
sensors

Article

An Improved RD Algorithm for Maneuvering
Bistatic Forward-Looking SAR Imaging with a
Fixed Transmitter

Yue Yuan, Si Chen * and Huichang Zhao

School of Electronic & Optical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China;
313104002284@njust.edu.cn (Y.Y.); zhaohch@njust.edu.cn (H.Z.)
* Correspondence: chensi354@njust.edu.cn; Tel./Fax: +86-25-8431-5843

Academic Editor: Jonathan Li
Received: 13 April 2017; Accepted: 15 May 2017; Published: 19 May 2017

Abstract: In order to improve the azimuth resolution beyond what monostatic synthetic aperture
radar (SAR) can achieve in the forward-looking area, an asymmetric configuration bistatic SAR system
and its imaging algorithm are proposed in this paper. The transmitter is mounted on a fixed platform
in side-looking mode while the receiver moves along a nonlinear trajectory in forward-looking mode.
Due to the high velocity and acceleration of the maneuvering platform in both along-track and
height direction, the traditional algorithms are no longer applicable. In this paper, a new algorithm
based on the high precise 2-D frequency spectrum is proposed, which takes high-order Taylor
series expansion terms of the slant range into consideration. The proposed algorithm compensates
high-order range-azimuth coupling terms to guarantee the focus accuracy in SAR imaging. The
simulation results and error analysis validate the effectiveness of the proposed algorithm and the
correctness of our analysis.

Keywords: 2-D frequency spectrum; method of series reversion (MSR); SAR imaging; bistatic
forward-looking SAR (BFL-SAR)

1. Introduction

Bistatic forward-looking synthetic aperture radar (BFL-SAR) has drawn much more attention
because of its high resolution in both range and the azimuth direction, which fills in the blanks of
conventional monostatic SAR. The BFL-SAR has many advantages, such as low probability interception,
and immunity to physical attacks and electronic countermeasures, which is why it has significant
potential in airplane navigation, missile guidance, and target detection.

Many studies have been made on BFL-SAR [1–4]. The ground moving target (GMT) detection
and imaging theories were discussed for BFL-SAR in [5,6]. Chen introduced the general situation
and the method for BFL-SAR [7]. In addition, several experiments have been carried out and the
results demonstrate the feasibility of BFL-SAR [8,9]. Differing from monostatic SAR, the slant range in
bistatic SAR has two hyperbolic functions, which are defined as double square root (DSR) terms [10],
thus, the principle of the stationary phase (POSP) could not be directly used in BFL-SAR. To derive
the 2-D frequency spectrum, some researchers transformed the DSR term into a single square root
regarded as the monostatic configuration [11]. Raw data simulations for bistatic SAR were proposed
in [12,13], which are based on their 2-D frequency spectra. However, the platforms are moving
horizontally without acceleration and vertical speed. Huang introduced an advanced hyperbolic
approximation method to accurately fit the cubic term of the range history [14]. Some researchers
adopted hyperbolic equivalent methods with compensating variation to obtain the 2-D frequency
spectrum [15,16]. The equivalence error cannot be ignored, especially in a high-speed maneuvering
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platform. Loffeld proposed a new method for 2-D frequency spectrum derivation [17]. The limitation
of Loffeld’s formula is the reduced accuracy with a difference between two stationary points. In the
application of missile terminal guidance and other maneuvering platforms, the platform moves with
high velocities and accelerations [18]. The method of series reversion (MSR) can obtain the exact
spectrum, theoretically [19,20]. The accuracy mainly depends on the order of the expansion terms.
Zhang et al. used a high-order range equation and phase compensation to improve the accuracy of the
range history and 2-D spectrum [21].

Based on previous research, this paper discusses an asymmetric bistatic configuration with a
forward-looking receiver and a stationary transmitter, in which the slant range is kept up to its
fourth-order Taylor series. Firstly, linear range walk correction (LRWC) operation is performed in
the range frequency azimuth time domain. Secondly, the method of the series reversion and POSP
are adopted in the derivation of 2-D frequency spectrum. Then the range compression, range cell
migration (RCM), secondary range compression (SRC), and high-order range-azimuth coupling terms
are compensated in the 2-D frequency domain. Finally, the azimuth compression is implemented by a
matched filter in the range Doppler domain.

This paper is organized as follows: In Section 2, the geometry and signal models are established.
In Section 3, the 2-D frequency spectrum is derived by MSR. Section 4 explores the proposed imaging
algorithm for BFL-SAR. Section 5 shows the simulation results and error analysis of proposed algorithm.
The conclusion of this letter is given in Section 6.

2. Geometry and Signal Model

The geometry configuration of BFL-SAR with a stationary transmitter and a maneuvering receiver
is shown in Figure 1. The receiver works in forward-looking mode and travels in a descending
curvilinear path along curve AB in plane yoz as the antenna points in the same direction. The fixed
transmitter is mounted on a high tower where it can illuminate the imaging area easily. ta and tr

denote the slow time (azimuth time) and the fast time (range time). The positions of the transmitter
and receiver are T0(Xt, Yt, Ht) and R0(0, 0, Hr) at ta = 0. The initial velocity and acceleration of the
receiver are V0 =

(
0, Vry0, Vrz0

)
and a =

(
0, ary, arz

)
, respectively. Therefore, the location of the receiver

is R
(
0, Vry0ta + 0.5aryt2

a, Hr + Vrz0ta + 0.5arzt2
a
)

at the time ta, supposing the projection of receiver in
xoy is the coordinates’ center O at ta = 0. P

(
xp, yp, 0

)
is an arbitrary ground point target in the imaging

area. The instantaneous slant range from the transmitter and receiver to the target P at slow time ta are
Rt and Rr, respectively.
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Figure 1.Geometry configuration of the MBFL-SAR. 
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Figure 1. Geometry configuration of the MBFL-SAR.

Supposing that the transmitted signal is the linear frequency modulation (LFM) signal [9], and
the position of the point target P is

(
xp, yp, 0

)
, then we have the instantaneous slant range of the

high-speed maneuvering MBFL-SAR R(ta), which can be described by:
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R(ta) = Rt + Rr(ta) =
√(

Xt − xp
)2

+
(
Yt − yp

)2
+ (Ht)

2

+

√
x2

p +
(

Vry0ta +
1
2 aryt2

a − yp

)2
+
(

Hr + Vrz0ta +
1
2 arzt2

a

)2 (1)

where Rt and Rr(ta) are the transmitter range and receiver range, respectively.
The signal model of the BFL-SAR is similar to the monostatic SAR, except for the range history.

The transmitter range is only dependent on the position of P and independent of slow time ta. Thus,
the azimuth resolution depends on the motion of the receiver alone.

3. Derivation of 2-D Point Target Frequency Spectrum

Generally, we can obtain the 2-D frequency spectrum easily after the azimuth FFT. However, due
to the existence of velocities and accelerations in both along-track and along-height directions, it is
difficult to calculate the stationary point directly. Here, we expand the instantaneous slant range R(ta)

into a Taylor series at ta = 0 as:

R(ta) = Rt + Rr0 + (k1c + k1)ta + k2t2
a + k3t3

a + k4t4
a + o

(
t4
a

)
(2)

where:
Rr0 =

√
x2

p + y2
p + H2

r (3)

k1c =
−Vry0ypc + Vrz0Hr

Rr0
(4)

k1 =
Vry0

(
ypc − yp

)
Rr0

(5)

k2 =
−aryyp + arzHr + Vry0

2 + Vrz0
2 − (k + k1c)

2

2Rr0
(6)

k3 =
Vry0ary + Vrz0arz − 2(k1 + k1c)k2

2Rr0
(7)

k4 =
ary

2 + arz
2

8Rr0
−

2(k1 + k1c)k3 + k2
2

2Rr0
(8)

where Rr0 is the instantaneous range at ta = 0; ypc is the y-axis of scene center point Pc; k1c is the linear
coefficient at Pc which represents the coefficient of the linear range walk (LRW); k1 is the residual LRW
coefficient of the target, which is far from the scene center; and k2, k3, and k4 are the quadratic, cubic,
and quartic coefficients, respectively. Here, the Taylor expansion series is kept up to fourth-order term.

In this bistatic configuration, we compensate the LRW at the scene center point Pc, so the LRWC
function can be written as:

H1( fr, ta) = exp
[

j2π
( fc + fr)

c
k1cta

]
(9)

After LRWC, the signal can be written as:

sr3( fr, ta) = Wr( fr)aa(ta) · exp
(
−jπ f 2

r
γ

)
× exp

[
−j2π

( fc+ fr)
c
(

Rt + Rr0 + k1ta + k2t2
a + k3t3

a + k4t4
a
)] (10)

Then, we can derive the 2-D frequency spectrum by the method of POSP and series reversion as:

sr4( fr, fa) = Wr( fr)Wa( fa) · exp[jψ( fr, fa)] (11)
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where:
ψ( fr, fa) = −π

f 2
r
γ − 2π Rt+Rr0

A + 2πAA1
2

(
fa +

k1
A

)2

− 2π A2 A2
3

(
fa +

k1
A

)3
+ 2π A3 A3

4

(
fa +

k1
A

)4 (12)

and: 
A = c

fc+ fr
A1 = 1

2k2

A2 = − 3k3
8k3

2
A3 =

9k2
3−4k2k4
16k5

2

(13)

For further analysis, the phase term should be decomposed into its Taylor series of fr at fr = 0,
then reorganized as:

ψe( fr, fa) = ψ0( fa) + ψ1( fa) fr + ψ2( fa) f 2
r

+ ψ3( fa) f 3
r + ψ4( fa) f 4

r + ψa( fa) + ψr( fr)
(14)

where:
ψ0( fa) = −2π

fc
c (Rt + Rr0)

+ π
fc
c

(
A1k2

1 −
2
3 A2k3

1 +
1
2 A3k4

1

)
+ π c

fc

(
A1 − 2A2k1 − 3A3k2

1
)

f 2
a

+ π c2

f 2
c

(
− 2

3 A2 + 2A3k1
)

f 3
a + π c3

f 3
c

1
2 A3 f 4

a

(15)

ψ1( fa) = π c
f 2
c

(
A1 − 2A2k1 + 3A3k2

1
)

f 2
a

+ π c2

f 3
c

(
4
3 A2 − 4A3k1

)
f 3
a − π c3

f 4
c

( 3
2 A3

)
f 4
a

(16)

ψ2( fa) = −π 1
γ + π c

f 3
c

(
A1 − 2A2k1 + 3A3k2

1
)

f 2
a

+ π c2

f 4
c
(−2A2 + 6A3k1) f 3

a + π c3

f 5
c

3A3 f 4
a

(17)

ψ3( fa) = π c
f 4
c

(
−A1 + 2A2k1 − 3A3k2

1
)

f 2
a

+ π c2

f 5
c

( 8
3 A2 − 8A3k1

)
f 3
a − π c3

f 6
c

5A3 f 4
a

(18)

ψ4( fa) = π c
f 5
c

(
A1 − 2A2k1 + 3A3k2

1
)

f 2
a

+ π c2

f 6
c

(
− 10

3 A2 + 10A3k1

)
f 3
a + π c3

f 7
c

15
2 A3 f 4

a
(19)

ψa( fa) = 2π
(

A1k1 − A2k2
1 + A3k3

1

)
fa (20)

ψr( fr) = −π

c

(
2(Rt + Rr0) + A1k2

1 −
2
3

A2k3
1 +

1
2

A3k4
1

)
fr (21)

The azimuth compression term ψ0( fa) only depends on fa; thus, it can be compensated in the
range time azimuth frequency domain. ψ1( fa) represents the residual RCM after LRWC. The first
term in ψ2( fa) denotes the range modulation while the others are the SRC terms. ψ3( fa) and ψ4( fa)

are high-order range-azimuth coupling terms. ψ0( fa) and ψr( fr) represent the range and azimuth
positions of target P after LRWC, respectively.

4. Imaging Algorithm for MBFL-SAR

In the aforementioned derivation, Equation (16) represents the phase of the 2-D frequency
spectrum after LRWC. Then, the residual RCM, SRC, and high-order coupling terms are compensated
in 2-D frequency domain, the function can be expressed as:

H2( fr, fa) = exp
[
−j
(

ψ1 fr + ψ2 f 2
r + ψ3 f 3

r + ψ4 f 4
r

)]
(22)
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Transforming the result by range IFFT, the azimuth compression is completed by multiplying the
function given as:

H3(tr, fa) = exp(−jψ0) (23)

Finally, the 2-D focused SAR image can be obtained after the azimuth IFFT operation, which can
be written as:

sr5(tr, ta) = sinc
[

Br

(
tr −

Rnew

c

)]
sinc

[
Ba

(
ta −

ynew

vx

)]
(24)

where Rnew = Rt + Rr0 +
1
2

(
A1k2

1 −
2
3 A2k3

1 +
1
2 A3k4

1

)
and ynew = A1k1 − A2k2

1 + A3k3
1.

The compensation function sets the center point as the reference target point with an acceptable
error, which will be discussed in the next section.

To summarize the operations above, the block scheme of the proposed BFL-SAR imaging
algorithm is shown in Figure 2.
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5. Simulations Results and Error Analysis

5.1. Simulations and Results

To demonstrate the efficiency of this algorithm, a simulation is presented in this section.
The experiments are carried out in this section with the parameters shown in Table 1.

Table 1. Simulation parameters.

Parameters Values Parameters Values

Velocity (m/s) (0, 1000, −30) Carrier frequency (GHz) 10
Acceleration (m/s2) (0, −1, −5) Pulse duration (µm) 1.5
Transmitter position (−20,000, 3000, 2000) Bandwidth (MHz) 150

Scene center (0, 3000, 0) Range samples 2048
Initial receiver position (0, 0, 5000) Azimuth samples 2048

Synthetic aperture length (m) 200

The positions of these 3 × 3 scattering targets are shown in Figure 3. In the simulation, we set
point target T5 as the reference center point. Point targets T4, T5, and T6 are located in the same
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azimuth direction and in different range directions, which means they have the same instantaneous
Doppler frequency and different range cells. Point targets T2, T5, and T8 are located indifferent
azimuth directions and in the same range direction, which means they have different instantaneous
Doppler frequencies and the same range cell.
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Figure 3. Scattering target positions.

Figure 4 shows the point target spectrum and interim simulation results using the proposed
method. Figure 4a indicates the raw data from which we can see the skew due to the range azimuth
coupling. Figure 4b shows the data after LRWC. The data is flattened, thus, the following steps can be
performed easier. Figure 4c depicts the results after range compression, RCMC, SRC, and high-order
coupling compensation, where each point target response is focused in the same range cell. Figure 4d
shows the results of these 3 × 3 scattering targets after azimuth compression, and we can find the
geometric distortion in the image due to the LRWC operation. The imaging result after geometric
distortion correction is shown in Figure 5.Sensors 2017, 17, 1152 7 of 11 
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Figure 4. Interim simulation results using the proposed method. (a) Raw data; (b) After LRWC;
(c) After range compression, RCMC, SRC, and high-order coupling compensation; (d) After
azimuth compression.
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5.2. Error Analysis

In this paper, the main errors come from the following aspects: approximation of the slant range
R(ta), approximation of the 2-D frequency spectrum derivation, the Taylor expansion of the 2-D
frequency spectrum, and approximation of the compensation function. Here, we analyze the error to
prove the effectiveness of this algorithm.

Firstly, the equivalence slant range is kept up to the fourth-order Taylor series expansion of R(ta),
where the higher-order terms are ignored. The ideal one is shown in Equation (2) and the error can be
expressed as:

∆R(ta) = Rr(ta)−
[

Rr0 + (k1c + k1)ta + k2t2
a + k3t3

a + k4t4
a

]
(25)

Taking the scene center point as the reference point, the parameters are listed in Table 1, and the
results are shown in Figure 6.Sensors 2017, 17, 1152 8 of 11 
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The maximum range approximation error is 3× 10−7m in Figure 6, which contributes to the phase
error in Equation (5) as:

∆ψ( fr, ta) = −2π
( fc + fr)

c
∆R(ta) (26)

Using the simulation parameters into Equation (1), the phase error absolute value of our
approximation is about 6.3 × 10−5 rad. It meets the demand of ∆ψ ≤ π

4 .
Secondly, the approximation of the 2-D frequency spectrum by the method of POSP and series

reversion introduces the error. This error partly depends on the range approximation, namely, it
is related to the first error. Another aspect is the remaining Taylor expansion orders of fr. In this
algorithm, the 2-D frequency spectrum expansion of fr ignores the terms higher than fourth-order.
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To analyze this error, the method of numerical calculation is considered as a comparison, which can
obtain the accurate 2-D frequency spectrum. Figure 7 shows the imaging results of point targets using
the approximation of 2-D frequency spectrum derived in this paper and the method of numerical
calculation, respectively.
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The last one, also the greatest cause of algorithm accuracy, is the approximation of k-coefficients
which uses ypc instead of yp. Thus, we compare subimages of the center point T5 and edge points T1
and T9, which can be shown in Figure 8.Sensors 2017, 17, 1152 9 of 11 
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Figure 8. Focusing performance of proposed improved RDA: (a) Target 1; (b) Target 5; and (c) Target 9.

From Figure 8, we can find that the focusing performance of the center point is better than the edge
point. However, the edge point can still focus well with our algorithm. To make a clearer performance
comparison between the proposed algorithm and the traditional RDA, the imaging result obtained by
traditional RDA is shown Figure 9.
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Comparing the results, it is easy to find that the proposed algorithm generally offers better
focusing capabilities than the traditional RDA. Analyzing the data in Figures 8 and 9, the resolution
ρ, peak sidelobe ratio (PSLR) and integrated sidelobe ratio (ISLR) are used to evaluate the focusing
performance. T1 and T5 are chosen for analysis. The results are listed in Table 2. We can find that
higher resolution and the theoretical PSLR and ISLR are obtained by the proposed algorithm.

Table 2. Characteristic parameters of center point and edge point.

Range Azimuth

ρ (m) PSLR (dB) ISLR (dB) ρ (m) PSLR (dB) ISLR (dB)

Proposed improved RDA

Edge point T1 3.5 −13.5 −10.8 5.3 −13.5 −10.2
Center point T5 3.5 −13.1 −10.0 5.1 −13.5 −10.2

Traditional RDA

Edge point T1 6.5 −20.8 −22.2 10.5 −22.7 −20.3
Center point T5 5.5 −20.7 −19.9 8.8 −19.5 −17.2

6. Conclusions

In this paper, an imaging algorithm for a fixed-transmitter BFL-SAR is proposed, which takes
high-order Taylor series expansion terms of the slant range into consideration. Firstly, the signal
model of BFL-SAR with fixed transmitter is built. Secondly, the high-precision 2-D frequency spectrum
is derived by the method of series reversion. This method uses the fourth-order Taylor expansion
of the slant range after LRWC operation. Then, the residual RCM, SRC, and high-order coupling
terms are compensated in the 2-D frequency domain. Finally, a SAR image can be obtained by 2-D
compression. The simulation results and error analysis prove the feasibility and effectiveness of the
proposed imaging algorithm and verify the correctness of the theory analysis.
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