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Abstract

Large-scale cross-sectional and cohort studies have transformed our understanding of

the genetic and environmental determinants of health outcomes. However, the represen-

tativeness of these samples may be limited–either through selection into studies, or by

attrition from studies over time. Here we explore the potential impact of this selection

bias on results obtained from these studies, from the perspective that this amounts to

conditioning on a collider (i.e. a form of collider bias). Whereas it is acknowledged that

selection bias will have a strong effect on representativeness and prevalence estimates,

it is often assumed that it should not have a strong impact on estimates of associations.

We argue that because selection can induce collider bias (which occurs when two vari-

ables independently influence a third variable, and that third variable is conditioned

upon), selection can lead to substantially biased estimates of associations. In particular,

selection related to phenotypes can bias associations with genetic variants associated

with those phenotypes. In simulations, we show that even modest influences on selec-

tion into, or attrition from, a study can generate biased and potentially misleading esti-

mates of both phenotypic and genotypic associations. Our results highlight the value of

knowing which population your study sample is representative of. If the factors influenc-

ing selection and attrition are known, they can be adjusted for. For example, having DNA

available on most participants in a birth cohort study offers the possibility of investigat-

ing the extent to which polygenic scores predict subsequent participation, which in turn

would enable sensitivity analyses of the extent to which bias might distort estimates.

Key words: Collider bias, selection bias, representativeness, cohort studies, UK Biobank, ALSPAC

VC The Author 2017. Published by Oxford University Press on behalf of the International Epidemiological Association 226
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Epidemiology, 2018, 226–235

doi: 10.1093/ije/dyx206

Advance Access Publication Date: 27 September 2017

Original article

https://academic.oup.com/


Introduction

Understanding the impact of genetic and environmental

factors on physical and mental health outcomes is critical

if we are to develop effective preventive and treatment

interventions. Large-scale cross-sectional and cohort stud-

ies provide an invaluable resource to support these efforts,

in particular with respect to genetic influences where the

small effects associated with common genetic variants re-

quire very large samples to achieve adequate statistical

power. A study can be used to draw conclusions about the

population it represents (the “intended study population”),

but generalizability to other populations depends upon us

knowing exactly what the actual study population is.

However, participants who volunteer to participate in

studies may not be representative of the intended study

population, in which case the actual study population is

unknown.1

Some studies may be relatively representative of the in-

tended study population at inception through rigorous ef-

forts to ensure representative recruitment (e.g. birth cohort

studies). However, as they mature the likelihood is that at-

trition from the study will be non-random, so that the co-

hort becomes less representative of the intended

population as time goes on. Alternatively, the reverse may

be true—the study may be unrepresentative at inception,

but with low attrition. Selection bias can also occur if a

sub-set of participants within a study is selected for more

detailed investigation (e.g. genotyping) on the basis of

having most data available or volunteering for further fol-

low-up.2 There is already clear evidence from existing

large-scale population studies that they are subject to a de-

gree of selection bias. For example, higher genetic risk

scores for schizophrenia are consistently associated with

non-completion of questionnaires by study mothers and

children, as well as non-attendance at data collection clin-

ics, in the Avon Longitudinal Study of Parents and

Children (ALSPAC)3 (see Box 1).

Attrition from cohort studies may result in biased esti-

mates of socioeconomic inequalities, and the degree of bias

may worsen as participation rates decrease.4 However, it is

often argued that representativeness is not necessary in

studies of this kind,5–9 although this is not universally

accepted.10 In particular for genetic variants, where con-

ventional confounding is low,11 it has been argued even by

those concerned about selection bias that any problems

associated with a lack of representativeness may be mod-

est.10,12 Here we ask: what is the impact of selection bias

on the results obtained from these studies? We take the

perspective that selection bias can amount to conditioning

on a collider (i.e. conditioning on a variable that is inde-

pendently influenced by two other variables).

Collider bias

It is widely acknowledged that selection bias will distort

prevalence estimates. This can be clearly seen in differences

between participants at baseline and at subsequent assess-

ments in cohort studies, such as when we compare the ori-

ginal ALSPAC sample with those who attended later

clinics (see Box 1). It can also be seen in differences be-

tween an actual study sample and the source population

from which it is drawn (i.e., the intended study popula-

tion); for example, the UK Biobank study differs relative to

the general population in the UK (see Box 2). However, it

is often assumed that although selection bias will have a

strong effect on prevalence estimates, it should not have a

strong impact on observed associations between variables.8

This overlooks the fact that selection can induce collider

bias (see Figure 1), which can lead to biased observational

and genetic associations. This bias can be towards or away

from any true association, and can distort a true associ-

ation or a true lack of association.

Collider bias occurs when two variables (X and Y) inde-

pendently cause a third variable (Z). In this situation Z is a

collider, and statistical adjustment for Z will bias the esti-

mated causal association of X (exposure) on Y (outcome)

(see Figure 2). Statistical adjustment of the XY association

for a variable Z is equivalent to observing this association

in a sub-population where all individuals share the same

value of Z.1,13 Hence if both X and Y cause participation

in a study (Z), then investigating associations in the se-

lected sample (i.e. with Z¼ 1, indicating participation in

the study) is equivalent to conditioning on Z, which in turn

may induce collider bias.

Key Messages

• Selection bias (including selective attrition) may limit the representativeness of large-scale cross-sectional and cohort

studies.

• This selection bias may induce collider bias (which occurs when two variables independently influence a third vari-

able, and that variable is conditioned upon).

• This may lead to substantially biased estimates of associations, including of genetic associations, even when selec-

tion/attrition is relatively modest.
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In other words, sample selection can bias associations

between variables that influence participation or retention

in a study. This can include inducing spurious associations

when no such association exists in the intended study pop-

ulation or, if two variables are correlated in the intended

study population and both cause selection, biasing the esti-

mated correlation in the selected sample. Moreover, this

selection bias will apply to the genetic correlates (or other

ancestors) of these variables, unless the phenotypes are

also controlled for. Therefore if genes Gx and Gy cause X

(exposure) and Y (outcome), respectively, and both X and

Y influence participation, then in the selected sample Gx

will appear to be associated with Y (unless X is also con-

trolled for). More complex situations can also give rise to

collider bias, such as when the outcome (Y) does not dir-

ectly cause selection into the study (i.e. it is a downstream

consequence of something else that is causing selection into

the study).

If two traits influence participation (and therefore con-

tribute to selection), selection bias amounts to implicitly

Box 1 The Avon Longitudinal Study of Parents and Children

Birth cohort studies are not immune to problems of selection bias, where retention in the study may be related to a var-

iety of participant characteristics. The Avon Longitudinal Study of Parents and Children (ALSPAC) recruited pregnant

women living in the administrative county of Avon, with expected delivery dates between 1 April 1991 and 31

December 1992. These women, their partners and their offspring have been followed up ever since via questionnaires

and clinics. ALSPAC originally captured data on 14 541 pregnancies (75% of eligible women) (19, 36), but inevitably re-

tention in subsequent data collection sweeps (postal questionnaires and clinic assessments) was less than 100%. We

see that higher body mass index (BMI) is associated with lower odds of subsequent retention in both mothers (N¼11

319, OR per SD increase in BMI 0.85, 95% CI 0.81 to 0.88), for retention between 2008 and 2011 using pre-pregnancy

BMI as a predictor, and offspring (N¼ 7954, OR 0.91, 95% CI 0.87 to 0.96), for retention at age 18 using BMI at age 7 as

a predictor. Similarly, among smoking mothers in ALSPAC, heaviness of smoking is associated with lower odds of re-

tention (N¼3534, OR per additional cigarette smoked per day just prior to pregnancy 0.97, 95% CI 0.96 to 0.98). If low

BMI and maternal non-smoking are both related to continuing participation in ALSPAC, this would tend to lead to the

association between BMI and maternal smoking being negatively biased (i.e. we would expect to see a more negative

association between smoking and BMI in ALSPAC than in the intended study population).

Box 2 UK Biobank

The UK Biobank is a cross-sectional study which recruited over 500 000 individuals aged between 40 and 69 years be-

tween 2006 and 2010 [http://www.ukbiobank.ac.uk/]. Individuals in this age group living within a 25-mile radius of any

of the 22 assessment centres across the UK were identified from NHS patient registers.37 In total, around 9 million indi-

viduals were invited to participate. However, UK Biobank was only able to achieve a 5% response rate (�500 000

participants recruited from �9 000 000 invited, personal communication, UK Biobank, 8 July 2016), and the resulting

sample is not representative of the UK population as a whole. For example, the proportion of current smokers is rela-

tively low in UK Biobank (19% in the general population vs 11% in UK Biobank, equivalent to an OR of 1.90),38 as is the

proportion with no qualifications (25% vs 17%, equivalent to an OR of 1.63).39 Unsurprisingly, therefore, participants in

UK Biobank have far lower rates of 5-year mortality than the UK population as a whole.40 Clearly, agreeing to take part

in the UK Biobank study is associated with a number of characteristics that will reflect, for example, health status and

social position. If non-smoking and having qualifications are both causally related to participation in UK Biobank, we

would expect the association between smoking and having qualifications to be positively biased (i.e. we would expect

to see a more positive association between genetic variants positively associated with smoking and whether partici-

pants had educational qualifications in UK Biobank than in the UK population). The problem is possibly compounded in

genetic studies using the first release of genome-wide association data in UK Biobank, which used two genotyping

arrays, one of which was applied to a nested case-control study of smoking and lung function (UK BiLEVE).41 The first

release genetic data are therefore further subject to selection bias relative to UK Biobank as a whole (although this will

no longer be the case when the full release of genome-wide association data becomes available).
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conditioning on their common effect (i.e. participa-

tion).1,14 This can in principle lead to biased associations

between these two traits. There are exceptions to this, de-

pending on the distribution of the outcome and the para-

metric analysis model used. For example, if the outcome

(Y) is a binary phenotype, and logistic regression is used,

then the odds ratio for the association between the single

nucleotide polymorphism (SNP) and outcome may be un-

biased even when the outcome causes selection (as is true

of case-control studies).15 We have previously argued that

these effects may be greater in case-control studies than

prospective studies, and that since genetic associations

have been similar across study designs, the impact of selec-

tion bias may in fact be modest.12 We have also previously

argued that because conventional confounding is typically

low for single genetic variants, problems of selection bias

will be less in this context.10 However, given the rapid

growth in studies using data from highly selected samples

such as UK Biobank, and the use of genetic risk scores ra-

ther than single genetic variants, we revisited this question

and used simulation to explore the potential impact of

even relatively weak effects on participation. Given empir-

ical evidence of selection in cross-sectional and cohort

studies, what is the potential impact of this on observed

phenotypic and genotypic associations?

Simulations

We simulated data on an allele score, a phenotype and an

outcome, where both the phenotype and the outcome in-

fluence selection into the study, but there was no associ-

ation between the allele score and the outcome in the

intended study population (see Figure 2). The simulation

scenario was based loosely on the UK Biobank, and we

simulated selection into the study, so all the data on non-

selected individuals are missing and therefore imputation is

not a potential solution (see below), because this requires

some data on which to base the imputation.16 All variables

were Normally distributed, with a standard deviation of 1,

and the sample size of the intended study population was 9

000 000. We assumed that phenotype and outcome had in-

dependent effects (i.e. no interaction on the additive scale)

on the odds of selection into the sample, and for conveni-

ence we set these effects to be equal, and examined a weak

association [odds ratio (OR) of 1.2 for missingness for a

one standard deviation (SD) increase in phenotype/out-

come] and two stronger associations (ORs of 1.5 and 1.8).

These odds ratios are similar to estimates of the likelihood

of participation in UK Biobank for individuals with any

educational or vocational qualifications and for non–

smokers, respectively (see Box 2), and indicate a difference

in mean phenotype/outcome of 0.2 SD, 0.4 SD and 0.6 SD

between those participating and those not participating.

We varied the correlation between the allele score and the

phenotype (between r¼ 0.05 and r¼ 0.30) to simulate gen-

etic instruments explaining between 0.25% and 9% of the

variance in phenotypes. These values are in the typical

range for the association between common genetic vari-

ants, or polygenic risk scores comprising multiple common

variants, and complex phenotypes. For example, the

rs16969968 variant accounts for approximately 1% of the

phenotypic variance in cigarette consumption,17 whereas

the polygenic risk score for height captures approximately

9% of phenotypic variance.18 We controlled the baseline

risk of selection into the sample, resulting in a selected

sample of approximately 500 000 people. The analysis was

Coin Toss

Bell

Coin Toss

Coin Toss

Bell

Coin Toss
r = -0.5

Figure 1. Illustration of collider bias. The basic premise of collider bias

is shown. In this example, a bell is sounded whenever either coin come

up ‘heads’. The result of one coin toss is independent of the other.

However, if we hear the bell ring (i.e. we condition on the bell ringing),

then if we see a tail on one coin we know there must be a head on the

other–the two coin results are no longer independent and a spurious in-

verse correlation has been induced. Reproduced from Gage SH, Davey

Smith G, Ware JJ, Flint J, Munafò MR. G¼E: What GWAS can tell us

about the environment. PLoS Genet 2016;12: e1005765.

Phenotype (X) Outcome (Y) Allele score 

Selection into 
Study (Z) 

Figure 2. Illustration of selection bias simulation. In the intended study

population there is no association between allele score and outcome.

Selection into the study (either through voluntary participation at base-

line, or attrition over time) induces an association between allele score

and outcome (collider bias).
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an unadjusted regression of outcome on allele score (i.e.

not adjusting for the phenotype). We simulated a true null

association (i.e. in the intended study population, the re-

gression coefficient for outcome on allele score is zero). We

simulated each scenario 100 times. We then repeated the

simulations with the addition of a causal effect of the

phenotype on the outcome, with a regression coefficient of

0.1.

The results of this simulation study are shown in Table 1

(no causal effect of P on O) and Table 2 (causal effect of P

on O). Where there is no causal effect of P on O, the effects

of selection bias are strongest for stronger independent se-

lection effects, and also where the allele score is more

strongly associated with the phenotype (Table 1). However,

even for moderate associations between missingness and

both phenotype and outcome (OR¼ 1.5 for both pheno-

type and outcome) and between allele score and phenotype

(r¼ 0.1, 1% variance explained by allele score) the confi-

dence intervals contain zero only 89% of the time, and this

continues to decrease with both greater strength of associ-

ation between phenotype, outcome and missingness, and

stronger association between allele score and phenotype.

Where there is a causal effect of P on O, the results are

broadly similar, except that on the whole the confidence

intervals had lower coverage than for the equivalent situ-

ation with no causal association.

Table 1. Results of simulation study showing the selection bias in estimating an association that is null in the intended study

population

Simulation settings Results—association between allele score and outcome

Association be-

tween missing-

ness and both

phenotype and

outcome (OR)

Association be-

tween allele score

and phenotype

(r)

Mean regression

coefficient (SD)

Mean z-score (SD) Number of

95% CIs con-

taining zero

OR¼1.8 0.05 �0.001 (0.001) �1.04 (1.00) 83

(0.25% variance)

0.10 �0.003 (0.001) �2.06 (0.98) 45

(1.00% variance)

0.15 �0.004 (0.001) �3.07 (0.98) 9

(2.25% variance)

0.20 �0.006 (0.001) �4.10 (0.98) 0

(4.00% variance)

0.30 �0.008 (0.001) �6.18 (1.06) 0

(9.00% variance)

OR¼1.5 0.05 �0.001 (0.001) �0.42 (0.95) 94

(0.25% variance)

0.10 �0.001 (0.001) �0.80 (0.96) 89

(1.00% variance)

0.15 �0.001 (0.001) �1.22 (0.96) 77

(2.25% variance)

0.20 �0.002 (0.001) �1.64 (0.97) 61

(4.00% variance)

0.30 �0.003 (0.001) �2.44 (0.94) 35

(9.00% variance)

OR¼1.2 0.05 �0.0002 (0.001) �0.16 (0.92) 97

(0.25% variance)

0.10 �0.0003 (0.001) �0.25 (0.94) 97

(1.00% variance)

0.15 �0.0005 (0.001) �0.38 (0.95) 93

(2.25% variance)

0.20 �0.0006 (0.001) �0.47 (0.95) 91

(4.00% variance)

0.30 �0.0009 (0.001) �0.66 (0.96) 89

(9.00% variance)

Each scenario was simulated 100 times.
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We also explored associations between known risk

factors and outcomes in a representative birth cohort and

a selected sub-study. We used ALSPAC as the birth

cohort. Initially, 14 541 pregnant women who were

expected to give birth between 1 April 1991 and 31

December 1992 were recruited into the study in the

South West region of England.19 The study website con-

tains details of all data available through a fully search-

able data dictionary: [http://www.bris.ac.uk/alspac/

researchers/data-access/data-dictionary/]. Ethics approval

for the study was obtained from the ALSPAC Ethics and

Law Committee and the local research ethics committees.

We also used the Accessible Resource for Integrated

Epigenomics Studies (ARIES), a sub-study of ALSPAC

where a sub-set of 1018 mother-offspring pairs were se-

lected based on availability of DNA samples at two time

points for the mother (at an antenatal clinic and at a

follow-up clinic when their offspring were mean age 15.5

years) and three time points for the offspring (at birth,

childhood and adolescence.2 We investigated the associ-

ation between a genetic risk score for smoking (ever vs

never) and maternal education in ALSPAC, and in the

ARIES sub-sample. The results are shown in Table 3, and

indicated that the genetic risk score for smoking and ma-

ternal education are associated in ARIES, but not in the

full sample.

Table 2. Results of simulation study showing the selection bias in estimating an association that is not null in the intended study

population (regression coefficient for outcome on phenotype is 0.1)

Simulation settings Results—association between allele score and outcome

Association be-

tween missing-

ness and both

phenotype and

outcome (OR)

Association be-

tween allele score

and phenotype

(r)

Mean regression

coefficient (SD)

True regression

coefficient

Number of

95% CIs con-

taining true

value

OR¼1.8 0.05 0.003 (0.001) 0.005 78

(0.25% variance)

0.10 0.006 (0.001) 0.01 23

(1.00% variance)

0.15 0.010 (0.001) 0.015 2

(2.25% variance)

0.20 0.013 (0.001) 0.02 0

(4.00% variance)

0.30 0.020 (0.001) 0.03 0

(9.00% variance)

OR¼1.5 0.05 0.004 (0.001) 0.005 94

(0.25% variance)

0.10 0.009 (0.001) 0.01 86

(1.00% variance)

0.15 0.013 (0.001) 0.015 69

(2.25% variance)

0.20 0.017 (0.001) 0.02 53

(4.00% variance)

0.30 0.026 (0.001) 0.03 19

(9.00% variance)

OR¼1.2 0.05 0.005 (0.001) 0.005 98

(0.25% variance)

0.10 0.01 (0.001) 0.01 96

(1.00% variance)

0.15 0.014 (0.001) 0.015 94

(2.25% variance)

0.20 0.019 (0.001) 0.02 92

(4.00% variance)

0.30 0.029 (0.001) 0.03 95

(9.00% variance)

Each scenario was simulated 100 times.
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Conclusions

Our results indicate the potential for selection/attrition to

generate biased and potentially misleading estimates of

both phenotypic and genotypic associations. In particular,

when polygenic scores (associated with a phenotype) that

combine many genetic variants are used, association be-

tween the phenotype and participation will cause the score

to be more strongly related to participation than each indi-

vidual variant is. This, in turn, can potentially lead to ser-

ious bias. For this reason, studies using polygenic scores,

genome-wide allelic scores20 and/or whole-genome genetic

correlations21,22 are most at risk of producing biased and

potentially misleading results where there is reason to be-

lieve the actual study sample is not representative of the

intended study population, but the mechanism of selection

is unknown.

The magnitude of effects we observed in our simula-

tions, based on credible estimates of associations between

both a phenotype or outcome and missingness, and be-

tween a polygenic score and a phenotype, are comparable

to many reported associations derived from large but se-

lected samples, such as between personality and cognitive

function, and a range of physical and mental health out-

comes,23,24 and between chronotype (i.e. ‘morningness’)

and years of education.25 Such associations could therefore

plausibly be generated by selection bias. An appreciation

of the potential impact of selection bias may also resolve

inconsistencies in the literature, and help to explain appar-

ently paradoxical findings. For example, genetic correl-

ations between cognitive ability and a range of psychiatric

disorders have been reported to differ in childhood and

older age.26 One possible interpretation is that this is due

to age-dependent pleiotropy, but another is that this is an

artefact of different selection bias pressures at different

ages. An example serves to illustrate this. Polygenic risk

scores that maximally capture schizophrenia liability are

associated with increased psychotic experiences in

ALSPAC participants, but scores that use more stringent

thresholds for including genetic variants are associated

with reduced psychotic experiences.27 Since missing data

are likely to be greater for participants who report psych-

otic experiences, as well as for those at higher genetic risk

of a psychotic disorder, psychotic experiences may be rela-

tively under-represented in participants with higher genetic

risk, compared with those with lower genetic risk.27

Such collider bias could occur through initial selection,

or selective drop-out, or both–for example, a study could

be representative of its intended population initially, but

become less representative as those of poorer health drop

out due to death. The main difference between these two

scenarios–initial selection and selection through attrition–

is in the amount of information available on the missing in-

dividuals. Where some data are available for all partici-

pants (e.g. in the case of drop-out), then multiple

imputation or inverse probability weighting can be used28

under some assumptions which are untestable given the

observed data, to recover unbiased estimates of associ-

ations. However, where there is no information on missing

individuals (e.g. we have no data on individuals who did

not volunteer for participation into a study), then such

methods cannot be used. External information (such as the

expected proportion of males and females in the general

Table 3. Associations between a genetic risk score for smoking and maternal education, in ALSPAC and ARIES

Association between genetic risk score and ever smoking in ALSPAC

N OR (95% CI) P

Smoking genetic risk score 1 7291 1.07 (1.02 to 1.12) 0.003

Association with being in the ARIES sub-study

N OR (95% CI) P

Smoking (ever vs never) 13249 0.59 (0.52 to 0.68) <0.001

Smoking genetic risk scorea 7837 1.00 (0.93 to 1.07) 0.92

Maternal educationb 12493 1.86 (1.58 to 2.19) <0.001

Association between smoking/smoking genetic risk score and maternal education in ALSPAC and ARIES

ALSPAC N OR (95% CI) P

Smoking (ever vs never) 12118 0.45 (0.40 to 0.50) <0.001

Smoking genetic risk scorea 7046 1.01 (0.95 to 1.08) 0.74

ARIES N OR (95% CI) P

Smoking (ever vs never) 986 0.61 (0.44 to 0.84) 0.003

Smoking genetic risk scorea 791 1.20 (1.02 to 1.41) 0.03

aGenetic risk score including variants reaching P< 0.05 for association with ever vs never smoking in the Tobacco and Genetics Consortium GWAS (see

Supplementary Material, available at IJE online). Associations are per SD increase in genetic risk score.
bDegree vs no degree.
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population) could be used to investigate likely factors

related to participation and to derive bias-adjusted

estimates.

A related issue is the use of case-control studies to

examine associations with ‘secondary’ outcomes–that is,

phenotypes other than the case/control outcome.29,30 In

such studies, the association between genotype and second-

ary phenotype will be biased if both genotype and second-

ary phenotype are associated with case-control status.

Case-control studies condition on case-control status, and

thus again collider bias can bias the association between

genotype and secondary phenotype. Various methods have

been proposed to overcome this bias, including maximum

likelihood and inverse probability weighting. This latter

method requires some knowledge about the prevalence of

case/control status in the intended study population, or the

assumption that the disease is rare.29,30

We have discussed one important way in which selec-

tion into or out of a study can induce collider bias and

spurious associations. There are other ways in which ascer-

tainment can generate biases.31 For example, Figure 3

(panel B) shows a situation in which entry into a study is

conditional upon the value of the phenotype (but not the

outcome of interest) and where the phenotype does not

cause the outcome, but the phenotype and outcome are

correlated in unselected samples (i.e. due to genetic and/or

environmental factors U). In this situation, collider bias

occurs because conditioning on selection induces an associ-

ation between SNPs related to the phenotype and the poly-

genic and/or environmental factors that influence the

outcome. Therefore, SNPs that cause the phenotype only

(i.e. do not in truth cause the outcome) may now show

spurious relationships with the outcome variable. An ex-

ample of the situation in Figure 3 (panel B) is when the

phenotype increases mortality32–35–for example, in studies

of smoking as a phenotype, where smoking is associated

with premature mortality. In a cohort study which exam-

ines smoking, and then follows participants up for

Alzheimer’s disease, those who die early (perhaps because

of smoking-related illness) will never have the chance to be

diagnosed with Alzheimer’s disease, and therefore smoking

will appear to be a protective factor. Figure 3 (panels C to

E) also shows examples where selection will bias the esti-

mation of the causal effects of SNPs on the outcome. In

these examples, SNPs that do cause the outcome directly

via the phenotype will show either increased or decreased

association in the selected sample, depending on the under-

lying genetic and environmental aetiology of both traits. In

the situations depicted in Figure 3A, C and E, the associ-

ation between phenotype and outcome (e.g. in an observa-

tional study) would also be biased. In contrast, Figure 3F

Figure 3. Scenarios where selection bias would occur. A. In truth, the

SNP is not causally associated with the outcome; selection will induce

an association (which could be positive or negative). B. In truth, the

SNP is not causally associated with the outcome; selection will induce

an association (which could be positive or negative). C. In truth, the

SNP is causally associated with the outcome; selection could make this

larger or attenuate it. D. In truth, the SNP is causally associated with the

outcome; selection could make this larger or attenuate it. E. In truth, the

SNP is causally associated with the outcome; selection will bias this as-

sociation (which could be positive or negative). F. Note that the associ-

ation between P and O is biased in the selected sample; however, the

association between SNP and O is unbiased in the selected sample. P,

Phenotype; O, Outcome; S, Selection; U, Other variables.
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shows a situation where selection will bias the association

of the phenotype with the outcome, but the association of

the SNP with the outcome will be unbiased. Other, more

complex, situations can also lead to selection bias—we

have not attempted to outline every possible case here.

Algorithms for deciding whether a given causal analysis is

biased by selection have been described,16 and could be

used to decide whether bias is likely in a given case.

Our results highlight the value of representative cohorts

(including birth cohorts) where there is little or no selection

into the cohort. The issue of whether the study is intended

to be representative in the first place is a somewhat sepa-

rate issue, albeit a related one (see Box 3). In addition, hav-

ing some baseline data and DNA available on all

participants at recruitment into the study at least offers the

possibility of investigating the extent to which polygenic

scores (and other measured factors at baseline) predict sub-

sequent participation. Without this knowledge, studies in

samples with unknown selection/attrition mechanisms run

the risk of providing biased and misleading results. In our

opinion these important caveats should be borne in mind

when interpreting the results of such studies.

Supplementary Data

Supplementary data are available at IJE online.
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