the loci gives the

impression of propagating waves [39–42]. This wave propa-

gation is most clearly shown in the cortical pattern at the

basal surface but the same is true for waves associated with

the leading edge of the migrating cells [35,43] or neuronal

branches [44]. In fact, even in the absence of high-resolution flu-

orescence imaging, it has been recognized that cortical waves

are made up of components that are ‘stationary with respect

to points outside of the cell’ [45]. Such local dynamics could

be superimposed with cortical flow, but the local reactions

have to be dissected and understood. We, therefore, focus on

the molecular understanding of the activator–inhibitor sys-

tems underlying the local reactions and spatial-coupling

mechanisms that affect their propagation in space.

(a) Activator and positive feedback mechanisms
When actin was the only marker for cortical patterns, it was dif-

ficult to agree on whether actin played an activator or inhibitor
role [10,46]. Now, many upstream factors of actin have been

found to display excitable or oscillatory dynamics, including

various GTPases and lipid second messenger (electronic sup-

plementary material, table S1). These additional cortical

wave markers allow one to determine the effect of actin inhi-

bition on cortical waves. It turns out that inhibition of actin

leads to a longer lifetime of GTPase activation and longer oscil-

lation periods in many cases, indicating that actin largely

functions as a negative regulator in these systems [47]. Intrigu-

ingly, it is possible to observe membrane oscillations when

actin is inhibited, such as the phosphatidylinositol-3,4,5-tris-

phosphate (PIP3) and phosphatase and tensin homologue

(PTEN) oscillations in Dictyostelium [48,49], Cdc42 oscillations

in neutrophils [50] and in yeast [51]. Although an active role

of actin cannot be excluded, especially for protrusive patterns,

these findings highlight the importance of self-organizing

membrane-localized signalling networks as activators.

Signal amplification mechanisms such as positive feedback

are frequently employed to ensure sustained oscillations [17]

(for examples of alternative mechanisms such as cooperativity

or ultrasensitivity, see [52]). On a molecular level, positive feed-

back activation of GTPases typically requires direct interaction

of the guanine nucleotide exchange factor with its own product,

the GTP-bound form of GTPase. Such allosteric regulation has

been reported for Cdc42 [53,54] and Ras [55–58]. Alternatively,

different pathways could positively feedback to each other,

such as between PI3 K and Ras pathways [59,60] or between

phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3 K) and

Rho pathways [61]. Pathway cross-talk is empirically defined

without knowing the precise network structures. Lastly, a

number of positive feedback loops involving actin have been

proposed for stable pattern formation such as polarity. These

include feedback between actin-based transport of Cdc42GTP

and Cdc42GTP-stimulated actin polymerization [62,63], or

between PI3 K and actin [64]. Whether the same mechanism

operates in dynamic patterns is not clear.

(b) Oscillation frequency and inhibitor identity
Not all cortical patterns are in an oscillatory state and dynamics

of the local reaction vary significantly from non-recurring pat-

terns in neutrophils [43], through recurring but irregular
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Figure 2. Mechanisms of spatial-coupling in cortical waves. (a) RD chemical waves are diffusion-coupled propagation of chemical activity. (b) Protrusion waves are
waves driven and limited by the speed of actin polymerization, where membrane plays a passive role. (c) Curvature waves are powered by membrane shape
undulations through the coupling with curvature-sensing chemical reactions. Black or white dots indicate the on or off state of reactions. Green shade indicates
activator in waves. Grey shade marks the inside of a cell and grey branches represent actin filaments. ‘þ ’ indicates activating signals, whereas ‘2 ’ indicates
inhibiting signals. Top to bottom are two consecutive time points.
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patterns in Dictyostelium [65], to more regular oscillations in

Dictyostelium [66], mast cells [67], embryos [68] and neutrophils

[50]. These dynamics likely reflect that cells exist in different

states closer to either excitable or oscillatory state. An excitable

state is an intermediate between a resting and oscillatory state

[69]. In excitable systems, interspike time is determined by both

the refractory phase and the resting phase and will lead to over-

estimation of the time scale of the inhibitory reaction. One way

to determine the time scale of the inhibitor in non-oscillating

conditions without knowing the inhibitor identity is to apply

periodic stimuli and determine the resonating frequency. The

resonating frequency determined this way in Dictyostelium
cortex is around 20 s [70].

We focus on systems displaying more regular cortical oscil-

lations because they represent experimental conditions closest

to the limit cycle oscillators, which are useful conditions to

reveal the underlying inhibitor kinetics. Cortical oscillations

are typically on the time scale of seconds to minutes though

three regimes of time scale frequently appear: a fast oscillation

of around 10 s, an intermediate rhythm of 20–30 s and a slow

one of between 2 and 3 min. Interestingly, mixed frequencies in

the same cell were reported when cortex shape was monitored.

For instance, the frequency distribution of neutrophil shape

oscillations has two peaks at 8 s and 20–30 s [71,72]. In P. poly-
cephalum, coexistence of two rhythms (2–3 min, 5–6 min) [73]

or three rhythms (3.3 s, 24 s, 1.3 min) [74] has also been

reported. Mixed frequencies, especially those in the same

system, could indicate existence of cortical oscillations

mediated by different activator–inhibitor networks. For

instance, in mast cells, coexistence of two different rhythms

of actin oscillations has been observed, with one at 30 s due

to active Cdc42 pulsing and another at 100 s corresponding

to active Rho pulsing [75]. If the period is different by exactly

twofold, this difference could also originate from period

doubling of the same oscillator [76].

Inhibitory reaction plays an important role in defining the

refractory phase and setting the pace of the oscillations. The

unequivocal determination of the molecular identity of the

inhibitor will require reconstitution experiments that have not

been reported for cortical oscillations. Acute methods are

often employed to quantitatively tune oscillation frequencies

in order to infer the inhibitory reactions. As mentioned

above, actin appears to be a negative regulator in many of

the excitable and oscillatory systems [47]. In addition, myosin

II-dependent contraction is often proposed as a delayed inhibi-

tor for oscillatory protrusion–retraction cycles, including

lateral patterns at the leading edges during cell spreading
[77], contracting epithelial cell–cell junctions [78] and shape

oscillations observed in fibroblasts in suspensions [79]. These

contractile pulses tend to have longer oscillation period

(greater than 1 min) and are downstream of Rho activation

[80]. However, whether myosin II is necessarily required for

Rho pulses in all systems is not clear [81].

Lipid phosphatases are frequently found to be the inhibitors

for basal surface patterns that are myosin II-independent

[40,65]. In Dictyostelium, PTEN is generally modelled as an

inhibitor [48,49,82,83]. In mast cells, cortical oscillations of

Cdc42/F-BAR (Fer-CIP4 Homology-Bin/Amphiphysin/Rvs)

proteins have typical oscillation frequencies of 30 s and these

frequencies could be tuned by PI3 K activation coupled with

SHIP1, a lipid phosphatase [67]. Using optogenetics to acutely

elevate PI3 K levels can decrease the period to about 10 s. Con-

versely, addition of a chemical inhibitor of PI3 K can increase

the oscillation period to up to 80 s, after which no oscillations

can be observed. The limit of inhibitor lifetime in this PI3 K/

SHIP1 oscillator, therefore, appears to be 10–80 s.

(c) Spatial-coupling of the local oscillators and wave
velocity

For spatiotemporal patterns such as travelling waves, the most

fundamental question is the underlying mechanisms of the

spatial connectivity, which affect their propagation velocity.

There are at least three types of coupling for cortical waves

(figure 2) [33]. First is the pure RD chemical wave. The speed

of chemical wave propagation scales with
ffiffiffiffiffiffi

kD
p

, where k is

the autocatalytic rate constant and D is a diffusion coefficient

[84]. For cortical waves involving a membrane-localized activa-

tor, the speed is limited by membrane diffusion of the

upstream regulator. The second type of wave is the membrane

‘protrusion wave’ driven by actin polymerization. Velocities of

these wave are limited by the rate of actin polymerization and

are reduced when actin polymerization is inhibited. The third

type of wave is the ‘curvature wave’ driven by membrane

undulations. It was predicted that active membrane coupled

with proteins promoting membrane asymmetry can lead to

shape changes that travel as waves [85]. Propagation velocity

here will depend on the rate of curvature propagation.

Experimentally differentiating between these mechanisms

requires quantitative information of the propagation velocity

(electronic supplementary material, table S2) and how this

velocity responds to perturbations, which has only been deter-

mined in a small number of cases. RD waves are considered

the default mechanism. For actin waves observed in neuronal
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growth cones, wave velocity is slower with inhibited actin

polymerization, which is consistent with actin-driven

protrusive waves [44]. These neuronal waves, as well

as dorsal protrusive waves, are slow and propagate with a

rate ,0.1 mm s21. However, there are also exceptions. In

Dictyostelium, the maximal velocity of the leading edge waves,

which should also involve protrusion, can be as fast as

0.7 mm s21 [86,87]. In addition, wave velocity could be faster

when phosphatidylinositol-4,5-bisphosphate (PIP2) is depleted

[88], which presumably reduces cortical actin. Basal surface

waves and waves visualized at the equator plane of the cell pro-

pagate with heterogeneous speeds, whereas slow waves have a

velocity around 0.01–0.2 mm s21 and faster waves have a vel-

ocity around 0.5–1 mm s21. Some of these faster waves appear

to be actin-independent [50,89] but curvature-dependent [89].
Soc.B
373:20170116
(d) Active membrane
While it is likely necessary to differentiate cortical waves based

on their location, location alone is limited in predicting the

oscillation and wave properties. A more direct parameter is

perhaps the membrane curvature in the specific context of

the membrane–cytoskeleton interface. Protrusive edges in Dic-
tyostelium have a much less negative curvature compared with

the lamellipodia in the fibroblast [86], which may explain why

protrusive wave velocities are almost undiminished compared

with those of the basal surface waves in Dictyostelium [87], but

are much slower in other cell types.

Changes in membrane curvature could influence recruit-

ment of curvature-sensing proteins, polarity of the actin

assembly and its force-generation on the membrane. This

chain of events, in turn, affects both the reaction kinetics and

means of wave propagation. The Bin/Amphiphysin/Rvs

(BAR)-domain superfamily proteins are likely candidates link-

ing membrane curvature to the cortical pattern. F-BAR proteins

(FBP17, CIP4 and Toca-1) are recruited to the basal cortical

waves in mast cells [42]. This recruitment is surprising because

basal surface waves are the least likely to involve membrane

shape changes. An additional puzzling fact is that these F-

BAR waves are faster than some other basal cortical waves or

protrusive waves that also involve changes in membrane cur-

vature. It turns out that F-BAR proteins can drive shallow

inward membrane bending [89]. Changes in curvature have a

non-local effect in recruiting curvature-sensing proteins and

driving wave propagation. The membrane undulations have

small amplitudes and cannot be supported by N-BAR proteins

preferring high curvature. This is a different mechanism com-

pared with the hypothesized involvement of curvature-sensing

proteins in the self-amplification step of a protrusion wave [9].

For extensive membrane bending, actin polymerization rate is

limiting and the wave spreads slowly. Experimentally, the N-

BAR protein endophilin was recruited to the oscillating leading

edge in fibroblasts though in the contraction phase rather than

the protrusion phase [90]. Curvature is likely involved in other

systems where membrane shape changes are observed but

specific proteins are not identified [91,92]. Considering the

versatility of BAR-domain proteins, their involvement in

cortical patterns is likely to be multi-faceted. Besides shape

undulation, membrane trafficking events such as endocytosis

or exocytosis could also be coupled with cortical oscilla-

tions [93,94]. The active involvement of membrane is likely

essential for understanding the mechanosensitivity of the

cortical patterns.
4. Information content of the cortical patterns
The difficulty in unifying the plethora of oscillation and wave

phenomena in single cells could suggest their potential to

encode rich dynamic information, but their heterogeneity

and potential to superimpose with each other pose great chal-

lenges in their interpretation. Because relatively little is known

about their biological meanings, this section is less a summary

of the progress made but more a collection of open questions

about how patterns could encode information.

(a) Probing network structure
Many current attempts to deconstruct cellular biological sys-

tems rely on dissecting molecules and their interactions. This

approach is only effective if the function is encoded at the

level of individual genes. Owing to the rarity of genes linked

to fixed functionalities, it has been long recognized that a

better proxy would be molecular networks and the interactions

of these networks, both of which are flexible and dynamic [95].

However, the challenge has always been the lack of method-

ology to identify functional networks [96]. Oscillations are

powerful readouts for understanding both the components

and the topology of the biological networks [97]. Because net-

works need to communicate with each other, and entrainment

is the most common mode of the communication, it should be

fairly common for factors oscillating with the same rhythm to

belong to separate feedback loops. Such information could be

inferred in at least three ways: differential participation in the

pattern, differential responses to perturbations and differential

contributions to the pattern.

An example of differential participation in the pattern

includes PIP3 and Ras, which are frequently considered to be

upstream factors involved in cortical rhythms in Dictyostelium.

However, only a subset of cells exhibiting PIP3/PTEN waves

are associated with active Ras. This partial association indicates

that positive feedbacks leading to localized Ras activation

belong to a different network from PIP3 oscillations [48]. Simi-

larly, cortical actin oscillations could be uncoupled from

calcium oscillations, indicating that they belong to two separate

networks [42]. An example of coupled oscillators that can be

uncoupled by perturbations is that of how the PIP3 oscillator

and actin oscillator react to an actin depolymerization drug

[66]. Uncoupling of the signalling networks and actin

module has led to a new model of chemotaxis that isolates gra-

dient-sensing from motility [98]. Examples for differential

contribution to the pattern are rare. We have found that

while both PIP2 and PIP3 are oscillating with similar phases

to FBP17 in mast cells, perturbation of PIP2 and PIP3 leads to

changes in amplitude and frequency of FBP17 oscillations,

respectively [67]. Mechanistically, such differential effects

occur because the PIP2 network includes synaptojanin 2, the

negative regulator for PIP2, as part of the incoherent feedfor-

ward loop while the PIP3 network includes SHIP1 as part of

the delayed negative feedback loop. Thus, PIP2 and PIP3 func-

tion through separate networks even though they are

intimately linked metabolically.

(b) Frequency-encoded signalling and decoding
Do oscillations contain temporal information? The idea of fre-

quency-encoded signals has been extensively reviewed for

intracellular oscillations [99–102]. Yet not much is known

about the information encoded by cortical oscillation
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frequencies. Biologically, it would be stimulation concentration

[103] (this also applies to calcium oscillations [104], which are

cytosolic but have a cortical origin), cell adhesion strength

[105], energy state [71,106] or, at the molecular level, an enzy-

matic activation (PI3 K activity is frequency-coded in mast

cells [67]).

Whether these periodic activities could be decoded

in a frequency-dependent manner is an open question.

Frequency-decoding requires coupling the oscillation with a

slower decay process outlasting the individual cycles of the

oscillation in order to convert the frequency back to amplitude

(figure 3). Such persistent responses could be considered cellu-

lar memory or a timer [107]. If the pace of cortical oscillations is

in the range of 10 s to a few minutes, it is theoretically plausible

that they could be integrated at the level of transcription, con-

sidering that the fastest transcriptional pulsing takes a few

minutes [108,109]. If true, next it will be critical to determine

whether frequency-dependent responses really count time.

For instance, calcium oscillations are proposed to be fre-

quency-decoded by build-up of dephosphorylated Nuclear

factor of activated T-cells (NFATs) in the cytoplasm [110]. Yet

a recent study independently controlling the duration and

number of pulses using optogenetics suggests that NFAT

activity depends more on the pulse duration than on the fre-

quency. Thus, NFATs may not be a true frequency decoder or

timer [111]. Intracellular signalling pathways, such as the ERK

[112] and MAPK pathways [113,114], display band-pass filter-

ing effects when challenged with periodic stimuli. These

findings are consistent with frequency-decoding but whether

these pathways are related to cortical oscillations is not clear.

Biological time could be measured with continuous signals,

such as production of an activator or decay of an inhibitor

with time, but pulsed signals as timers are more tunable and

adaptive [115].
(c) Defining cellular function as state transitions
For spatial patterns, one area of particular interest is the relation-

ship between dynamic structures such as waves, and stable

spatial structures with well-recognized functionality such as

polarized leading edges. Basal surface actin waves have been

widely observed in migrating cells, yet not all cell migration

involves formation of the waves and many stationary cells dis-

play prominent actin waves. Both coexistence of actin waves

and chemotactic responses [3,43,116] and their mutual exclu-

sion (actin waves act as a pathologic state inhibitory to

migration) [35] have been reported. Thus, it may seem that

actin waves are neither necessary nor sufficient for cell motility.

These seemingly contradictory results could be potentially

reconciled if one considers cell motility as a transition between

dynamical states and how parameters of the oscillation
correlate with the transition probabilities. For cells to polarize,

the cortex likely switches from an excitable state (consider a

fixed locus on the cortex that oscillates between on and off) to

a bistable state (constantly on at the front and off at the back)

(figure 4). For a polarized cell to move forward, the boundary

of the bistability shifts and the cortex in the middle of the cell

switches between the two steady states of the bistable state. If

high amplitude oscillations imply a larger difference between

the two steady states in the bistable regime, it is possible that

the amplitude will be inversely correlated with the transition

likelihood so that high amplitude oscillation has more difficulty

transiting to migration mode. A recent study shows that chan-

ging properties of basal excitability can cause switching

between random amoeba migration and persistent or oscil-

latory migration [88]. In particular, reduced PIP2 levels lead

to faster, more frequent waves and faster migration, but these

migrations are more reversible. This could represent the oppo-

site of the above scenario if reduced PIP2 could lower PIP2-

dependent cortical oscillation amplitudes [67]. As a result, the
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transition between states could be easier and migration is likely.

At the same time switching back is also more likely, leading to

reversible movements. With limited information on the deter-

minants of many of these states, a detailed molecular model

remains speculative. Yet it is clear that it is not oscillation per
se that is functionally important or unimportant for motility,

but properties of the feedback loops are linked with the dyna-

mical states of the cell as well as the likelihood of the

transition between them, all of which could be included in the

same framework [117–120].

State transitions have also been discussed in the context of

cell division. Formation of the stable cytokinesis furrow and

travelling waves prior to furrow formation are two states

depending on the level of active Rho [68,121]. Although oscil-

lation represents an intermediate state between bistable and

excitable state, it is not a compulsory intermediate. It is possible

that a perturbation is so strong that the system goes directly

from a resting state to a bistable state without going through

an excitable or oscillatory intermediate. When cells are not

oscillating, or do not go through the oscillating state, it does

not mean that the network defined by oscillations does not

exist. It only means that cells narrowly miss the set of par-

ameters that support limit cycles.
(d) Spatial singularity and size information
Do waves contain spatial information? In a now classic review

on the role of waves in a developmental context, Goodwin

classified waves into three categories based on the information

they provide: the S-wave for synchronization, the P-wave for

positional information and the R-wave for size regulation

[30]. With the exception of situations where the phase differ-

ences could be ignored and waves could be used to

synchronize cellular activity such as cell cycle [122], it is unli-

kely that S-wave applies to entities such as single cells. Could

cortical waves encode position or size information? An emer-

ging theme relating to position information is that cortical

waves could be used to ensure singularity in spatial events.

In embryos, fusion of the sperm and egg plasma membranes

leads to propagation of fast waves of membrane depolarization

followed by calcium waves. The function of the activation wave

is thought to ensure that only one sperm fertilizes a given egg.

The refractory phase of the activation wave effectively blocks

polyspermy [123]. In yeast, formation of a polarity site is

accompanied with travelling waves of Cdc42. Since multiple

buds could form either spontaneously [124] or when positive

feedback is strengthened [62], it was hypothesized that nega-

tive feedback could help ensure the robust formation of a

single bud despite the wide variability of activator level [51].

The precise role of negative feedback (i.e. travelling waves)

remains to be experimentally evaluated by uncoupling the acti-

vation level and wave propagation range. In Escherichia coli,
pole-to-pole oscillation of Min protein waves is thought to pre-

vent assembly of cell division machinery anywhere but at the

centre of the cell [125]. In longer bacteria, Min protein waves

become multi-segmented. In eukaryotic cells, occurrence of

Cdc42 waves during mitosis also prevents formation of mul-

tiple furrows [75]. In all of these examples, the refractory

phase sets the length scale and provides negative signals to

ensure spatial singularity within this length scale, which can

be considered as negative selection. Mitotic cortical Cdc42

waves could also have some positive positioning function

[75]. Intriguingly, a recent study using fast atomic force
microscopy imaging found that bacterial division occurs at

the wave troughs on the undulating cell surface, formation of

which is the earliest events for division site selection [126].

Although the molecular marker is not known, this points to a

potential general role of membrane waves for positioning cell

events.

How a cell determines its size or length is one of the major

unsolved questions in cell biology [24,127]. Whether a cell even

knows its size remains heavily debated [128,129]. Theoretically,

it would be easy to turn an oscillator into a measuring device if

one could tune the oscillation frequency without changing

wave propagation speed [24], in which case size could be fre-

quency-encoded. However, when cortical waves were studied

in giant cells of Dictyostelium, their wavelength was found to

be an intrinsic property that does not vary with cell size [65].

In E. coli oscillation periods of Min waves appear to change

with the lengths of the bacteria, with faster oscillations in

shorter cells [130–132]. If cell division is inhibited, the period

of MinD waves doubles [125,133]. In P. polycephalum, cell size

oscillation could be measured as an oscillation in cell thickness,

the period of which scales with the thickness of the cell [134]. At

the molecular level, size-sensing is poorly defined. In budding

yeast, Whi5 has been reported as a size sensor. It has cell-size-

independent expression, so smaller cells have proportionally

higher concentration. Growth-induced dilution of Whi5 can,

therefore, sense size and gate G1/S entry [135]. This is an

example where cell size is amplitude-encoded, and cell sizes

could equally be frequency-encoded (figure 5). For instance,

for cortical oscillations whose frequencies are proportional to

PIP3 concentration, if the total amount of PIP3 is constant for

both large and small cells, the oscillation frequency could be

used to encode size information [75].
5. Concluding remarks
There is a natural tendency to speak of the function of oscil-

lations or waves. The search for such a function will continue

because an absence of functionality cannot be proven [136].

In non-biological systems such as electronics, all feedback
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loops potentially have the capacity to oscillate, and some of the

oscillations are considered undesirable side effects and called

parasitic oscillations. In complex cellular systems where the cri-

teria of optimal performance are still evolving [137], debating

the function of the pattern is likely unproductive. After all,

even though networks are better proxies for function than indi-

vidual genes, they are still the building blocks of the cell.

Studies of chemotaxis are great examples where information

from the excitable and oscillatory networks can be integrated

to refine and expand our definitions of cellular functionality.

Instead of being a single function, chemotaxis is now an

encompassing, modular and intelligent system that includes

direction and gradient-sensing, polarity establishment, cell

motility, cell-turning and more. We anticipate that a better

mechanistic understanding of the feedback networks and

quantitative control of these signals will lead to a better
understanding of cell behaviour not only as the results of

genes and their interactions, but as dynamical networks and

their integrations.
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Oudenaarden A. 2008 The frequency dependence of
osmo-adaptation in Saccharomyces cerevisiae.
Science 319, 482 – 484. (doi:10.1126/science.
1151582)

114. Hersen P, McClean MN, Mahadevan L, Ramanathan
S. 2008 Signal processing by the HOG MAP kinase
pathway. Proc. Natl Acad. Sci. USA 105, 7165 –
7170. (doi:10.1073/pnas.0710770105)

115. Levine JH, Fontes ME, Dworkin J, Elowitz MB. 2012
Pulsed feedback defers cellular differentiation. PLoS
Biol. 10, e1001252. (doi:10.1371/journal.pbio.
1001252)

116. Ecke M, Gerisch G. 2017 Co-existence of Ras
activation in a chemotactic signal transduction
pathway and in an autonomous wave-forming
system. Small GTPases 112, 1 – 9. (doi:10.1080/
21541248.2016.1268666)

117. Holmes WR, Carlsson AE, Edelstein-Keshet L. 2012
Regimes of wave type patterning driven by
refractory actin feedback: transition from
static polarization to dynamic wave behaviour.
Phys. Biol. 9, 046005. (doi:10.1088/1478-3975/9/
4/046005)

118. Holmes WR, Park J, Levchenko A, Edelstein-Keshet
L. 2017 A mathematical model coupling polarity
signaling to cell adhesion explains diverse cell
migration patterns. PLoS Comput. Biol. 13,
e1005524. (doi:10.1371/journal.pcbi.1005524)

119. Mori Y, Jilkine A, Edelstein-Keshet L. 2008 Wave-
pinning and cell polarity from a bistable reaction-
diffusion system. Biophys. J. 94, 3684 – 3697.
(doi:10.1529/biophysj.107.120824)

120. Qiao L, Nachbar RB, Kevrekidis IG, Shvartsman SY.
2007 Bistability and oscillations in the Huang-Ferrell
model of MAPK signaling. PLoS Comput. Biol. 3,
e184 – e188. (doi:10.1371/journal.pcbi.0030184)

121. Goryachev AB, Leda M, Miller AL, Dassow von G,
Bement WM. 2016 How to make a static cytokinetic
furrow out of traveling excitable waves. Small

http://dx.doi.org/10.1134/S0006350916010036
http://dx.doi.org/10.1134/S0006350916010036
http://dx.doi.org/10.1016/S0092-8674(04)00058-3
http://dx.doi.org/10.1016/S0092-8674(04)00058-3
http://dx.doi.org/10.1038/nature14603
http://dx.doi.org/10.1088/1478-3975/4/4/004
http://dx.doi.org/10.1088/1478-3975/4/4/004
http://dx.doi.org/10.1083/jcb.201706052
http://dx.doi.org/10.1083/jcb.201710079
http://dx.doi.org/10.1242/jcs.108373
http://dx.doi.org/10.1016/j.bpj.2013.09.024
http://dx.doi.org/10.1021/ed064p742
http://dx.doi.org/10.1103/PhysRevLett.84.3494
http://dx.doi.org/10.7554/eLife.20085
http://dx.doi.org/10.1242/jcs.191148
http://dx.doi.org/10.1038/ncb3495
http://dx.doi.org/10.1038/s41467-017-02469-1
http://dx.doi.org/10.1038/s41467-017-02469-1
http://dx.doi.org/10.1038/ncb2533
http://dx.doi.org/10.1073/pnas.1218025110
http://dx.doi.org/10.1073/pnas.1218025110
http://dx.doi.org/10.1038/ncb3185
http://dx.doi.org/10.1016/j.devcel.2017.10.028
http://dx.doi.org/10.1038/ncb2614
http://dx.doi.org/10.1038/35011540
http://dx.doi.org/10.1016/j.ceb.2004.12.007
http://dx.doi.org/10.1016/j.ceb.2004.12.007
http://dx.doi.org/10.1007/s00018-014-1638-8
http://dx.doi.org/10.1016/j.gde.2010.09.007
http://dx.doi.org/10.1016/j.gde.2010.09.007
http://dx.doi.org/10.1016/j.cell.2013.02.005
http://dx.doi.org/10.1016/j.cell.2013.02.005
http://dx.doi.org/10.1242/dev.104497
http://dx.doi.org/10.1126/science.1239999
http://dx.doi.org/10.1016/0014-5793(95)00048-E
http://dx.doi.org/10.1016/0014-5793(95)00048-E
http://dx.doi.org/10.1098/rstb.1988.0080
http://dx.doi.org/10.1098/rstb.1988.0080
http://dx.doi.org/10.1038/ncb2124
http://dx.doi.org/10.1247/csf.9.37
http://dx.doi.org/10.1016/j.cub.2014.08.030
http://dx.doi.org/10.1126/science.1249531
http://dx.doi.org/10.1126/science.1249531
http://dx.doi.org/10.1016/j.cub.2013.12.011
http://dx.doi.org/10.1016/j.cub.2013.12.011
http://dx.doi.org/10.1093/emboj/cdg381
http://dx.doi.org/10.1016/j.cels.2016.03.010
http://dx.doi.org/10.1016/j.cell.2013.11.004
http://dx.doi.org/10.1126/science.1151582
http://dx.doi.org/10.1126/science.1151582
http://dx.doi.org/10.1073/pnas.0710770105
http://dx.doi.org/10.1371/journal.pbio.1001252
http://dx.doi.org/10.1371/journal.pbio.1001252
http://dx.doi.org/10.1080/21541248.2016.1268666
http://dx.doi.org/10.1080/21541248.2016.1268666
http://dx.doi.org/10.1088/1478-3975/9/4/046005
http://dx.doi.org/10.1088/1478-3975/9/4/046005
http://dx.doi.org/10.1371/journal.pcbi.1005524
http://dx.doi.org/10.1529/biophysj.107.120824
http://dx.doi.org/10.1371/journal.pcbi.0030184


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20170116

11
GTPases 7, 65 – 70. (doi:10.1080/21541248.2016.
1168505)

122. Ishihara K, Nguyen PA, Wühr M, Groen AC, Field
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