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Abstract

Motivation: Detecting subtle biologically relevant patterns in protein sequences often requires the construction of a
large and accurate multiple sequence alignment (MSA). Methods for constructing MSAs are usually evaluated using
benchmark alignments, which, however, typically contain very few sequences and are therefore inappropriate when
dealing with large numbers of proteins.

Results: eCOMPASS addresses this problem using a statistical measure of relative alignment quality based on direct
coupling analysis (DCA): to maintain protein structural integrity over evolutionary time, substitutions at one residue pos-
ition typically result in compensating substitutions at other positions. eCOMPASS computes the statistical significance of
the congruence between high scoring directly coupled pairs and 3D contacts in corresponding structures, which depends
upon properly aligned homologous residues. We illustrate eCOMPASS using both simulated and real MSAs.

Availability and implementation: The eCOMPASS executable, Cþþ open source code and input data sets are avail-
able at https://www.igs.umaryland.edu/labs/neuwald/software/compass

Contact: aneuwald@som.umaryland.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein sequence analyses, and particularly those that are statistical-
ly based, often rely upon very large multiple sequence alignments
(MSAs), consisting of tens or hundreds of thousands of sequences
belonging to a large superfamily. Using such an alignment increases
the statistical power and breadth of an analysis and, by partitioning
the MSA into hierarchically arranged subgroups based on subgroup-
specific patterns (Neuwald, 2014), one can identify sequence and
structural features likely determining functional specificity. For ex-
ample, this approach has been used (Neuwald et al., 2012) to auto-
mate the manual curation of hierarchical MSAs (hiMSAs) for the
NCBI Conserved Domain Database (CDD) (Yang et al., 2020) and,
when applied to an MSA of 474 040 AAAþ ATPases, has revealed
sequence and structural properties implicated in DNA clamp loader
functional specificity (Tondnevis et al., 2020). We have performed
similar analyses using alignments of 237 359 N-acetyltransferases,
127 418 GTPases, 131 321 helicases, 45 799 exonuclease-endo-
nuclease-phosphatases and 23 592 DNA glycosylases (Neuwald
et al., 2018) and of 33 760 TIR domains (Toshchakov and
Neuwald, 2020). It is important, of course, that such alignments be
as biologically accurate as possible. However, it is well known that
only heuristic methods are available for constructing even small

alignments, and these produce results that may be far from optimal
(Edgar, 2010). Generally, an MSA method’s accuracy is evaluated
using a set of benchmark alignments that are manually curated using
structural data, and which typically contains relatively few sequen-
ces. However, there are many potential problems with these evalua-
tions. First, they rely upon the accuracy of the benchmark
alignments, which may itself be in question (Ashkenazy et al., 2019;
Fletcher and Yang, 2010; Kim and Lee, 2007; Levy Karin et al.,
2014; Thompson et al., 2011). Second, they implicitly assume the
accuracy of an MSA on a benchmark set of sequences is a good
proxy for its accuracy on a much larger superset. This may not be
the case, particularly when the larger set contains many protein sub-
groups within a superfamily, not all of which are represented within
the benchmark alignment. Curating large benchmark MSAs is error
prone and may be prohibitively labor intensive. Finally, the relative
accuracy of one MSA method to another on a set of benchmark
alignments is no guarantee that it will produce the more accurate
alignment for a specific set of sequences of interest, particularly one
that is large and diverse.

We define an accurate alignment to be one that reflects sequence
homology. A more accurate MSA should reveal evolutionarily con-
served structural and functional constraints better than a less accur-
ate one. In large, diverse sequence sets such constraints become
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more statistically evident, thereby allowing subtly conserved hom-
ologous regions to be identified and aligned, as illustrated in
Neuwald and Hirano (2000) and Neuwald and Poleksic (2000).

Because obtaining a highly accurate MSA typically requires man-
ual curation, we have developed and applied the Multiply Aligned
Profiles for Global Alignment of Protein Sequences (MAPGAPS)
program (Neuwald, 2009), which uses a manually curated hiMSA
as a query to identify and align database sequences belonging to a
modeled superfamily. Within a hiMSA each subgroup alignment is
profiled and aligned to the other subgroup alignments. Using this
feature, MAPGAPS creates an MSA with accuracy comparable to
that of the hiMSA (Neuwald et al., 2020). This assumes that each
subgroup is accurately aligned both internally and relative to other
subgroups, which is typically not yet the case. Hence, to further im-
prove this approach, we need to assess alignment quality for each
subgroup and for the MSA as a whole.

Here, we introduce eCOMPASS, a program that evaluates the
relative accuracy of two MSAs of the same large set of sequences by
applying direct coupling analysis (DCA) based upon pseudo-likeli-
hood maximization in conjunction with a procedure to estimate
statistical significance. It requires as input only the MSAs themselves
and structural coordinates for a minimum number (ideally at least
10) of the aligned sequences. It does not rely upon any set of bench-
mark alignments, nor even upon a ‘gold standard’ alignment of the
subset of sequences with known structure. Furthermore, it requires
no knowledge of how the MSAs were produced, nor upon how the
methods that produced them perform on other sets of sequences.
Rather, for each MSA, it first derives, from pairwise correlations
among columns, internal evidence of likely 3D contacts among resi-
due positions of the aligned proteins, and then uses the known struc-
tures to assess the relative accuracy of this evidence. This approach
is based on the principle that, to maintain a protein family’s struc-
tural fold, interacting residues pairs tend to coevolve, resulting in
correlations better seen within accurate alignments. Hence, the de-
gree to which 3D contacts may be correctly inferred from an MSA
depends upon its accuracy.

Because eCOMPASS applies to the evaluation of the overall
quality of specific sequence alignments that are very large, it cannot
be readily evaluated using known benchmark MSAs, nor are we
aware of previous approaches to which it can be properly compared.
We therefore argue for its validity from its inherent plausibility, its
application to simulated gold standard alignments, and its consist-
ency with a completely independent measure of alignment accuracy
than the measure eCOMPASS deploys.

We first describe the eCOMPASS algorithm and illustrate its use
by applying it to eight pairs of large MSAs obtained from the CDD
and PFAM databases and containing a sufficient number of proteins
of known structure. We also describe the sort of insights eCOMPASS
can reveal regarding the relative quality of such MSAs. Second, we
validate it on simulated MSAs generated from realistic Potts models
of protein superfamilies versus realignments of the simulated sequen-
ces using four different alignment methods. Third, we evaluate its ro-
bustness to changes in various hyperparameter settings.

2 Materials and methods

2.1 Input and basic strategy
eCOMPASS takes as input two MSAs of the same set of protein
sequences aligned using two different methods. We recommend that
the set include at least 10 proteins of known structure. The method’s
basic strategy is, first, to use correlations among columns in each
MSA to predict which pairs of columns correspond to residue 3D
contacts; and then to check the accuracy of these predictions (meas-
ured as described below) using the aligned proteins of known struc-
ture. The method assumes that the more accurate the overall MSA,
the more accurate will be structural predictions derived from its col-
umn correlations. Evidence for the validity of this assumption is pro-
vided through analyses of simulated MSAs.

Note that, although eCOMPASS uses a relatively small number
of sequences with known structure to vote on the relative accuracy
of two MSAs, each structure’s vote is based upon evidence derived

from all the sequences in each of the MSAs. Thus, an MSA that ac-
curately aligns the structures in question to one another but does a
poor job of aligning sequences from a much larger and more diverse
protein superfamily, should fare poorly in eCOMPASS’s estimation.
This contrasts with evaluation methods that use the accurate align-
ment of a (typically small) test set alone as a proxy for an MSA’s
more general accuracy. Note also that eCOMPASS requires no ‘gold
standard’ alignments whose accuracy must be assumed. It bases its
evaluation only on the given MSAs and on the experimentally deter-
mined structures.

2.2 DCA
In order to infer structural information from correlations between
column pairs of each MSA, as a prelude to assessing the accuracy of
this information, eCOMPASS first performs on the alignments DCA
(Hopf et al., 2012; Lunt et al., 2010; Morcos et al., 2011; Nugent
and Jones, 2012; Weigt et al., 2009). Residue pairwise correlations
were long believed, in principle, to be predictive of structural con-
tacts, but early approaches fell short of expectations due to the con-
founding effect of indirect correlations: when residues correlate both
at positions i and j and at positions j and k, then residues at positions
i and k may also correlate even though they fail to interact directly.
DCA overcomes this problem by disentangling direct from indirect
correlations using a variety of algorithmic strategies. eCOMPASS
uses pseudo-likelihood maximum entropy optimization (Marks
et al., 2011, 2012) as implemented in CCMpred (Seemayer et al.,
2014); this strategy outperformed (Neuwald and Altschul, 2018)
DCA programs based either on sparse inverse covariance estimation
(Jones et al., 2012) or on multivariate Gaussian modeling (Baldassi
et al., 2014).

Many multiple alignment methods construct an idealized model
to which individual protein sequences are aligned, resulting in some
residues being treated as insertions with respect to this model, and
therefore left essentially unaligned to residues in other sequences.
For an MSA constructed by such a method, it is only the columns
corresponding to modeled positions to which we apply DCA, and
we effectively ignore all inserted residues. Other multiple alignment
methods align all residues in all input sequences, but this usually
results in many columns having null characters for most sequences.
To apply DCA effectively to such alignments, we first exclude col-
umns having greater than 50% null characters.

The output of DCA applied to an MSA M1 is a set K1 of direct
coupling (DC) scores for all of M1’s column pairs. DC scores corres-
pond to the average product corrected Frobenius norms (Dunn
et al., 2008; Seemayer et al., 2014). (DCA methods model both one-
and two-site statistics, though eCOMPASS makes use of only the
latter.) We assume only that these scores grow monotonically with
the degree of inferred DC between MSA columns. We observe, how-
ever, that there is no immediate way to compare the set K1 with an
analogous set K2 derived from M2, both because they typically will
differ in size, and because there is no clear correspondence between
the columns of M1 and M2.

We address this issue by using the sequence of each protein with
known structure, considered individually, to choose comparable
subsets of K1 and K2, which we call K01 and K02. Specifically, for a
given protein, we first determine the subset R of its residues that are
aligned both in a column in M1 and in a column in M2. Identifying
the residues in R with the MSA columns to which they are aligned,
we define K01 (and K02 analogously) as the subset of K1 corresponding
to all pairs of residues in R separated by at least m (5 by default)
intervening residues within the protein’s primary sequence. (We im-
pose this latter condition because we are not interested in predicting
close contacts that are imposed by a protein’s backbone.) K01 and K02
are then of equal size, with elements corresponding to identical pairs
of residues within R. Note, however, that each individual structure
defines distinct K01 and K02, and it is only such sets, constructed from
the same structure, that are directly comparable.

2.3 Initial Cluster Analysis
Our approach is based on the assumptions that within a protein
family the evolution of structurally interacting residue pairs is likely
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to be correlated, and that an accurate multiple alignment of sequen-
ces in the family should capture information concerning such corre-
lations in the form of high DC scores. Given two MSAs for a protein
family, and a particular structure, we have constructed sets of DC
scores, K01and K02, each of whose elements correspond to the same
set of residue pairs of known 3D distance and are therefore compar-
able. We note, however, that inherent differences, such as differing
numbers of columns, in the MSAs M1 and M2 that are used to con-
struct first K1 and K2, and then K01 and K02, renders problematic the
direct comparison of the raw scores within K01 and K02. Instead, we
assume only that higher scores within each set should be preferen-
tially associated with closer structural distances.

To measure the strength of the association between DC scores
and physical distances, we turn to Initial Cluster Analysis (ICA)
(Altschul and Neuwald, 2018). ICA considers an ordered array of L
elements, among which D are designated as distinguished, and seeks
the initial segment of the array, of length X, with the most surprising
number d of distinguished elements, as measured by a P-value. A
generalization of ICA that has been applied to DC scores (Neuwald
and Altschul, 2018), and which we employ here, adds an ordering to
the distinguished elements, and folds into its optimization a statistic-
al measure of the degree to which the higher ranked among the dis-
tinguished elements appear earlier in the array. In essence, this
generalization can be understood as measuring the degree of congru-
ence between two ordered sets.

Here, we take the array of elements to be the set of DC scores
K01 (or K02), ordered from highest to lowest. The distinguished ele-
ments are those corresponding to residue pairs whose structural dis-
tance is �z (with z¼4 Å by default). Note that, except for glycine, z
is based on the distance between sidechain atoms rather than be-
tween a- or b-carbons. ICA returns an S-score (Neuwald and
Altschul, 2018) calculated as S ¼ �log10 Pð Þ. S-scores have units of
log-probability and are therefore directly comparable. Nevertheless,
when the relationship between two orderings is known, or strongly
suspected, to be significant, an array with a larger number of ele-
ments L, and/or a larger number of distinguished elements D, may
intrinsically favor the generation of higher or lower S-scores. In
such cases, it is best to compare only S-scores generated from arrays
with the same L and D. Because the scores S1 and S2 we calculate
for our two input MSAs from K01 and K02 are, by construction,
generated using the same L and D, we take their difference
DS ¼ S1� S2 as a valid measure of the evidence provided by the
structure in question for the relative accuracies of MSAs M1 and
M2. In this study, an S-score can be understood as a statistical meas-
ure of the congruence of structural contacts with DC scores (i.e.
average product corrected Frobenius norms).

2.4 Eliminating structures likely to be misaligned
It would be possible to assess the relative quality of M1 and M2 by
evaluating solely how well each MSA aligns the reference structures
to one another. However, this would ignore how the vast number of
remaining sequences are aligned. In contrast, eCOMPASS measures
how well the DC scores derived from each MSA predict 3D contacts
between residue pairs in each reference structure. This assumes,
however, that each structure is properly aligned, in the main, within
both MSAs, which may not be the case.

To identify reference structures that may be misaligned within a
particular MSA, we first determine, for each structure i, the subset
Ri of its residues that are aligned by the MSA to residues rather than
null characters in all other structures; note that the Ri will be of the
same size for all structures. We then compute, for each pair of struc-
tures i and j, the quantity DDij, defined as the mean, for all pairs of
residues a and b within Ri, of the absolute difference between the Ca
distance of a to b and the Ca distance within structure j of the resi-
dues to which a and b align. It can be seen that DDij¼DDji, and this
quantity may be understood to measure how well sequences i and j
are structurally aligned with one another (Hasegawa and Holm,
2009; Holm et al., 2008). Assuming most structures are on average
properly aligned, a structure i that is poorly aligned should have
high DDij for most j, and therefore an unusually high mean value of

DDij for all j 6¼ i, which we denote as DDi. Any structure whose DDi

is �2 SD above the mean is likely to be misaligned and thus to yield
unreliable results, and we accordingly may choose to remove it from
consideration. We iteratively recalculate until convergence the mean
and SD from the remaining DDi, and each time remove any structure
whose DDi is �2 SD above the mean. Of course, to apply this ap-
proach effectively it is important to have a sufficient number of di-
verse structures (corresponding by default to proteins sharing �65%
sequence identity). After all structures with questionable alignment
within either MSA have been removed, we calculate DS, the mean
value of DS, both for the remaining structures and for all structures,
as two alternative measures of the relative quality of M1 and M2.

Note that the number of columns used to calculate the DDi varies
from one MSA to another, as of course do the subsets of residues Ri

within the various structures. Thus, in contrast to the Si, the DDi are
properly comparable only among different structures for the same
MSA, but not between one MSA and another. Nevertheless, as we
will see below, there is a noticeable tendency for the MSA preferred
by the measure DS also to yield a lower DD (mean DDi), which can
be understood as a rough measure of how well an MSA aligns the
reference structures to one another.

2.5 Using simulated Potts model MSAs as gold

standards
We created a Potts model for each of 40 CDD/MAPGAPS-generated
MSAs (listed in Supplementary Table S1) using CCMpredPy
(Vorberg et al., 2018). To obtain 3D contacts for each Potts model,
we created corresponding homology modeled structural coordinates
using SWISS-MODEL (Waterhouse et al., 2018); column pairs cor-
responding to 3D contacts >8 Å in the structure are set to zero in
the Potts model generated by CCMpredPy. A simulated 5000 se-
quence alignment was generated for each Potts model using
CCMgen (Vorberg et al., 2018). We realigned the sequences for
each of the simulated MSAs using four different MSA programs (see
below) and used eCOMPASS to score each realigned MSA when
compared to the corresponding gold standard MSA.

3 Application

3.1 Overview
Most commonly used multiple alignment programs fail to generate
plausible MSAs when given as input the numbers of sequences con-
sidered in this study, typically in the tens or hundreds of thousands.
Therefore, we do not attempt to evaluate these programs, but in-
stead apply eCOMPASS in three ways: (i) to 8 CDD versus PFam
MSAs; (ii) to 40 realigned versus gold standard simulated MSAs;
and (iii) to 31 CDD versus JackHMMER MSAs using various
eCOMPASS hyperparameter settings.

3.2 CDD versus Pfam MSAs
We illustrate eCOMPASS using eight pairs of MSAs (Table 1),
each consisting of one CDD-based MSA (obtained as described in
Table 1) and one Pfam MSA (El-Gebali et al., 2019). These MSA
pairs represent the following protein superfamilies: C2 domains
(C2); cupredoxins (CuDX); haloacid dehalogenase-like hydrolases
(HAD); class B metal b-lactamases (MBL); pleckstrin homology
domains (PH); phosphotransferase system subunit IIB (PTS); rhoda-
nese homology domain (RHOD) and sulfatases (SFTS). We obtained
a mean of 25 reference structures per domain. Over their domain
footprints, on average these share 19% sequence identity, and each
structure shares <50% identity with all other structures. Thus, these
represent well the diversity of each superfamily. The eCOMPASS
output files are available as Supplementary Material. ‘CDD’ MSAs
achieved, on average, higher S-scores than Pfam MSAs (Table 2).
However, because both types of alignments depend on some degree
of manual curation, we draw no general conclusion regarding which
of these tend to be more accurate. Rather, our aim here is merely to
describe eCOMPASS and illustrate its application.
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3.3 CDD versus Pfam subgroup-specific analyses
Because a protein superfamily is typically composed of multiple fam-
ilies and subfamilies, which may be aligned with differing accuracy,
the DS scores for different structures should not be considered as
drawn from the same underlying distribution and their variance may
therefore be very high. Accordingly, when asking which is the more
accurate of two MSAs overall, it is better to consider each DS score
as a separate vote. Assuming independence for simplicity, we calcu-
late the significance of the majority vote using the two-tailed P-value
for the equiprobable binomial distribution. We expect these P-val-
ues to correlate to some extent with DS, the mean DS score, but
these two quantities may vary considerably in implied significance,
or, in principle, even disagree on which is the better MSA. Also, we
recognize that even two structures with low sequence identity are
not truly independent, so that our calculated P-values must be dis-
counted to some extent.

In Table 2, we present a summary of eCOMPASS’s results for
the eight domains considered. After putatively misaligned reference

structures are excluded, for four domains (C2, MBL, PH and PTS)
eCOMPASS finds unanimity among the remaining structures favor-
ing one of the MSAs. These agreements are statistically significant,
with the Pfam MSA favored for C2 and the CDD MSA favored for
MBL, PH and PTS. (This frequent unanimity is evidence that the DS
score is no mere random artifact but is a valid measure for the
greater ability of one MSA to encode structural features as directly
coupled residue pairs.) For the remaining four domains, neither
MSA is preferred with an estimated P<0.001, and the SD of the DS
values exceeds their absolute mean.

To illustrate and study our procedure for excluding structures,
we consider in detail its operation on the PTS domain. In Table 3,
we show the specific values of S and DDi for each of the 13 reference
structures and each MSA. As is apparent, only for structure 3czcA
and MSA 1 does DDi exceed the mean by over two SDs, so we ex-
clude this one structure as unreliably aligned. (When the mean and
SD for the remaining DDi for MSA 1 are recalculated, no further
structures are excluded.) Note that this has the effect of eliminating
the one negative DS, leaving unanimous preference for MSA 1
among the remaining structures. An examination of the structures
eliminated by our procedure for the other seven domains shows that
they very often yield outlying values of DS, although this is neither
expected nor observed to be universally the case.

It is not eCOMPASS’s function to amend the MSAs with which
it is supplied. However, to study further the validity of
eCOMPASS’s procedure for rejecting structures as misaligned, and
their corresponding DS as unreliable, we used Dali (Holm and
Rosenström, 2010) to structurally realign 3czcA to the other struc-
tures. As shown in Figure 1, given the resulting modified MSA 1,
DDi for 3czcA is no longer an outlier, and the DS for 3czcA turns
positive. Note, however, that sequences closely related to 3czcA in
MSA 1 were not realigned; if they had been, presumably the DS
would have increased further.

One may object to our procedure for excluding a structure, from
one or both MSAs, based upon internal evidence that it has been
misaligned. Such a structure generally represents not only itself but
also the alignment of closely related sequences, and arguably should
have a vote equal to that of other structures regarding which align-
ment is better. In Table 4, we give the results of our analysis if no
structures are excluded. As might be expected, the values of DD in
Table 4 are higher, although this need not always be the case be-
cause the removal of a structure due to a significantly high DDi for
one MSA may decrease DD for the other MSA. Also, for all domains

Table 1. Eight pairs of CDD versus Pfam MSAs analyzed here

Name MSA1 MSA2 Avg

Abbr. # seqs Len CDD Len Pfam #pdb %id

C2 72 249 102 cd00030 103 PF00168 34 22

CuDX 15 418 110 cd00920 119 PF07732 20 23

HAD 58 031 95 cd01427 95 PF00702 18 21

MBL 70 293 188 cd06262 197 PF00753 32 14

PH 36 099 89 cd00900 105 PF00169 30 17

PTS 9395 84 cd00133 90 PF02302 13 18

RHOD 61 053 89 cd00158 107 PF00581 33 19

SFTS 35 560 237 cd00016 309 PF00884 21 19

Mean 44 762 124 141 25 19

The numbers of aligned sequences for each domain are given in column 2.

Lengths of MSA 1 and 2 are given in columns 3 and 5, respectively, and corre-

sponding CDD and Pfam identifiers are given in columns 4 and 6, respective-

ly. CDD alignments were obtained using, as input to MAPGAPS, the NCBI

CDD hiMSA and the sequences present in the corresponding Pfam MSA, as

was recently described (Neuwald et al., 2020). Each Pfam MSA had been gen-

erated automatically by creating a hidden Markov model profile from a Pfam

seed alignment and then aligning related sequences to the profile

(Sonnhammer et al., 1998). For each analysis, the number of reference struc-

tures and the average % identity shared among aligned regions of known

structure are given in columns 7 and 8, respectively.

Table 2. eCOMPASS results with outliers excluded

ID MSA 1 MSA 2 DS SD �log10(P)

N1 DD N2 DD

C2 0 1.12 25 1.15 �9.7 5.3 7.2

CuDX 12 1.19 4 0.89 2.4 5.3 1.1

HAD 4 1.27 10 1.18 �4.3 8.9 0.7

MBL 18 1.74 0 3.28 82.1 16.5 5.1

PH 20 0.99 0 1.43 8.9 6.4 5.7

PTS 12 2.19 0 2.89 11.2 5.6 3.3

RHOD 19 1.57 9 2.18 6.5 10.3 1.1

SFTS 14 1.40 5 1.80 15.5 19.7 1.2

For each domain, values of DD and DS were calculated only after excluding

unreliably aligned structures, as described in the text. N1 and N2 are the

observed number of included structures for which S1> S2 and S2> S1, respect-

ively. The DS-score standard deviation (SD) measures the variability among

reference structures for each domain. For the last column, P is calculated as

the two-tailed binomial probability for the observed N1 and N2, assuming an

equal chance for each MSA to have higher DS for each structure.

Table 3. eCOMPASS output for the PTS domain

pdbid MSA 1 MSA 2 DS cols D L

S1 DDi S2 DDi

3czcA 29 2.78 41 2.94 212.0 82 100 2944

2wy2D 47 2.10 34 2.60 12.9 77 85 2583

2l2qA 21 2.42 15 3.00 5.9 65 39 1801

4mgeA 51 2.06 38 2.48 12.7 78 93 2659

3nbmA 54 2.24 30 2.87 23.5 76 88 2525

1tvmA 29 2.34 19 2.92 10.2 74 60 2367

5gqsA 31 2.23 15 2.92 15.8 78 79 2647

1vkrA 28 2.12 11 3.07 16.7 71 64 2164

5dleA 32 2.08 24 2.95 7.3 77 97 2590

2r48A 32 2.11 22 2.91 10.1 77 93 2590

4tn5A 24 2.12 16 2.90 7.5 75 86 2453

2kyrA 22 2.37 20 3.07 2.4 77 90 2595

2m1zA 31 2.10 22 2.92 9.0 77 87 2594

Mean 2.24 2.89 9.4

SD 0.20 0.17 8.4

Values for 3czcA are shown in bold to indicate that its DD value for MSA 1 is

�2 SD above the mean. The 7th column gives the number of columns shared

by MSA 1 and 2 when computing S-scores. Columns 8 and 9 give the values

of D and L for the ICA procedure.
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except CuDX, the standard deviation of the DS is higher. This too is
expected, because, although structures are removed with no refer-
ence to DS, misaligned structures have a strong tendency to produce
outlying values for DS, as illustrated, e.g. in Table 3. Most import-
antly, however, for all domains the assessment of which is the better
MSA is essentially unchanged, by the measure either of DS or of the
binomial vote N1 versus N2. There appears to be a slight tendency
for both jDSj and �log10(P) to decrease with the inclusion of all
structures, but this is neither systematic nor coordinated. The advan-
tage of excluding apparently misaligned structures is that this
focuses more on the overall quality of the MSAs, as measured by
their DC signal, and less on the alignment accuracy of the relatively
small number of structures considered. To help assess such distinc-
tions, eCOMPASS computes results using both approaches.

For some superfamilies neither MSA was significantly favored
based on the binomial P-value. For example, for the sulfatases
(SFTS) P¼0.06 and, among the retained DS scores, 14 were positive
(favoring MSA 1) and 5 were negative (favoring MSA 2). The vari-
ability in DS scores was very high with an SD of 19.7 and a mean of
15.5. Similar results were obtained when using all DS scores. This
suggests that MSA 1 better aligns some functionally divergent sub-
groups while MSA 2 better aligns others. This may occur, e.g. when
an MSA is generated by a query-based iterative alignment method,
such as PSI-BLAST (Altschul et al., 1997) or JackHMMER (Johnson
et al., 2010), resulting in subgroups closely related to the query
being more accurately aligned than distantly related subgroups. The
Pfam MSAs used for this study were generated using a similar pro-
file-based alignment method.

By providing a more articulated description of relative alignment
quality than would a single measure of overall quality, eCOMPASS
may aid the curation of hiMSAs (Yang et al., 2020), which were
provided as input to MAPGAPS to generate the MSA 1 alignments
used here. For instance, for the SFTS domain, the structure 4uplA,
which is a member of the phosphonate monoester hydrolase family

(i.e. cd16028), has the lowest DS score (�53.2) and the highest DDi

(2.99 Å) for MSA 1 (see Supplementary Data). This suggests that, by
further curating the cd16028 subgroup, one could improve the CDD
hiMSA and thus the SFTS MSA generated from it.

Finally, as discussed above, DD scores should only be compared
with caution because both the numbers and the nature of the residue
pairs used to compute Ca–Ca distances differ between MSAs. For
example, unlike other domains, the C2 MSA deemed superior by the
measure of DS (Tables 2 and 4) yielded higher DD. This illustrates
how relying on DD scores may miss distinctions between MSAs
revealed by better justified and statistically based DS scores.

3.4 Program-aligned versus gold standard simulated

MSAs
Using the procedure described in Section 2, we created 40 simulated
gold standard MSAs, each with a single associated structure. We
realigned the sequences of each MSA using four programs: GISMO
(v3.1) (Neuwald and Altschul, 2016), Kalign 3 (Lassmann, 2020),
MAFFT (v7.471) (Katoh and Standley, 2014) and MUSCLE (v3.7)
(Edgar, 2004). To compute each realigned MSA’s distance from its
associated gold standard, we calculated an SP-score (from ‘Sum of
the Pairs’), which is the proportion of aligned pairs of residues with-
in the gold standard that are aligned identically within the realigned
MSA. We then used eCOMPASS to compare each realigned MSA to
its corresponding gold standard MSA. As described above, given
two MSAs eCOMPASS generates directly comparable scores, which
we here denote as S for the realigned MSA and as S� for the gold
standard MSA. Notably, as expected, in all cases the S-score is less
than the S�-score. To study how well the relative values of S and S�

correspond to the distance between the realigned and gold standard
MSAs, we plot, in Figure 2, S/S� versus SP for each case. There is
clearly a strong and close to linear correlation between S/S� and SP,
with the Pearson correlation coefficient equal to 0.92. The regres-
sion line has a slope of 1.117 and a y intercept of �0.077, suggesting
that S/S� is a good and relatively direct proxy for gold standard dis-
tance. Hence, for real protein sequence alignments, where we do not
have gold standards for comparison, we may use comparable S-
scores as proxies for alignment accuracy.

3.5 CDD versus JackHMMER MSA analyses
To further explore the utility and robustness of eCOMPASS, we
compared the 40 CDD MSAs, upon which our simulated MSAs

Fig. 1. DDi�2 SD above the mean for 3czcA is due to misalignment. (top) For the

CDD PTS MSA, the sequence corresponding to 3czcA yielded DDi¼2.78 Å, which

is 2.7 SD above the mean, suggesting this structure is misaligned relative to the 12

other structures, four of which are shown. As a result, eCOMPASS discarded

3czcA’s DS value when computing DS ¼ 11.2 in Table 2. (bottom) When 3czcA

was structurally realigned using Dali (Holm and Rosenström, 2010), its DDi

decreased to 2.35 Å (1.5 SD above the mean) and its S-score increased to 41.5, pro-

viding further evidence that it was originally misaligned. The realigned region is

highlighted in black; numbers correspond to the residue positions at each end.

Table 4. eCOMPASS results with outliers included

ID MSA 1 MSA 2 DS SD �log10(P)

N1 DD N2 DD

C2 3 1.43 31 1.53 �8.1 6.2 6.1

CuDX 15 1.19 5 0.96 2.1 5.1 1.4

HAD 6 1.35 12 1.33 �4.3 8.9 0.6

MBL 31 2.06 1 3.79 74.0 28.0 7.8

PH 29 1.12 2 1.59 9.4 14.3 6.3

PTS 12 2.24 1 2.89 9.4 8.4 2.5

RHOD 24 1.71 9 2.32 6.4 9.6 1.9

SFTS 15 1.52 6 1.84 13.0 24.4 1.1

Fig. 2. S/S� as a function of SP-score for simulated gold standard versus realigned

MSAs. The 160 data points represent 40 simulated (gold standard) MSAs, each of

which is compared to four different realigned MSAs of the corresponding simulated

sequences. The solid line corresponds to the regression line and the dotted line to

y¼x.
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were based, to corresponding MSAs aligned with JackHMMER
(JHM) (Johnson et al., 2010) using an arbitrary sequence as the
query (Supplementary Table S1). To reduce sequence redundancy,
we removed from each MSA all but one sequence among those shar-
ing �95% sequence identity using either cd-hit (Fu et al., 2012) or
PurgeMSA (Neuwald et al., 2020). Note that this analysis allows the
inclusion of more reference structures because, unlike the CDD ver-
sus Pfam analysis, the number of structures included was not prede-
fined by Pfam. To identify domains for which a clearly significant
distinction was at least possible, we focused on 31 of the 40 domains
having at least 18 distinct structures, which could, in principle, yield
a two-tailed binomial probability P<10�5. Among these the CDD
MSA was significantly better at the P<10�3 level for 12 domains
whereas the JHM MSA was significantly better for 6 domains
(Fig. 3).

To evaluate the robustness of eCOMPASS, we reran each of
these analyses using various CCMpred hyperparameter settings.
(Another variable is the DCA implementation used, which, however,
is too technically challenging to investigate here.) Using either flat
(uniform) priors or Jeffreys uninformed priors [28] yielded essential-
ly identical results (Supplementary Fig. S1). We also ran
eCOMPASS with maximum residue pair 3D contact cutoffs of 4, 5
and 6 Å (Fig. 4), with alternative CCMpred sequence reweighting
thresholds of 70%, 80% and 90% (Fig. 5, top), and with L1 regular-
ization strengths of 0.1, 0.2 and 0.3 (Fig. 5, bottom). Notably, in
only one case did two different parameter settings yield conflicting
results both at a significance level �0.01. This arose for the L1 regu-
larization parameter and the AAT_1 domain, for which conflicting
results were reported with P-values of 0.005 and 0.002.

The observed variability in the binomial probability yielded by
different parameter settings is likely due to changes in the implicit
nature of the MSAs, of the ICA array or of both. For example,
decreasing the CCMpred reweighting threshold (Seemayer et al.,
2014) is likely to decrease the DCA signal from highly populated
subgroups.

4 Discussion

eCOMPASS computes a statistical score (DS) that compares the ac-
curacy of two large MSAs and that is based on all the aligned
sequences and on a set of reference structures. This score exploits

the DC signal implicit in each alignment and whose strength pre-
sumably depends on the degree to which homologous residues are
accurately aligned. eCOMPASS’s strategy constitutes a departure
from current approaches. These typically rely upon a benchmark
set, consisting of a small number of sequences aligned using struc-
tural data. However, they are essentially blind to the alignment ac-
curacy of sequences absent from the set. Unlike other programs for
assessing MSA quality (Ahola et al., 2008; Lassmann and
Sonnhammer, 2005; O’Sullivan et al., 2003; Pei and Grishin, 2001;
Song et al., 2006; Thompson et al., 2001), eCOMPASS provides
measures of statistical significance, can handle extremely large

Fig. 3. eCOMPASS analysis of CDD versus JackHMMER (JHM) MSAs. Data

points represent 31 comparisons with the x and y axes corresponding to the num-

bers of reference structures for which DS> 0 and DS<0, respectively. Hence, data

points below and above the diagonal line correspond to analyses favoring the CDD

and JHM MSA, respectively. The area of each bubble is proportional to �log10(P),

the values of which are indicated for several data points

Fig. 4. Influence of the 3D contact cutoff on eCOMPASS results. Plots indicate prob-

abilities for CDD MSAs versus JHM MSAs using 4, 5 and 6 Å cutoffs. Circles cor-

respond to median values and vertical lines to the high and low values. Closed or

open circles indicate that the MSAs considered better are consistent or inconsistent,

respectively, across the three settings. Domains are ordered left to right by the max-

imum of their three �log10(P) values.

Fig. 5. Influence of DCA hyperparameter settings on results. Plots indicate probabil-

ities for CDD MSAs versus JHM MSAs using the three settings indicated. Circles

correspond to median values and vertical lines to the high and low values. Closed or

open circles indicate that the MSAs considered better are consistent or inconsistent,

respectively, across the three settings. (top) CCMpred reweighting thresholds. (bot-

tom) CCMpred L1 regularization strengths.
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MSAs, requires neither a gold standard MSA nor a structural align-
ment, and can assess the alignment quality of subgroups within an
MSA.

Almost all multiple alignment construction methods employ
some objective function of alignment quality which they attempt to
optimize. For assessing the relative accuracy of two multiple align-
ments, relying upon the objective function used for either’s construc-
tion will of course bias the results, so it is best to seek an
independent measure. The congruence of structural contacts
with alignment-derived DCA scores provides a convenient such
measure, and one that avoids reliance upon a set of gold standard
alignments.

Several recent multiple alignment construction methods
(Muntoni et al., 2020; Talibart and Coste, 2020a, 2020b; Wilburn
and Eddy, 2020) incorporate DCA models into the objective func-
tions they seek to optimize. To the extent that these models have
been derived from particular structures, applying eCOMPASS to
their evaluation using these very structures is likely to bias
eCOMPASS’s results in favor of the resulting multiple alignments.
How to extend eCOMPASS to the comparison of such multiple
alignments, or at least how to mitigate any confounding effects, is a
question for further research. However, none of the alignments of
real proteins studied here were constructed with the use of a Potts
model.

Recently, Muntoni et al. (2020), in comparing the alignments
constructed by their program DCAalign to those produced by other
programs, used one method very similar in spirit to that of
eCOMPASS. From alignment-derived pairwise coupling scores, they
predicted contacting residue pairs and then, with reference to a
known structure, plotted the true positive prediction rate as a func-
tion of the number of predictions made. It should be possible to de-
rive from the resulting graphs a statistically based measure, similar
to our DS, for the relative accuracy of the two alignments.
Following, for example, the approach of Schäffer et al. (2001), one
could calculate a ROC (receiver operating characteristic) score from
a variant of each graph, and then infer P-values for the difference of
these scores. Whether such a statistical approach is superior to the
one taken here is an avenue for further study.

Ideally, eCOMPASS should be applied using a set of reference
structures representing diverse subgroups within a superfamily, as
in the examples here. Then, in addition to providing an assessment
of overall alignment accuracy, eCOMPASS can identify those sub-
groups that are least accurately aligned, as an aid to improving
MSA methods. This raises the issue of multiple conformations for
the same protein, which is a major concern for DCA. A future ver-
sion of eCOMPASS might provide the option of choosing the high-
est DC score among alternative conformations for each residue
pair. In order to investigate directly coupled residue pairs corre-
sponding to a subgroup-specific conformation, such as we
reported recently (Tondnevis et al., 2020), it may be useful to
apply eCOMPASS to subgroup alignments within a superfamily
MSA.

For MSA methods that fail to incorporate information from
DCA into their objective functions, the statistical significance of the
agreement between DC scores and 3D contacts within available
structures serves as a measure of alignment accuracy that is inde-
pendent of the criteria used in constructing the MSA. In any case,
eCOMPASS should be uniquely useful for evaluating the extremely
large MSAs typically required for deep learning protein sequence
analyses and for statistical analyses requiring a vast amount of se-
quence data.
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