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INTRODUCTION

During the cell-replicating process, the genome 
duplication is an indispensable step. Although the processes 
of DNA replications are different for bacteria, archaea, and 
eukaryotes, they all share the same core components as 
elaborated in [1–2]. For in-depth understanding the genome 
duplication, it is important to find the “origin of replication 
region” (Ori), or “replication origin” (RO) (Figure 1).

 For small DNAs, such as those in bacterial plasmids 
and small viruses, a single origin would be sufficient to 
ensure a complete and opportune replication for each cell 
cycle in the entire genome. It is quite different, however, 
for eukaryotic genomes that contain substantially more 

origins [2–3]. Actually, it is quite natural to establish the 
replication forks at multiple locations [3] in order for timely 
duplicating their larger linear chromosomes. Therefore, to 
in-depth understand the process of cell reproduction, it is 
fundamentally important to acquire the RO information [1]. 

There are many experimental methods that can 
be used to determine the RO sites, such as chromatin 
immunoprecipitation (Chip), ChIp sequencing, and surface 
plasmon resonance (SPR). But it would take much longer 
time and spend more money to purely use experimental 
methods alone to acquire this kind of information. 
Therefore, it would be wise to develop computational 
methods to do the job, or at least as a complementary tool to 
the traditional experimental approach. 
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AbsTRACT
DNA replication, occurring in all living organisms and being the basis for biological 

inheritance, is the process of producing two identical replicas from one original DNA 
molecule. To in-depth understand such an important biological process and use it 
for developing new strategy against genetics diseases, the knowledge of duplication 
origin sites in DNA is indispensible. With the explosive growth of DNA sequences 
emerging in the postgenomic age, it is highly desired to develop high throughput 
tools to identify these regions purely based on the sequence information alone. In this 
paper, by incorporating the dinucleotide position-specific propensity information into 
the general pseudo nucleotide composition and using the random forest classifier, a 
new predictor called iROS-gPseKNC was proposed. Rigorously cross–validations have 
indicated that the proposed predictor is significantly better than the best existing 
method in sensitivity, specificity, overall accuracy, and stability. Furthermore, a 
user-friendly web-server for iROS-gPseKNC has been established at http://www.jci-
bioinfo.cn/iROS-gPseKNC, by which users can easily get their desired results without 
the need to bother the complicated mathematics, which were presented just for the 
integrity of the methodology itself.
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Actually, many scientists have endeavored to do so, 
as reported in a series of publications [2–12]. Unfortunately, 
all these reported methods have some limitations, such 
as in limited accuracy and practical application value. 
Particularly, most of these methods are without a web-
server, and can hardly be used by most experimental 
scientists. In view of this, further work in such an important 
and urgent area is definitely needed. 

According to Chou’s five guidelines [13] and many 
recent publications [14–20], to develop a sequence-based 
statistical predictor useful not only for theoretical scientists 
but also broad experimental scientists, we should observe 
the following five guidelines and make their concrete 
processes crystal clear: (1) how to prepare benchmark 
dataset; (2) how to formulate the biological sequence 
samples; (3) how to operate the prediction engine; (4) 
how to validate the predictor’s results; (5) how to provide 
a publically accessible web-server for the predictor. In 
the rest of this paper, we are to address these five aspects 
one-by-one. To fit in the style of the Oncotarget journal, 
however, their order may be subject to some sort of change.

REsULTs AND DIsCUssION

A new predictor with its web-server and user 
guide

A new and much more accurate sequence-based 
method, called iROS-gPseKNC, was developed for 
predicting replication origin sites in DNA. Moreover, to 
attract most experimental scientists and maximize their 
convenience [11, 21], the server of iROS-gPseKNC has 
been established along with its instructions, as given below. 

(1) Click the web-server at http://www.jci-bioinfo.
cn/iROS-gPseKNC, the top page of the iROS-gPseKNC 
will be prompted on your computer screen (Figure 2). 

(2) Enter your query DNA sequences into the central 
input box (Figure 2) by using either typing or copying/
pasting operation. The entered query sequences should be 
in the FASTA format. If you are not familiar with it, please 
click the Example button nearby.

(3) You can see the prediction results by clicking the 
Submit button. For example, if your query DNA sequences 
are none but those listed in the Example window, the 
following results will be shown on the screen: (1) DNA 
region 1 is the replication origin site; (2) DNA region 2 
is non-replication origin site. All these outcomes were 
confirmed by experiments.

(4) If you have a lot of query sequences and need 
much longer computational time, you are also allowed to 
use the batch prediction. To do this, just use the Browse 
button to select the desired file (in FASTA format of 
course) and follow the online instruction. 

(5) The benchmark dataset used in this study is 
available by clicking the button of Supporting Information 
on the top of Figure 2.

(6) To see the papers relevant to the development of 
this server, just click on the button of Citation.

Result analysis and comparison

The success scores achieved by iROS-gPseKNC on 
the benchmark dataset (Supporting Information S1) by the 
jackknife tests are given in Table 1. Shown in that table 
are also the corresponding scores obtained by the existing 
methods. It can be seen from Table 1 that iROS-gPseKNC 

Figure 1: A schematic drawing to show the DNA replication origin (RO).
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achieved remarkably higher scores than its counterparts in 
all the four metrics, clearly indicating that, compared with 
its counterparts, the proposed predictor has the highest 
sensitivity, specificity, overall accuracy, and stability.

Why could the proposed method yield so high success 
rates? It is not easy to give a simple and intuitive answer 
for this problem. Fortunately, many biological systems and 
the complicated relations therein could be revealed via the 
intuitive graphical approaches (see, e.g. [22–31]). 

In this study, using the intuitive graphic method, 
we obtained various statistical distributions for different 
dinucleotide occurrence frequencies along the 300 bp region 
as shown in Figure 3, where panel (A) is for dinucleotide 
AA, and panel (B) for dinucleotide TT. Of course, we 
could draw a total of 16 such panels, but two are more 
than enough to make the point clear. It can be seen from 
Figure 3A that the AA profile for the positive samples 
(blue) is remarkably different from that for the negative 
samples (red). The same is true for the two TT profiles as 
shown in Figure 3B. Consequently, it is self-evident why 

the proposed method, which was established by including 
the dinucleotide position-specific propensity with the 
general PseKNC (see Material and Methods section), is so 
successful.

To provide an intuitive comparison of the proposed 
predictor with its counterpart, the graph of ROC (receiver 
operating characteristic) [32, 33] was adopted as shown in 
Figure 4, where the ROC curves for the iROS-gPseKNC 
and iORI-PseKNC [12] are in blue and red, respectively. 
The greater the AUC (area under the ROC curve) value 
is, the better the corresponding predictor will be [32, 33]. 
It can be easily seen from Figure 4 that the area under 
the blur curve is substantially greater than that under the 
red one, clearly indicating that the proposed predictor is 
no doubt superior to iORI-PseKNC [12], the best existing 
predictor for identifying the origins of replication in 
DNA sequences. Accordingly, we anticipate that iROS-
gPseKNC will become a very useful computational tool 
for predicting DNA RO sites.

Figure 2: A semi-screenshot for the top page of the web-server iROs-gPseKNC at http://www.jci-bioinfo.cn/iROs-
gPseKNC. 
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Figure 4: Graph to show the ROC curve [32, 33]. The one with red is for iORI-PseKNC predictor [12]}; while the one with blue 
is for the proposed predictor iROS-gPseKNC. The area under the blue curve is remarkably larger than that under the red curve. See the text 
for further explanation. 

Table 1: A comparison of the proposed predictor with the existing methods via the jackknife tests 
on a same benchmark dataset of supporting Information s1

Predictor sn (%)d sp (%)d Acc (%)d MCCd

BC-baseda 81.23 80.30 80.76 61.53
iORI-PseKNCb 84.69 82.76 83.72 67.46
iROS-gPseKNCc 96.42 99.74 98.03 96.11

aThe prediction method developed by Chen [4].
bThe prediction method developed by Li et al. [12]} that was deemed the most powerful one among the existing methods 
for the same purpose.
cThe prediction method proposed in this paper. 
dSee Eq.7 for the definition of the metrics. 

Figure 3: Graph to show the statistical distribution of the dinucleotide occurrence frequency for (A) AA and (b) TT along the 300 bp 
region. See the text for further explanation.
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MATERIALs AND METHODs

benchmark dataset

In this study, we used the same dataset recently 
constructed by Li et al. [12] that was specialized for 
studying the replication origin sites. The reasons are 
as follows. (1) The dataset was constructed rigorously 
based on experiment-confirmed reports only, and hence is 
more reliable. (2) None of samples included had pairwise 
sequence identity to any other, and hence the dataset is 
more stringent in excluding homology bias than the other 
relevant ones. (3) Most important, it will facilitate the 
comparison of our new prediction method with the existing 
ones since a fair comparison should be based on a same 
benchmark dataset and same cross-validation approach.

In literature, the benchmark dataset usually consists 
of a training dataset and a testing dataset: the former is 
constructed for the purpose of training a proposed model, 
while the latter for the purpose of testing it. As pointed out 
by a comprehensive review [34], however, there is no need 
to separate a benchmark dataset into a training dataset and 
a testing dataset for validating a prediction method if it 
is tested by the jackknife or subsampling (K-fold) cross-
validation because the outcome thus obtained is actually 
from a combination of many different independent dataset 
tests. Thus, the benchmark dataset taken from Li et al. [12] 
for the current study can be formulated as
  S S S= + −  (1)

where the positive subset S+  contains 405 replication origin 
samples, the negative subset S−  contains 406 non-
replication origin samples, and the symbol   denotes the 
union in the set theory. The 405 + 406 = 811 DNA samples 

are each consist of 300 bp [12], as can be generally 
formulated by
 D N N N N N= 1 2 3 300 i  (2)

For readers’ convenience, their sequences are given in 
Supporting Information S1.

Feature vector construction

Biology is a natural science with historic dimension. 
All biological species have developed beginning from a 
very limited number of ancestral species. It is true for the 
biological sequences as well. Their evolution involves 
changes of single amino acid or nucleic acid residues, 
insertions and deletions of several residues, gene doubling, 
and gene fusion. With these changes accumulated for a long 
period of time, many apparent similarities between the initial 
and resultant biological sequences have been gradually 
disappearing, but the corresponding sequences may still 
share some essential common features. That is why the 3D 
(three-dimensional) structure of a protein derived from the 

template [35] of a remote homologous protein [36] is often 
quite successful although their sequence similarity may not 
be high [37, 38]. Also, it has been reported that the bacterial 
replication origins share similar nucleotide sequence motifs. 
Therefore, the key is how to “unearth” this kind of motifs 
deeply “buried” in extremely complicated DNA sequences. 

Actually, with the avalanche of biological sequences 
generated in the post-genomic age, one of the most 
challenging problems in computational biology is how to 
formulate a biological sequence with a discrete model or 
vector, yet still considerably keep its sequence pattern or 
order information. This is because almost all the existing 
machine-learning algorithms were developed to handle 
vector but not sequence samples, as elaborated in [21]. But 
a vector defined in a discrete model may completely lose 
this kind of sequence-pattern information. To overcome 
this problem, the “pseudo amino acid composition” [39] 
or Chou’s PseAAC [40, 41] was developed to deal with 
protein/peptide sequences. Encouraged by its successes 
in computational proteomics, the idea of PseAAC was 
recently extended to dealing with DNA/RNA sequences in 
many important problems of genome analysis [12, 16, 18, 
42–47] by introducing the pseudo nucleotide composition or 
PseKNC [9, 10, 14, 48, 49].

According to a recent review paper [11], the general 
form of PseKNC for a DNA sequence can be formulated 
as
 D = [ ]φ φ φ φ1 2 u z

T  (3)

where T is the transpose operator, while Z an integer to 
reflect the vector’s dimension. The value of Z as well as 
the components φu (u = 1, 2, ..., z) in Eq.3 will depend 
on how to extract the desired information from the DNA 
sequence. 

Recently, by incorporating the dipeptide position-
specific propensity into the general PseAAC [13], Xu et al. 
developed two predictors for identifying posttranslational 
modification (PTM) sites for proteins: one for cysteine 
S-nitrosylation sites [50], and the other for hydroxyproline 
and hydroxylysine sites [51]. Stimulating by their approach, 
here we are to develop a new method for predicting the 
replication origin sites by incorporating the dinucleotide 
position-specific propensity into the general PseKNC [11] 
or Eq.3.

There are 42 = 16 dinucleotides: AA, AC, AG, AT, CA, 
CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, and TT. Thus, 
for a DNA sample with 300 bp (Eq.2) as given in Supporting 
Information S1, its profile (or detailed information) of the 
dinucleotide position-specific propensity can be summarized 
by the following 16 × 299 matrix: 

D =

P � � � � P � � P
P � � � � P � � P
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where 
P j j i =  

j =  
Q Qi j i i, ( , )

( , )

= ( ) − ( )+ −2 2 16

299

mer mer| | 1,  2,

1, 2,




 (5)

In the above equation, 2mer1 = AA, 2mer2 = AC, 
2mer3 = AG, 2mer4 = AT, 2mer15 = TG, 2mer16 = TT, 
and Q+ (2meri j) is the occurrence frequency of the i-th 
dinucleotide (2meri) at the j-th subsite on the sequence of 
Eq.2 that can be easily derived from the positive dataset 
S+ , while Q− (2meri j) is the corresponding occurrence 
frequency, but from the negative dataset S− .

Thus, the DNA sample of Eq.2 can be uniquely 
defined via the general form of PseKNC (cf. Eq.3) with its 
dimension Z = 299 and its u-th component given by
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Random forest classifier 

The random forests (RF) algorithm is a powerful 
algorithm and has been used in many areas of computational 
biology (see, e.g. [52–56]). The essence of BF is to randomly 
generate many trees by the recursive partitioning approach, 
followed by aggregating the results. Its detailed procedures 
and formulation have been very clearly described in [57], 
and hence there is no need to repeat here.

After training by the relevant benchmark dataset, the 
RF classifier can quickly indicate which attribute an input 
query sample belongs to. For the current study, the input are 
DNA sequences, while the output are which of them belong 
to the replication origins and which of them do not. 

The predictor obtained via the aforementioned 
procedures is called iROS-gPseKNC, where “i” stands 
for “identify”, “ROS” for “replication origin site”, and 
“gPseKNC” for “general PseKNC” approach.

As pointed out in the beginning of this paper, in 
developing a new predictor it is very important to clearly 
report how to evaluate its anticipated success rates [13]. To 
realize this, let us consider the following two things: one is 
what metrics we should use to quantitatively measure the 
predictor’s quality; the other is what kind of test approach 
we should adopt to calculate the metrics rates. 

A set of four metrics for measuring prediction 
quality

In statistical prediction, four metrics were often used 
to measure the quality of a predictor; they are: (1) overall 
accuracy or Acc; (2) Mathew’s correlation coefficient or 
MCC; (3) sensitivity or Sn; and (4) specificity or Sp [58]. 
But their conventional formulations are not quite intuitive, 

and most experimental scientists feel difficult to understand 
them, particularly for the MCC metrics. Fortunately, if using 
the formulation introduced by Chou [59] in studying the 
signal peptides, the set of four metrics can be equivalently 
defined as follows [60, 61]:
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where N+ stands for the total number of replication origin 
samples investigated, whereas N−

+  for the number of 
replication origin samples incorrectly predicted to be of 
non-replication origin; N− for the total number of non-
replication origin samples investigated, whereas N+

−  for 
the number of non-replication origin samples incorrectly 
predicted to be of replication origin. With such formulation 
as given in Eq.7, the meanings of sensitivity, specificity, 
overall accuracy, and Mathew’s correlation coefficient and 
their rate scopes would become more intuitive and easier-
to-understand, particularly for the Mathew’s correlation 
coefficient, as concurred by many investigators in their 
recent publications [20, 55, 56, 60, 62–72]}[16, 20]. 

It is instructive to point out, however, the set of 
metrics in Eq.7 is valid only for the single-label systems. For 
the multi-label systems as emerging increasingly frequent 
in system biology [73–75] and system medicine [76], a 
completely different set of metrics is needed as elucidated 
in [77].

Cross validation 

With a set of well-defined metrics to measure the 
quality of a predictor, the next thing is what kind of 
validation method should be used to score these metrics.

In predictive analytics, the following three cross-
validation methods are often used: (1) independent dataset 
test, (2) subsampling (or K-fold cross-validation) test, 
and (3) jackknife test [78]. Of these three, however, the 
jackknife test is deemed the least arbitrary that can always 
yield a unique outcome for a given benchmark dataset as 
elucidated in [13]. Accordingly, the jackknife test has been 
widely recognized and increasingly used by investigators to 
examine the quality of various predictors (see, e.g., [79, 80] 
[81–84]). Therefore, the jackknife test was also adopted 
in this study to score the metrics of Eq.7. In the jackknife 
test, each of the samples in the benchmark dataset is singled 
out one-by-one and tested by the predictor trained by the 
remaining samples. During the jackknifing process, both 
the training dataset and testing dataset are literally open, 
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and each sample is in turn moved between the two. The 
jackknife test can exclude the “memory” effect; it can also 
avoid the arbitrariness problem occurring in the independent 
dataset test and subsampling test as pointed out in [13] 
because the outcome obtained by the jackknife test is always 
unique for a given benchmark dataset. 

CONCLUsIONs

DNA replication is one of the most important life 
processes at the cellular level. To really understand such 
vitally important biological process, the knowledge of 
duplication origin sites is fundamentally important. The 
iROS-gPseKNC predictor presented in this paper can be 
used to identify the duplication origin sites based on the 
DNA sequence information alone. Its accuracy is better 
than the best existing predictor in this area. By running the 
iROS-gPseKNC web-server according to its step-by-step 
guide, users can easily obtain their desired results without 
the need to go through the detailed mathematics, which 
were presented in this paper just for its integrity. 

Although the new predictor can yield significantly 
higher success rates than the existing ones, there still are 
plenty rooms to further improve it from the following 
two angles. One is with the increase of experimental data 
available in future, the dataset used to train the current model 
can be further refined and its coverage scope being much 
wider, and hence the predictor will be even more powerful. 
The other one is that many studies [80, 85–94] have 
indicated a predictor formed by fusing an array of individual 
classifiers may significantly enhance the prediction power; 
we will try to develop an ensemble predictor in this regard 
by fusing an array of individual classifiers with each being 
based on different modes of PseAAC [13, 39, 95, 96].

sUPPORTING INFORMATION 

Supporting Information S1. The original benchmark 
dataset. It contains 811 DNA segments, of which 405 are 
ORIs or positive samples, and 406 are non-ORIs or negative 
samples, where the benchmark dataset was taken from Li 
et al. [12]. Each segment sample contains 300 nucleotide 
residues. None of the samples include here is identical to 
any other. See the main paper for further explanation.
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