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Abstract

Cell population heterogeneity can affect cellular response and is a major factor in drug resistance. However, there are few
techniques available to represent and explore how heterogeneity is linked to population response. Recent high-throughput
genomic, proteomic, and cellomic approaches offer opportunities for profiling heterogeneity on several scales. We have
recently examined heterogeneity in vascular endothelial growth factor receptor (VEGFR) membrane localization in
endothelial cells. We and others processed the heterogeneous data through ensemble averaging and integrated the data
into computational models of anti-angiogenic drug effects in breast cancer. Here we show that additional modeling insight
can be gained when cellular heterogeneity is considered. We present comprehensive statistical and computational methods
for analyzing cellomic data sets and integrating them into deterministic models. We present a novel method for optimizing
the fit of statistical distributions to heterogeneous data sets to preserve important data and exclude outliers. We compare
methods of representing heterogeneous data and show methodology can affect model predictions up to 3.9-fold. We find
that VEGF levels, a target for tuning angiogenesis, are more sensitive to VEGFR1 cell surface levels than VEGFR2; updating
VEGFR1 levels in the tumor model gave a 64% change in free VEGF levels in the blood compartment, whereas updating
VEGFR2 levels gave a 17% change. Furthermore, we find that subpopulations of tumor cells and tumor endothelial cells
(tEC) expressing high levels of VEGFR (.35,000 VEGFR/cell) negate anti-VEGF treatments. We show that lowering the VEGFR
membrane insertion rate for these subpopulations recovers the anti-angiogenic effect of anti-VEGF treatment, revealing
new treatment targets for specific tumor cell subpopulations. This novel method of characterizing heterogeneous
distributions shows for the first time how different representations of the same data set lead to different predictions of drug
efficacy.
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Introduction

Drug resistance is one of the largest challenges in providing

effective cancer treatment, and cellular heterogeneity is a main

component of drug resistance [1]. Cellular heterogeneity can

regulate systemic response, and mapping these heterogeneities is a

grand challenge in biomedical research [2]. Heterogeneity also

represents a challenge in the emerging field of personalized

medicine since variability in patient populations can result in

differential therapeutic outcomes [3]. Recent analyses of breast

cancer cell lines and xenografts on the genetic and proteomic

levels have offered significant insight into tumor heterogeneity

[4,5]. Similarly, genetic screens of patient tumor samples have

highlighted the challenge of tumor heterogeneity in both

personalized medicine and biomarker development [6]. Under-

standing how to characterize cellular heterogeneity will help

surmount drug resistance challenges and develop more effective

cancer treatment approaches.

Recent efforts to characterize heterogeneity have applied optical

biosensors [7–9]. We have recently optimized conditions for

phycoerythrin (PE)-antibody based labeling and profiling the

vascular endothelial growth factor receptors (VEGFR) on endo-

thelial cells, in vitro [10] and ex vivo [11–13], with fluorescence

calibration to commercially available PE beads [14,15]. These

data showed significant cell-by-cell variation in surface receptor

levels across similar cell populations. We have also developed new

quantum dot beads for quantitative calibration of heterogeneity

[16]. The development of these tools to characterize heterogeneity

has resulted in a need for better data analysis and model

incorporation methods.

Defining standards for statistically characterizing heterogeneous

data often requires presuppositions on the type of statistical

distribution. In analyzing flow cytometry data, Boedigheimer and

Ferbas automated data gating (selection). Using expectation

maximization, they modeled the data as a mixture of Gaussian

distributions [17]. Various commercial software automatically gate

with a predefined bivariate normal or t-distributions [18].

However, analyzing heterogeneous data with such presuppositions

could neglect essential features. As such, methods for statistically

characterizing heterogeneous data with no predisposition on the

data distribution are needed.
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Systems biology offers useful approaches for gaining both data-

driven and in silico insight into heterogeneous biological systems.

In particular, in silico models have applied sensitivity analysis to

probe population outliers as a proxy for heterogeneity: Schoeberl

et al showed that increasing the number of epidermal growth

factor receptors (EGFR) ten-fold in the presence of external

epidermal growth factor (EGF) resulted in approximately a 3-fold

decrease of the amount of extracellular signal-regulated kinase

(ERK) phosphorylated downstream the signal transduction

pathway within one hour [19]. Saterbak et al showed that

heterogeneity in membrane receptors-cell adherence significantly

alters cell detachment kinetics to an applied shear force [20].

While these and other computational models have shown the

importance to account for receptor heterogeneity, well defined

methods have not been developed for integrating experimental

heterogeneity into deterministic models.

In this study, we present comprehensive statistical and compu-

tational methods for analyzing cellomic data sets and integrating

them into deterministic models. Here we show that fitting protein

data to statistical distributions provides useful parameters for

describing cellular populations. We show how these various cellular

population representations affect the vascular endothelial growth

factor (VEGF) distribution throughout a whole-body model, anti-

VEGF treatment efficacy, and how these representations may affect

anti-VEGF treatment at different time points during tumor growth.

Additionally, we mathematically describe the necessity to target

treatment techniques to tumor cell subpopulations.

Materials and Methods

Experimental receptor data
VEGFR1, -R2, -R3, and neuropilin-1 (NRP1) levels were

quantified on human umbilical vein endothelial cells (HUVEC)

acquired from individual donors (Lonza, Walkersville, MD and

Stem Cell Technologies, Vancouver, Canada), as previously

described [10]. VEGFR1 and -R2 levels were quantified on

primary mouse endothelial cells, which were freshly isolated from

gastrocnemius and tibialis anterior of male and female 8–14 week

old C57BL/6 (Charles River and NCI) and BALB/c (NCI) mice,

as previously described [11]. VEGFR1 and -R2 were quantified

on tumor endothelial cells and tumor cells obtained from MDA-

MB-231 xenograft studies, as previously described [13]. These

MDA-MB-231 cells were kindly provided by Dr. Zaver M.

Bhujwalla (Johns Hopkins University) with the following details

about the cell line: MDA-MB-231 breast cancer cells are

purchased from the American Type Culture Collection (ATCC)

and used within 6 months of obtaining them from ATCC; the cell

line is tested and authenticated by ATCC by two independent

methods; the ATCC cytochrome C oxidase I PCR assay and short

tandem repeat profiling using multiplex PCR, this is as previously

described [13]. No experimental data was acquired in this study.

Ethics committee approval for data used here can be found in our

previous publications [10,11,13].

Computational Models
The Popel laboratory has developed a whole-body VEGF

kinetic and transport model necessary for building VEGF-

mediated angiogenesis models [21,22]. We and others recently

advanced this model to include experimentally quantified VEGFR

levels on tissue, to explore the pharmacokinetics and pharmaco-

dynamics associated with an anti-VEGF drug (Fig. 1), and how

this drug influences systemic, tissue, and tumor VEGF levels [23].

This model contains three compartments, normal tissue, blood,

and diseased tissue, to model whole-body VEGF kinetic interac-

tions and transport between compartments, developed from

experimental observations. The model predicts VEGF distribution

throughout the body in response to the anti-VEGF recombinant

humanized monoclonal antibody bevacizumab. This model

previously showed that the anti-VEGF treatment outcome is

dependent on the tumor microenvironment, such as receptor

expression, and may be affected by heterogeneities across patients.

Receptor insertion and trafficking is simplified by assuming a

constant receptor levels on the cell surface. All receptors are

assumed as pre-dimerized homodimers, and this model does not

account for dimerization kinetics or heterodimers. Model compo-

nents, assumptions, and experimental bases are described in detail

in previous publications [21–23]. A healthy model excluding the

tumor compartment was also developed, which includes all of the

components in the schematic above the ‘‘Healthy Body cutoff’’

line (Fig. 1). Luminal and abluminal surfaces of endothelial cells

are assumed to have the same receptor levels. Cellular heteroge-

neity is explored within normal physiology and through anti-

VEGF drug treatment response using these models. An anti-

VEGF agent is administered in the model as an injection into the

blood at time t = 0, and all simulations continue to 3 weeks after

anti-VEGF injection [23]. VEGF levels in response to altering

model parameters are measured as they directly correlate with

angiogenesis occurrence.

Applying receptor values to the computational model
Four methods are implemented to condense the data distribu-

tion into a single VEGFR surface level: median, mode, geometric

mean, and arithmetic mean. These four methods were chosen as

they all have different biases towards choosing a representative

value from the population. The mode and median are biased

towards values that are repeated frequently, the arithmetic mean is

biased towards the tail of a population, whereas the geometric

mean creates a balance between the frequency and the range of

values. VEGFR levels are updated from the extracted value, and

free VEGF in each compartment is simulated up to 3 weeks after

injecting an anti-VEGF drug. Updates are done for VEGFR1

alone, VEGFR2 alone, or both using the same extraction method.

Free VEGF using parameter updates is compared to control which

reflects VEGFR levels previously published (1,100 VEGFR1/cell

and 700 VEGFR2/cell) [23].

Results

Developing the low bin search method
Optimal bin size for plotting a data set as a histogram is

determined by fitting to three statistical distributions: Weibull,

Gamma, and lognormal, using a range of bin sizes. These were

chosen due to their characteristic properties: Weibull is a special

case of the generalized extreme value distribution which approx-

imates the maxima of a finite sequence of random variables;

Gamma is the maximum entropy probability distribution which

chooses the unknown distribution that exhibits the highest

entropy; and lognormal fits a distribution whose logarithm follows

a Gaussian. The three statistical distributions are all two

parameter distributions, and for a given value x their probability

density functionsf (x)are as follows:

Weibull:

f x; l,kð Þ~
k
l

x
l

� �k{1
e{(x=l)k x§0

0 xv0

(
ð1Þ
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Gamma:

f x; l,kð Þ~
xk{1e

{x
l

lkC(k)
x§0

0 xv0

8<
: ð2Þ

Lognormal:

f (x; m,s)~
1

xs
ffiffiffiffi
2p
p e

{( ln x{m)2

2s2 xw0

0 xƒ0

(
ð3Þ

where k is the shape parameter, l is the scale parameter, C(k)is
the gamma function evaluated at k,mis the mean, andsis the

standard deviation. The two parameters of each distribution that

best describe the experimental data are determined using

MATLAB. Next it is determined which of the three statistical

Figure 1. Schematic of the compartments and major components included in the VEGF model. The VEGF model contains a normal tissue,
blood, and diseased tissue compartment. VEGF interacts anti-VEGF, GAG chains, and with its receptors VEGFR1/2, on tumor cells and Myocytes, as
well as NRP1/2 on endothelial cells. The luminal surface of the endothelial cells resides in the blood compartment, whereas the abluminal side resides
in the normal tissue compartment on healthy endothelial cells and the diseased tissue compartment on tECs. VEGF is secreted by the tumor in the
diseased compartment and tissue in the normal tissue compartment. VEGF is also secreted and lymphatically drained to the blood compartment
where it is cleared. VEGF is also permeable through the blood vessel wall. A thorough description of the model containing a complete list of species
and parameters can be found in Finley et al [23]. The tumor model contains all of the shown components, while the healthy model contains only
those above the ‘‘healthy model cutoff’’ line.
doi:10.1371/journal.pone.0097271.g001
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distributions best represents the data by minimizing the sum of

squared errors (SSE). The SSE for all three distributions is

calculated by

SSE~
Xn

i~1

(yi{yi)
2 ð4Þ

where n is the total number of bins in the histogram, yi is the

number of elements in the ith bin, and yi is the statistical

distribution evaluated at xi, the center of the ith bin. For example,

for a bin that ranges between 10 and 20 surface receptors,yiis the

value given by the statistical distribution evaluated at 15 surface

receptors. The histogram is the experimentally obtained receptor

data, and thus y is the true value while yi is the approximated

value from fitting the statistical distribution. The SSE was used to

make two decisions: (1) Decide which statistical distribution fit the

data best. The best fitting distribution had the lowest SSE amongst

the three distributions given the same number of bins. However,

the best fitting distribution is not dependent on the number of bins.

Next, (2) decide the optimal number of bins to define the

histogram. The optimal bin number was determined by minimiz-

ing the SSE the best fit distribution gave across a range of

histograms with different numbers of bins. Thus, if the Gamma

distribution gave the best fit, the optimal bin numberBwould be

determined as

B~ min (SSEGamma
i )Vi[ 5,6,:::,mf g ð5Þ

where SSEGamma
i is the SSE given by the Gamma distribution fit

using a number of bins i, where iranges from 1 to m. Note that m

is defined as the maximum number of bins desired to test, and we

used m~500 bins. Also note that i starts at 5 bins as starting with a

smaller number of bins is not practical for representing the data.

The histogram is using the optimal bin number is then made.

Each bin of index j in the histogram is centered at aj , has a width

w, and contains a number of cells bj . Physically, aj is the median

surface receptor level in bin j and bj is the number of cells in the

population whose surface receptor level falls in the range of the bin

aj{
w
2

,ajz
w
2

��
. Note that all bins have the same width wand that

aj and w are defined automatically once the optimal bin number is

specified. The number of cells bj in a bin is determined by

bj~
XC

i~1

cellr
i Vr[ aj{

w

2

� �
ƒrƒ ajz

w

2

� �n o
ð6Þ

where Cis the total number of cells in the data set and ris surface

receptor level the index i cell contains. We define that if ris within

the bin range cellr
i ~1, otherwise cellr

i ~0. For example, a bin with

aj~7,w~4, and bj~3 means 3 cells in the population had

between 5 and 9 surface receptors.

After defining the optimal bin number, we define outliers to

account for unwanted data obtained from flow cytometry, such as

surface receptor levels outside the physiological range. As the data

is heterogeneous, we define a cutoff method for specifying outliers

that utilizes the data shape and the optimal bin number. The

cutoff is determined by the bin with lowest aj that also meets the

following two criteria:

(1) The number of cells in the bin is less than 1% the number of

cells in the largest bin. For example, if the largest bin has 500

cells, the cutoff bin must have less than 5 cells.

(2) The neighboring bins have a number of cells less than 1% the

number of cells in the largest bin.

The first criterion ensures the cutoff bin has low occurrence

probability, while the second criterion ensures uniqueness.

Mathematically, the cutoff bin is chosen when the following

conditions are met:

Cutoff~

min aj

� �
jbj{1v0:01:bm, bjv0:01:bm, bjz1v0:01:bm

� 	 ð7Þ

where bj is the number of cells contained in the bin of index j, bj{1

and bjz1 are the number of cells contained in the neighboring

bins, and bm is the number of cells in the largest bin. Once the

cutoff bin is determined, data within that bin and all bins to the

right are removed. The cutoff point is defined using the histogram

with the optimal bin number. The optimal binning minimizes the

SSE that the best fit distribution gives across a range of histograms

with different numbers of bins. Thus, optimal binning ensures

outliers are best defined using the best data representation.

Henceforth, we refer to this method as the ‘‘low bin search’’

method. Note that the geometric mean, arithmetic mean, mode,

and median are taken from the complete data set, minus outliers,

not from the binned data. For this study, we were only interested

in defining right hand side outliers, and only bins to the right of the

largest bin are cutoff candidates. This is due to there being no

negative data, in addition to cells that either have no or low

expression levels. Previous studies have shown that low VEGFR

expression does occur in tip-stalk cell selection, where activation of

Notch1 receptors downregulates VEGFRs [24,25]. Thus, we did

not consider left hand outliers, as our data is consistent with these

experimental findings. In summary, low bin search (1) determines

the best fitting distribution; (2) finds the optimal bin number using

the best fit distribution; (3) defines a cutoff point using the optimal

bin number.

Robustness of low bin search
Two bootstrapping methods were performed using the

VEGFR1 data obtained from C57BL/6 mice to observe the

robustness of low bin search. First, low bin search was performed

on a random data sample to determine the cutoff value (Fig. 2A)

and the geometric mean (Fig. 2B) after defining outliers. Second,

randomly selected samples within the complete data set were

increased by 20% and low bin search determined the cutoff value

(Fig. 2C) and geometric mean (Fig. 2D). Sample sizes used were

1,000, 5,000, and 10,000, and 100 trials were run for each sample

size and bootstrapping pair. The cutoff values found from the

random sampling fall within a range of 10,000 receptors/cell,

whereas the geometric means fall within a range of 130 receptors/

cell. The cutoff values found after increasing values by 20% fall

within a range of 2,500 receptors/cell, whereas the geometric

means fall within a range of 20 receptors/cell. The smallest and

largest geometric means for each sampling size and bootstrapping

pair were used as parameters in the model to determine if

bootstrapping caused differences in predicted free VEGF levels

(Table 1). The largest difference in free VEGF in the diseased

tissue compartment, compared to the complete data set, from all

these tests deviated by 5.24%. This deviation is negligible, and low

bin search is therefore considered robust for our purposes.

Computational Modeling of Biological Heterogeneity
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Defining outliers in the HUVEC data
We developed and tested a methodology for defining outlying

data by examining cell-by-cell VEGFR3 data treated with 1 nM

VEGF-A165 (Fig. 3). These data naturally exhibit a heavy tail,

which prevents fitting to Weibull and Gamma distributions

(Fig. 3A). After removing outliers using low bin search, described

in the Materials and Methods and a cutoff of 2%, which gave the

cutoff at 22,000 receptors/cell, the tail was reduced and the

Weibull and Gamma distributions better fit the data (Fig. 3B). A

common data cut-off approach of defining outliers as three

standard deviations above the mean [26] also resulted in a worse

fit than that given by low bin search to Weibull and Gamma

distributions (Fig. 3C). We found that the minimum SSE for the

Gamma distribution with no outliers removed was approximately

95 times larger than the minimum SSE after implementing low bin

search. Removing three standard deviations above the mean gave

an approximately 5 times larger minimum SSE than that using

low bin search. Likewise for the Weibull distribution, removing no

outliers gave an approximately 64 times larger, and removing 3

standard deviations above the mean gave an approximately 4

times larger minimum SSE than that using low bin search.

Comparing the number of data points defined as outliers between

low bin search and three standard deviations shows that low bin

search removed 7.59% more raw data, at most, over all the data

sets (Table S1).

HUVEC surface receptor data
The VEGFR1, -2, -3, and NRP1 surface expression on

HUVECs represent distributions that are not normally distributed

(Fig. 4). As such, this data is not represented best by the arithmetic

mean in computational modeling. Therefore, we examined fittings

to Gamma, Weibull, and lognormal distributions (Fig. 4). Impor-

tant features revealed by these fittings include the following:

VEGFR1, -2, and -3 distributions are positively skewed and best fit

to the lognormal distribution (Fig. 4A-C); whereas NRP1 is best fit

to the Gamma distribution (Fig. 4D). For comparison, we fit the

receptor data to the Gaussian distribution (Fig. 4). For VEGFR1,

the minimum SSE given by the Gaussian fit was approximately

1,700 times larger than the minimum SSE given by the lognormal

fit. Likewise for VEGFR2, the Gaussian SSE was approximately

440 times larger than the lognormal SSE, approximately 130 times

larger for VEGFR3, and approximately 45 times larger than the

Gamma distribution fit to NRP1. NRP1 levels are an order of

magnitude higher than any VEGFR level (Table 2). VEGFR1/2

surface expression on C57BL/6 and BALB/c mice were also fit to

Gamma, Weibull, and lognormal distributions (Fig. S1, Table 2).

For several distributions, such as VEGFR2 on HUVECs, the

mode is larger than the other three representative parameters.

This is because these parameters were taken from the complete

data set and not the binned data; thus, the mode may not

necessarily be contained in the largest bin. Other than these cases,

the arithmetic mean is the largest parameter as it has the most bias

towards the heavy tail of distributions. Since the geometric mean

accounts for the tail without biasing it, we choose it as the best

representing parameter. For comparing these parameters, we will

compare the geometric mean to the mode as those have the largest

discrepancy in value.

Figure 2. Bootstrapping low bin search. The cutoff value and geometric mean determined from low bin search (A-B) applied to a random subset
(A-B) and after adding 20% error to random data (C-D) using the VEGFR1 data set from C57BL/6 mice. Sample sizes are 1,000, 5,000, and 10,000. Each
sample size and bootstrapping method pair contains data from 100 trials, however, due to point clustering, the plots may appear to contain less
trials. Red lines show the cutoff (15,642 rec/cell) and geometric mean (1,053 rec/cell) given by low bin search using the complete data set.
doi:10.1371/journal.pone.0097271.g002
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VEGFR1 affects both initial and quasi-steady state free
VEGF concentrations

VEGFR1 and VEGFR2 levels on healthy endothelial cells were

updated within the tumor model to the levels found on endothelial

cells of C57BL/6 mice. Changes were made sequentially and in

combination to observe the sensitivity of the drug treatment to

each specific receptor (Fig. 5). VEGFR1 is a greater effector of free

VEGF levels in each compartment: we observe a 40% decrease in

initial free VEGF levels, before anti-VEGF treatment, in the

normal tissue compartment. This occurs when VEGFR1 levels on

healthy endothelial cells are updated from 1,100 VEGFR1/cell

(550 abluminal VEGFR1/cell and 550 luminal VEGFR1/cell),

which was used in the previous model [23] and represented

ensemble averaged VEGFR1 levels on both C57BL/6 and BALB/

c endothelial cells [11], to 2,110 VEGFR1/cell (1,055 abluminal

VEGFR1/cell and 1,055 luminal VEGFR1/cell), which repre-

sents the C57BL/6 geometric mean (Table 2). VEGFR1-mediated

decrease in initial free VEGF concentrations in the normal tissue

compartment gave a 40% decrease relative to control, compared

to only a 5% decrease when updating VEGFR2 alone. When both

VEGFR1 and VEGFR2 are updated on the healthy endothelial

cells, we observe a 42% decrease in the initial free VEGF levels,

further confirming that VEGFR1 has a greater effect on free

VEGF levels (Fig. 5A). We also observe a 1.7-fold decrease in

initial free VEGF levels relative to control. These updates to the

normal tissue compartment also affected the blood compartment,

where free VEGF levels were decreased by 64% when updating

VEGFR1 alone, decreased by 17% when updating VEGFR2

alone, and decreased by 68% when both receptors are updated

(Fig. 5B). Updates to either or both VEGFR1 and VEGFR2 had

no noticeable effect on initial free VEGF in the diseased tissue

compartment (Fig. 5C). Free VEGF reached quasi-steady state 3

weeks after anti-VEGF administration. In the normal tissue

compartment, this quasi-steady state level is decreased from

control levels by 22% when updating VEGFR1 alone. The quasi-

steady state free VEGF levels only exhibited a modest decrease of

4% when updating VEGFR2 alone, and a total decrease of 25%

when both receptors are updated (Fig. 5A). In the blood

compartment, this quasi-steady state level is decreased from

control levels by 28% when updating VEGFR1 alone, decreased

only 9% when updating VEGFR2 alone, and had a total decrease

of 35% when both receptors are updated (Fig. 5B). In the diseased

tissue compartment, this quasi-steady state level is decreased from

control levels by 25% when updating VEGFR1 alone, decreased

only 5% when updating VEGFR2 alone, and had a total decrease

of 28% when both receptors are updated (Fig. 5C).

Representation of VEGFR levels effects model predictions
Since slight changes in VEGFR levels cause varying effects on

the initial and quasi-steady state free VEGF concentrations, we

next survey the data representation approaches with regards to

their predicted anti-VEGF drug treatment efficacy. This was

achieved by examining how updating both VEGFR1 and

VEGFR2 controls the fold change in free VEGF levels after

anti-VEGF injection, which we define as:
½VEGF �t~quasi�steady state

½VEGF �t~0

.

An increase in free VEGF levels after anti-VEGF injection is

defined as a positive change, while a decrease is defined as a

negative change. We observe a larger magnitude change in free

VEGF in the blood and normal tissue compartments relative to

control when the model is updated to reflect the VEGFR1 and

VEGFR2 mode, median, geometric mean, and arithmetic mean

on healthy endothelial cells from C57BL/6 (Fig. 6A) and BALB/c
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(Fig. 6B) mice. All receptor levels give a negative free VEGF fold

change in the diseased tissue compartment, which indicate

decreased VEGF levels.

We observe that the choice of data representation alters the

predicted change in free VEGF concentrations, with the largest

difference in predicted treatment efficacy given between the mode

and arithmetic mean. We predict a 3.1 fold change in VEGF

Figure 3. Effectiveness of low bin search. Effect of low bin search on distribution fitting using HUVEC data of VEGFR3 treated with VEGF-A. (A)
Weibull and Gamma distributions were unable to fit the raw data. (B) After implementation of the cutoff method, Weibull and Gamma distributions
were able to fit the data. (C) Comparison to removing all data 3 standard deviations above the mean, which is also unable to properly fit the data.
Goodness of fit was measured by the combined sum of squared error of each statistical distribution.
doi:10.1371/journal.pone.0097271.g003

Figure 4. Statistical distribution fits to in vitro receptor populations. Cell-by-cell analysis of (A) VEGFR1, (B) VEGFR2, (C) VEGFR3, and (D) NRP1
distributions on in vitro human endothelial cells. Each distribution was fit to Weibull (generalized extreme value distribution), Gamma (maximum
entropy probability distribution), and lognormal (logarithm is normally distributed) probability density functions. The parameters for the best fit
distributions are given in Table 2.
doi:10.1371/journal.pone.0097271.g004
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concentration in the blood compartment when the arithmetic

mean from the C57BL/6 data is inserted into the model (2,970

VEGFR1/cell and 2,180 VEGFR2/cell) (Table 2); whereas, we

predict a 1.8 fold change in the blood compartment with the mode

(1,820 VEGFR1/cell and 2,860 VEGFR2/cell), and 2.1 fold

change with the geometric mean (2,100 VEGFR1/cell and 1,540

VEGFR2/cell), from the same data set (C57BL/6) (Fig. 6A). The

BALB/c data give similar results, predicting a 3.9 fold change in

VEGF concentration in the blood compartment when updating

the arithmetic mean into the model (3,850 VEGFR1/cell and

2,690 VEGFR2/cell) (Table 2); whereas, we predict a 1.6 fold

change in the blood compartment with the mode (1,700

VEGFR1/cell and 1,200 VEGFR2/cell) and a 2.7 fold change

with the geometric mean (2,700 VEGFR1/cell and 1,900

VEGFR2/cell) (Fig. 6B). We choose the geometric mean as the

best representation of the receptor levels, and thus the most

accurate fold changes, as it accounts for the tail of the distribution

unlike the mode, but doesn’t bias the tail like the arithmetic mean.

Free VEGF levels are sensitive to VEGFR1 levels
Since receptor levels can alter predicted anti-VEGF drug

efficacy (Fig. 5, 6), we develop a healthy body model (absence of

disease compartment) to better examine the receptor roles. We

also add in vitro (Fig. 7A) or ex vivo (Figs. 7B-C) data in the

healthy body model using all representative parameters (Table 2).

The normal tissue and blood compartments give lower magnitude

free VEGF levels compared to control for all simulations

performed (Fig. 7). Initial free VEGF levels, relative to normalized

control levels, using in vitro HUVEC data is notably different from

the ex vivo C57BL/6 mouse data in the normal tissue

compartment using the median (0.41 in vitro, 0.60 ex vivo) and

mode (0.29 in vitro, 0.61 ex vivo). The difference between these

two in the blood compartment is noticeably different using the

geometric mean (0.21 in vitro, 0.30 ex vivo), median (0.14 in vitro,

0.33 ex vivo), and mode (0.06 in vitro, 0.32 ex vivo) (Fig. 7A-B).

BALB/c free VEGF levels in the normal tissue compartment are

notably different from those of HUVEC with the median (0.41 in
vitro, 0.49 ex vivo) and mode (0.29 in vitro, 0.70 ex vivo), as well as

in the blood compartment with the median (0.14 in vitro, 0.21 ex
vivo) and mode (0.29 in vitro, 0.48 ex vivo) (Fig. 7A, 7C). Free

VEGF concentrations versus time are also given (Fig. S2). Having

added ex vivo VEGFRs to the normal tissue and in vitro and ex
vivo VEGFRs in a tumor-free model, we compare adding in vitro
and ex vivo VEGFRs to the tumor model. Free VEGF levels

obtained using ex vivo versus in vitro VEGFR1 in the tumor

model differ by 54% at most with the mode and by 25% at most

with the geometric mean (Fig. S3).

Tumor growth increases free VEGF levels
To observe how VEGF levels may change with tumor

progression, we simulate 0.62 cm3 and 1.45 cm3 tumor volumes,

corresponding to tumors that have been growing for 3 weeks and 6

weeks, respectively. The tumor size and VEGFR1/2 surface levels

on tumor cells and tumor endothelial cells (tEC) were obtained

from mouse xenografts [13]. It is observed that receptor

distributions on the tumor cells and tEC exhibited multiple

distributions. Specifically, these tumor data contain at least 2

subpopulations arising based on size with the smaller cells

containing multiple subpopulations based on receptors/cell. Due

to these subpopulations, these data cannot be fit by the continuous

probability distributions that we have used to fit our in vitro
endothelial cell (HUVEC) and ex vivo skeletal muscle endothelial

cell data. When subpopulations are qualitatively observed, fitting

to mixtures is a common approach [27,28]. We have previously
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modeled these populations as mixtures and shown that they fit well

to the multi-component lognormal mixture model [13]. However,

prior computational models have represented cellular data using

the arithmetic average. Thus to arrive at a more accurate

quantitative tumor cell and tEC data representation, we examine

tri-modal Gaussian mixture models here. While non-Gaussian

Figure 5. Effect of VEGFR1 and VEGFR2 levels on anti-VEGF efficacy. Comparison of updating the model by adding experimental VEGFR1
levels only, VEGFR2 levels only, and both compared to the control. Updated VEGFR1 and VEGFR2 values represent geometric means of C57BL/6
distributions (2,100 VEGFR1/cell and 1,540 VEGFR2/cell). The control reflects previously published VEGFR1 and VEGFR2 levels (1,100 VEGFR1/cell and
700 VEGFR2/cell) [23]. Free VEGF concentration is shown in (A) the normal tissue compartment, (B) the blood compartment, and (C) the diseased
tissue compartment. An optimized anti-VEGF agent is added at t = 0 and the VEGF concentration response is simulated to 3 weeks after injection.
doi:10.1371/journal.pone.0097271.g005

Figure 6. Effect of receptor levels on free VEGF fold change after anti-VEGF treatment. Fold change in free VEGF levels in response to anti-
VEGF treatment using different representative receptor levels from the (A) C57BL/6 (C57) and (B) BALB/c (BAL) mice data. VEGFR1 and VEGFR2 levels
were both updated in the model with geometric mean (2,100 VEGFR1/C57, 1,540 VEGFR2/C57, 2,700 VEGFR1/BAL, 1,900 VEGFR2/BAL), arithmetic
mean (2,970 VEGFR1/C57, 2,180 VEGFR2/C57, 3,850 VEGFR1/BAL, 2,690 VEGFR2/BAL), mode (1,820 VEGFR1/C57, 2,860 VEGFR2/C57, 1,700 VEGFR1/
BAL, 1,200 VEGFR2/BAL), and median (2,050 VEGFR1/C57, 1,510 VEGFR2/C57, 2,650 VEGFR1/BAL, 1,800 VEGFR2/BAL). Fold change is relative to
control fold change, reflecting the normalized fold change obtained using previously published receptor levels (1,100 VEGFR1/cell and 700 VEGFR2/
cell) [23].
doi:10.1371/journal.pone.0097271.g006
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mixture models, such as the Weibull mixture model [29], have

more flexibility in shape than the Gaussian mixture model, due to

both the goodness of fit and simplicity in computational resources,

we believe the Gaussian mixture model is the best model choice,

and deem it unnecessary to perform additional fitting to other

mixture models. Simulations are performed (1) using the tri-modal

mixture distribution and (2) individually inserting each component

(mean) comprising the tri-modal mixture. Receptor levels within

the mixture model are determined by weighting the individual

Gaussian distribution parameters with their respective densities

and summing. The distribution and mixture fits to receptor levels

on tumor cells and tECs grown for 3 weeks and 6 weeks are shown

(Fig. 8–9). The densities are ordered with ‘‘Density 1’’ having the

highest cell frequency and ‘‘Density 3’’ having the lowest

frequency. As the tumor grows from 3 weeks to 6 weeks, VEGFR1

subpopulations on the tumor cells are more highly expressed

(Fig. 8A, 9A), but VEGFR2 levels only slightly change (Fig. 8B,

9B). For example, ‘‘Density 1’’ gives the geometric mean at 2,900

VEGFR2/tumor cell (Table 3) at week 3 (Fig. 8B), and ‘‘Density

1’’ gives the geometric mean at 3,150 VEGFR1/tumor cell

(Table 3) at week 6 (Fig. 9B). VEGFR1/2 levels on tECs decrease

throughout tumor growth. For example, ‘‘Density 1’’ gives the

geometric mean at 13,000 VEGFR1/tEC (Table 3) at week 3

(Fig. 8C), and ‘‘Density 1’’ gives the geometric mean at 600

VEGFR1/tEC (Table 3) at week 6 (Fig. 9C). Likewise, ‘‘Density

1’’ gives the geometric mean at 1,450 VEGFR2/tEC (Table 3) at

week 3 (Fig. 8D), and ‘‘Density 1’’ gives the geometric mean at 600

VEGFR2/tEC (Table 3) at week 6 (Fig. 9D). Gaussian distribu-

tions corresponding to receptor subpopulations express large

differences in receptor levels (Table 3).

At tumors grown to 3 weeks, there are no noticeable changes in

free VEGF levels in either the normal or the blood compartments

when only the tEC receptor levels are updated, for all receptor

distributions (Fig. 10A-B, 10D-E, 10G-H). However, initial free

VEGF levels before anti-VEGF administration in the diseased

tissue compartment is highly dependent on the VEGFR1 levels on

tECs (Fig. 10C, 10F, 10I). Free VEGF levels in the diseased tissue

converge to approximately 41 pM after anti-VEGF treatment.

Interestingly, using the VEGFR1 geometric mean on the

‘‘Density 2’’ distribution (Fig. 8C), which is 69,500 VEGFR1/cell

(Table 3), gives an increase in free VEGF levels in the diseased

tissue after anti-VEGF treatment, corresponding to a 1.64 fold

change in free VEGF (Fig. 10C). Sensitivity analysis, performed by

observing free VEGF levels in response to parameter perturba-

tions, reveals that decreasing the VEGFR1 membrane insertion

rate on the tECs transforms anti-VEGF treatment from a pro-

angiogenic response to anti-angiogenic (Fig. 11). The insertion rate

defines the rate at which receptors are inserted into the cell

membrane, such as through receptor trafficking, making those

receptors available for ligand binding. Sensitivity analysis also

reveals that anti-VEGF treatment was ineffective for subpopula-

tions containing more than 35,000 VEGFR1/cell (data not

shown).

Figure 7. Receptor level effect on steady state free VEGF levels in the healthy body model. Free VEGF at steady state in the healthy body
model by updating VEGFR1 and VEGFR2 levels from the (A) HUVEC, (B) C57BL/6 (C57), and (C) BALB/c (BAL) distributions. VEGFR1 and VEGFR2 levels
were both updated in the model with geometric mean (2,100 VEGFR1/C57, 1,540 VEGFR2/C57, 2,700 VEGFR1/BAL, 1,900 VEGFR2/BAL, 2,530 VEGFR1/
HUVEC, 5,260 VEGFR2/HUVEC), arithmetic mean (2,970 VEGFR1/C57, 2,180 VEGFR2/C57, 3,850 VEGFR1/BAL, 2,690 VEGFR2/BAL, 3,000 VEGFR1/HUVEC,
6,950 VEGFR2/HUVEC), mode (1,820 VEGFR1/C57, 2,860 VEGFR2/C57, 1,700 VEGFR1/BAL, 1,200 VEGFR2/BAL, 2,720 VEGFR1/HUVEC, 11,400 VEGFR2/
HUVEC), and median (2,050 VEGFR1/C57, 1,510 VEGFR2/C57, 2,650 VEGFR1/BAL, 1,800 VEGFR2/BAL, 2,500 VEGFR1/HUVEC, 5,350 VEGFR2/HUVEC). The
control reflects previously published VEGFR1 and VEGFR2 levels (1,100 VEGFR1/cell and 700 VEGFR2/cell) [23].
doi:10.1371/journal.pone.0097271.g007
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As with tumors grown to 3 weeks, tumor grown to 6 weeks show

no noticeable change in free VEGF levels in the normal and blood

compartments when only the tEC receptor levels were updated

(data not shown). Initial free VEGF levels in the diseased tissue

compartment, before adding anti-VEGF, are dependent on tEC

receptor levels, but converge to approximately 41 pM after

administering anti-VEGF (Fig. 12A-C). Free VEGF levels in the

diseased tissue compartment before anti-VEGF treatment is

higher in the 6 week tumor than in the 3 week tumor. For

example, using the geometric mean and updating both tEC

receptors, the mixture model of the 6 week tumor gave a free

VEGF concentration of 93.77 pM (Fig. 12C) while the 3 week

tumor gave 49.24 pM (Fig. 10I). The tumor cell receptors are

updated in a similar fashion for 3 week (Fig. S4) and 6 week

tumors (Fig. S5). Updating VEGFR1/2 levels on the tumor cells

either individually or simultaneously gave no noticeable change to

the free VEGF levels in the normal tissue and blood compartments

for all receptor distributions, but free VEGF levels are highly

sensitive to the tumor cell receptor levels in the diseased tissue (Fig.

S4, S5).

Remark. The receptor levels and tumor sizes are obtained

using mouse xenograft models: human tumor inoculated in mouse;

therefore, the tumor cells are human and the tumor endothelial

cells are murine. However, all values (mouse and human) are used

in simulating an adult human. This simplification is acceptable as

we are only interested in observing trends in the free VEGF levels

in response to receptor heterogeneity. These observed trends are

still physiologically relevant for humans as we assume the tumor

size ratio to receptor levels are the same for adult humans.

Discussion

In this study, we introduce a novel method for quantitatively

representing heterogeneous populations, and show how account-

ing for heterogeneity affects drug efficacy predictions. We show

how low bin search simultaneously define outliers and optimizes

heterogeneous data binning. This is accomplished by performing

goodness of fit tests to various statistical distributions, where the

best fitting statistical distribution is determined. The best fitting

statistical distribution is then used to define outliers and then

representative parameters from the data are extracted. We used

these parameters in a tumor angiogenesis model, where we predict

that free VEGF levels are sensitive to VEGFR1. Using the

simplified healthy body model, we also observed that free VEGF

levels are sensitive to VEGFR1 expression, indicating that cellular

heterogeneity is essential in both healthy and cancerous angio-

genesis models. We also predict that anti-VEGF drug efficacy is

sensitive to subpopulations present in tumor cells and tECs.

Defining outliers in heterogeneous populations
We introduced low bin search, a novel method to define outliers

in a heterogeneous distribution that follows the algorithm: (1)

determining the best fitting distribution with the minimum SSE;

(2) finding the optimal bin number by minimizing the SSE the best

fit distribution gives over a range of histograms; (3) defining the

cutoff point from the optimal bin number. The cutoff point

eliminates the first bin that meets two criteria: (1) the number of

cells in the cutoff bin is less than 1% the number of cells in the

largest bin; (2) the neighboring bins also have a number of cells less

than 1% the number of cells in the largest bin. The theoretical

Figure 8. Gaussian mixture model of tECs and tumor cells at 3 weeks of tumor growth. Gaussian tri-modal mixture models and the
individual Gaussian distributions making up the mixture model for (A) VEGFR1 on tumor cells, (B) VEGFR2 on tumor cells, (C) VEGFR1 on tECs, and (D)
VEGFR2 on tECs at 3 weeks of tumor growth. ‘‘Density 1’’ corresponds to the Gaussian with highest weight in the mixture model, ‘‘Density 2’’ is the
second highest weight, and ‘‘Density 3’’ is the lowest weight.
doi:10.1371/journal.pone.0097271.g008
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basis is as follows: the first criterion ensures the cutoff bin has low

occurrence probability, while the second criterion ensures

uniqueness. Thus, as low bin search is an algorithmic approach

for defining outliers with a theoretical basis for defining the cutoff

point, we define it as a method as opposed to a heuristic rule,

which pertains to trial-and-error methods of problem solving when

an algorithmic approach is infeasible or a theoretical basis is

lacking. This novel method represents an important development,

since outlier detection is essential for removing unwanted data or

finding features that occur at low probability. Outlier detection has

been tackled for mass spectrometry by calculating the Mahalano-

bis distance a distribution gives to all other experimental runs and

eliminating those with suspiciously high distances [30]. Another

algorithm uses projection and quantile regression to discard values

that do not follow the general trend given by the data set [31], but

is computationally intensive for many data points. These methods

are useful for removing experimental runs that exhibit high

variation, but not for defining outliers within a data set. Outliers in

gene expression can be defined by incorporating probability

distribution functions and comparing to multiple experimental

runs [32]. However, this method for gene expression requires a
priori knowledge for population distribution functions, which may

not be available. The low bin search method we present requires

no a priori knowledge in regards to what statistical distribution

represents the data, and will define outliers within any type of

distribution.

Automatic gating and outlier removal in flow cytometry
Flow cytometry is a high-throughput tool for cell-by-cell

analysis, and requires gating to separate cell populations.

Bashashati and Brinkman have emphasized the need to completely

automate flow cytometry data analysis, and provided a theoretical

framework for this analysis [33]. However, few methods for

automatically gating flow cytometry data and defining outliers

within gated data exist. One such method for automated gating is

cluster analysis, which groups cells with similar fluorescence

patterns, such as by K-means clustering [34,35]. Density based

merging places the flow cytometry data on a 2-dimensional grid,

and groups data based on grid point densities [36]. K-means

cluster is limited in that clusters must be convex, and thus neglect

subpopulation features exhibited by any other shape. Density

based merging is limited to gating 2-dimensional data, such as data

containing forward scatter and side scatter information only, and

thus cannot gate data with more than two features. There is a need

to expand on current methods to gate high dimensional data and

better capture subpopulations. Thus, due to current automated

gating limitations, gating typically involves manually selecting cell

populations for these data as we have done in the past [10–13].

The low bin search method we developed could be implemented

in addition to automatic gating to search through and remove

outliers within a gate. This would provide less manual pre-

processing of flow cytometry data, which is time consuming and

subject to human error and reproducibility issues.

Binning optimization
Low bin search presented here bins data based on the data

shape and does not require transforming statistical distributions.

Binning is important as it reduces data dimensionality and

organizes data based on similar features. Mathematic operations

performed on binned data, such as fitting statistical distributions,

Figure 9. Gaussian mixture model of tECs and tumor cells at 6 weeks of tumor growth. Gaussian tri-modal mixture models and the
individual Gaussian distributions making up the mixture model for (A) VEGFR1 on tumor cells, (B) VEGFR2 on tumor cells, (C) VEGFR1 on tECs, and (D)
VEGFR2 on tECs at 6 weeks of tumor growth. ‘‘Density 1’’ corresponds to the Gaussian with highest weight in the mixture model, ‘‘Density 2’’ is the
second highest weight, and ‘‘Density 3’’ is the lowest weight.
doi:10.1371/journal.pone.0097271.g009
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are affected by the binning method. Thus, it is important to

optimize the number of bins such that statistical distributions can

best represent the data. Current approaches are limiting because

they arbitrarily assign a number of bins to represent the data based

solely on the number of data points. For instance, two commonly

used software packages, MATLAB and Palisade, determine the

number of bins based on
ffiffiffi
n
p

and rounding up to the nearest

integer, or by 10 log (n)and rounding down to the nearest integer,

for n data points, respectively. To improve these current

approaches, it is necessary to develop methods that bin based on

specific data features, in order to best represent each data set

individually. Thus, we created low bin search to bin and represent

data sets that optimizes the fit to the best fitting statistical

distribution. For comparison, low bin search determined that

NRP1 levels on HUVECs are optimally distributed over 101 bins,

whereas MATLAB would use 172 bins and Palisade would use 44

bins. Using these bin numbers, the total error was calculated as the

sum of the individual SSE from the Weibull, Gamma, and

lognormal fits. For this example, MATLAB gave a total error

24.71% larger than that given by low bin search, while Palisade

gave a total error 77.41% larger than low bin search. Probability

Binning is another binning method, which splits up the data such

that every bin may not have the same width, but contains an equal

number of events [37]. However, this method shapes the

histogram into a uniform distribution, and requires transforming

statistical probability distributions for goodness of fit tests. Low bin

search not only effectively defines outliers, but also optimizes data

binning.

Determining the best fitting statistical distributions
We show that it is necessary to determine the goodness of fit a

statistical distribution gives to a heterogeneous data set to find the

best fitting distribution. There are many metrics for testing the

goodness of fit between observed data and statistical distributions.

We chose SSE as the test metric as it weights every bin equally. By

changing the number of bins, the cluster mean changes without

altering the best fitting distribution, allowing the SSE using

different bin numbers to be compared. We optimize the bin

number with the minimum SSE, and the outliers are then defined.

Thus, using SSE to measure goodness of fits not only determines

the best fit distribution, but simultaneously defines outliers. For

binned data, SSE compares the observed hits in a bin to that

expected from a statistical distribution, using the bin center.

Another test metric, Chi-squared, differs as it weights each bin by

the number of hits it contains [38]. Overfitting is a significant

problem that negates predictive power, and results in bad data

fitting. Overfitting occurs when a statistical model is overly

complex to explain the data, typically describing random noise or

errors instead. Overfitting generally occurs when there are a

relatively high number of fit parameters to the number of

observations. To prevent overfitting, low bin search performs the

following: (1) finds the best fitting distribution; for example, in the

case of VEGFR3 this best fitting distribution is the lognormal

distribution (Fig. 4C); (2) optimizes the number of bins by

minimizing the SSE given by the best fitting distribution (Eqn 5);

(3) determines the cutoff point (Eqn 7). The optimal bin number is

found by minimizing the SSE the best fitting distribution gives, as

opposed to minimizing the SEE globally for all distributions,

reducing the overfitting risk. Additionally, all data sets contain

greater than 20,000 observations, but rather than attempting to fit

all observations, we fit to data represented by the optimal bin

number. This further reduces fitting parameters and the overfitting

risk. Further developing low bin search could include comparing

goodness of fit tests to determine the most robust test metric.
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Statistical distributions best fitting data sets
We have found that VEGFRs best fit to lognormal distributions

under all experimental conditions, whereas NRP1 best fit to the

Gamma distribution when untreated and to the Weibull distribu-

tion when treated with VEGF-A or VEGF-C. We hypothesize

VEGFRs best fit lognormal distributions because they have heavy

tails not present in NRP1 distributions. The heavy tail shows that

some cells in the population express receptors at a higher level,

which may be used by the cell population to elicit a specific

response. Lacking a heavy tail in the NRP1 distributions indicates

that the cell population keeps NRP1 levels relatively consistent

across the population. Previous studies have shown that NRP1

expression is important for T-cell stability and survival, and may

have a similar role in endothelial cells [39]. Additionally, NRP1 is

a co-receptor for VEGF-A165, and appears to play a vital role in

vascular morphogenesis [40]. However, it is not known why NRP1

is expressed at higher levels than VEGFRs. Additionally, better

understanding the connection between the best fitting statistical

distribution and the population role is needed.

Quantifying a heterogeneous population
Due to the VEGFRs being best fit to lognormal distributions,

we chose the geometric mean as the best heterogeneous data

representation. This is because the geometric mean accounts for

the heavy tail, unlike the mode or median, but it is not biased

towards the tail like the arithmetic mean. We do not want to bias

the heavy tail as it only represents a small subset of the cells in the

population. For example, VEGFR1 on tECs at 3 weeks had a

heavy tail that accounted for approximately 3% the total cells in

the population. The three statistical distributions were chosen due

to their characteristic properties; Weibull is a special case of the

generalized extreme value distribution which approximates the

maxima of a finite sequence of random variables; Gamma is the

maximum entropy probability distribution which chooses the

unknown distribution that exhibits the highest entropy; and

lognormal fits a distribution whose logarithm follows a Gaussian.

Representative parameters were chosen as they are the best

parameters that represent the three statistical distributions; they

are calculated the same for each distribution without biasing one

Figure 10. Effect of tEC receptor levels on anti-VEGF treatment at 3 weeks of tumor growth. Free VEGF in the normal tissue, blood, and
diseased tissue compartments in response to anti-VEGF treatment after updating (A-C) VEGFR1 alone, (D-F) VEGFR2 alone, and (G-I) both receptors on
the tECs at 3 weeks of tumor growth. ‘‘Density 1’’ (D1) corresponds to the Gaussian with highest weight in the mixture model, whereas ‘‘Density 2’’
(D2) is the second highest weight and ‘‘Density 3’’ (D3) is the lowest weight. ‘‘Mixture’’ was obtained by summing the geometric means of each
density distribution weighted by their density in the mixture model. The geometric mean was used for all receptor distributions (18,550 VEGFR1/
Mixture, 1,950 VEGFR2/Mixture, 13,000 VEGFR1/D1, 1,450 VEGFR2/D1, 69,500 VEGFR1/D2, 1,100 VEGFR2/D2, 1,200 VEGFR1/D3, 10,900 VEGFR2/D3).
The control reflects previously published VEGFR1 and VEGFR2 levels (1,100 VEGFR1/tEC and 700 VEGFR2/tEC) [23].
doi:10.1371/journal.pone.0097271.g010
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distribution over the other. These representation parameters are

thus generalized for any heterogeneous data set and require no a
priori knowledge. Expanding low bin search to include more

statistical distributions will allow for more accurate heterogeneous

data representations.

VEGFR1 levels control free VEGF levels
Free VEGF levels are more sensitive to VEGFR1 than

VEGFR2: using the C57BL/6 geometric mean from healthy

endothelial cells, we observed that updated VEGFR1 alone

resulted in a steady state free VEGF concentration change of

24.6% compared to control in the diseased tissue, while VEGFR2

alone gave a 4.8% change. As VEGFR1 and VEGFR2 on the

healthy endothelial cells are altered, we would expect free VEGF

levels in the healthy tissue and blood compartments to change as

those compartments are where the healthy endothelial cell

receptors are located. Previous studies confirm that free VEGF

concentrations are more sensitive to VEGFR1 than VEGFR2

levels, due to a higher binding affinity to VEGFR1 [10]. As such,

VEGFR1 is typically identified as a decoy receptor [41]. However,

more insight is necessary into the complete function of VEGFR1.

VEGFR1 is important for cell migration
We have shown a high VEGF binding affinity and sensitivity to

VEGFR1, indicating that VEGFR1 plays a more important role

than simply being a decoy. For HUVECS, VEGFR1 mediates p38

phosphorylation, which controls cell migration through actin

reorganization, whereas VEGFR2 mediates ERK1/2 phosphor-

ylation, which mediates cell proliferation [42,43]. VEGFR1 is

expressed at high levels on BALB/c fibroblasts (36,000 rec/cell)

[11], and fibroblast migration can be abolished with bevacizumab

[44]. This VEGFR1 migratory function is also observed in

macrophages [45,46], monocytes [47–49], and endothelial cells

[50]. If the VEGFR1 migratory function observed in these studies

also translates to the tumor endothelial cells, this would explain the

high VEGF binding to VEGFR1 observed in our computational

model.

Several studies have also suggested a role for upregulated

VEGFR1 in migration. In murine hindlimb ischemia, VEGFR1,

as well as proliferation markers and migration, are upregulated on

ischemic endothelial cells ten days post ischemic induction; this

time point coincides with accelerated perfusion recovery to the

hindlimb [12]. Another study has shown that VEGFR1 is

expressed 3 days after embyroid body induction, a time marked

by significant migratory phenotype by endothelial PmTc1 cell

lines. VEGFR1 expression is sustained through day ten, at which

point the endothelial-like cells arrange in a distinct pattern to line

vessel-like structures [51]. Gastric ulcers were induced in RAG2

mice, and gastric ulcer healing in VEGFR1 knockout mice

resulted in decreased CD31 mRNA levels and decreased

microvessel density compared to wildtype mice, indicating that

VEGFR1 has an important role in cell migration and vessel

formation in gastric ulcer healing [52]. Additionally, VEGFR1

expression on highly metastatic 3LL-LLC tumor cells induces

MMP9 expression in premetastatic lung endothelial cells and

macrophages. MMP9 then breaks down the extracellular matrix

and allows tumor cell migration [53]. It should be noted that

Figure 11. The insertion rate of VEGFR1 tunes the anti-
angiogenic effect of anti-VEGF treatment. Sensitivity analysis of
the insertion rate of VEGFR1 into the tEC membrane tunes the efficacy
of anti-VEGF treatment. This example examines ‘‘Density 2’’ at 3 weeks
of tumor growth giving 69,500 VEGFR1/tEC. The insertion rate using
69,500 VEGFR1/tEC is approximately 1e-14 s21, where anti-VEGF
treatment provides a pro-angiogenic response. Decreasing the insertion
rate allows for anti-VEGF treatment to provide an anti-angiogenic
response.
doi:10.1371/journal.pone.0097271.g011

Figure 12. Effect of tEC receptor levels on anti-VEGF treatment at 6 weeks of tumor growth. Free VEGF in the diseased tissue
compartment in response to anti-VEGF treatment after updating (A) VEGFR1 alone, (B) VEGFR2 alone, and (C) both receptors on the tECs at 6 weeks
of tumor growth. ‘‘Density 1’’ (D1) corresponds to the Gaussian with highest weight in the mixture model, ‘‘Density 2’’ (D2) is the second highest
weight and ‘‘Density 3’’ (D3) is the lowest weight. ‘‘Mixture’’ was obtained by summing the geometric means of each density distribution weighted by
their density in the mixture model. The geometric mean was used for all receptor distributions (1,500 VEGFR1/Mixture, 1,100 VEGFR2/Mixture, 600
VEGFR1/D1, 600 VEGFR2/D1, 1,700 VEGFR1/D2, 2,400 VEGFR2/D2, 12,250 VEGFR1/D3, 600 VEGFR2/D3). The control reflects previously published
VEGFR1 and VEGFR2 levels (1,100 VEGFR1/tEC and 700 VEGFR2/tEC) [23].
doi:10.1371/journal.pone.0097271.g012
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VEGFR1 does not appear to modulate neuronal migration – lowly

expressed VEGFR1 on cortical neuron cells was blocked with a

polyclonal antibody and neurogenesis was not hindered [54].

Likewise, neurons expressed no VEGFR1 mRNA when the cells

were treated with VEGF-A165, indicating VEGFR1 is unimpor-

tant for neurogenesis [55]. Altogether, our results, and these

previous studies, support the idea that VEGFR1 is upregulated at

early angiogenesis stages and is a crucial regulator of cell

migration.

The healthy body model assures physiological relevancy
For systems biology studies, building and testing model modules

assures that individual model pieces give physiologically relevant

results before adding additional modules. The healthy body model

was used, as it allows the heterogeneity effects to be observed in a

simplified model. This allowed us to sequentially insert experi-

mentally obtained receptor levels on healthy endothelial cells and

observe the effect in the healthy tissue compartment they reside in,

without any cross talk from the tumor. Initial model versions

contained a single, normal tissue compartment, and provided

insight into the importance in VEGFR levels in determining

VEGF concentration [56]. This iterative process allows individual

molecules or parameters to be understood, as well as provides a

troubleshooting basis for more complex models.

Tumor associated cells control drug efficacy
VEGFR1/2 levels on tumor cells and tECs play an important

role in determining drug efficacy. By observing free VEGF levels

in the diseased tissue compartment, we have shown that anti-

VEGF treatment is ineffective against specific tumor cell and tEC

subpopulations that have high expression levels. These high

expression levels consequently increased the membrane protein

insertion rate, and we showed that decreasing the insertion rate

recovered the anti-angiogenic result from anti-VEGF treatment.

For these subpopulations, receptor mRNA could be targeted to

reduce receptor levels or the insertion rate could be decreased by

inhibiting insertion proteins [57]. tECs can also form various vessel

types, creating a highly heterogeneous tumor vasculature [58]. It is

possible the formed blood vessel type varies with time, with early

vessels being more responsive to anti-VEGF treatment and late

vessels portraying anti-VEGF resistance [59]. The hierarchy of

large arteries bifurcating into successively smaller conduits present

in normal blood vessel networks is missing in tumor vasculature,

which often lack sufficient blood flow, pericyte coverage, and

exhibit leakiness and dilation [60,61]. These changes in tumor

vasculature could account for the heterogeneous subpopulations

that we observe in tECs. One study aiming to characterize cell

subpopulation heterogeneity decomposed populations based on

basal signaling markers and showed cells with similar basal

signaling to have similar drug sensitivities [62], while others have

characterized subpopulations through signaling markers after

applying drug treatment [63]. Singh et al noted that characterizing

subpopulations in an ensemble manner may be required to

distinguish biological or functional differences in subpopulations.

These tEC subpopulations and heterogeneities in vessel formation

and properties indicate a need to better characterize cell

subpopulations and their potential responses to drug treatment.

Our work provides insight into subpopulation dispersion with

regards to VEGFR membrane localization and how this affects

drug treatment.

Incorporating cellular heterogeneity with signaling
pathways

We present here how receptor heterogeneity affects ligand

binding kinetics and ligand distributions. The model implemented

here is a simplified angiogenesis model as it does not account for

receptor trafficking or cell signaling pathways. However, compu-

tational studies require building models in an iterative manner to

ensure physiological relevancy, and the lack of previous studies

computationally exploring cellular heterogeneity necessitates this

simplified model. For instance, early computational models sought

to reveal the mechanism of EGFR activation via EGF binding

using simplified models to examine the interaction kinetics [64,65].

Later models then sought to better understand the cellular

complexity pertaining to EGFR activation by mapping the

downstream signaling and receptor internalization [19,66,67].

However, VEGF models have not yet reached the sophistication

that EGF models have [68], highlighting the necessity to examine

VEGF model sensitivity. Prior sensitivity analysis revealed that

VEGFRs are the primary controller of free VEGF levels [56].

Early VEGF models first examined ligand binding kinetics to

VEGFR [69] or receptor dimerization kinetics [70] in simplified

models. Later studies increased complexity by modeling tumor

angiogenesis to examine the effect of the tumor microenvironment

on anti-VEGF treatment efficacy [71,72], and included targeting

specific VEGF isoforms [73]. Recent models incorporated

receptor trafficking and specific signaling pathways to better

understand cellular activity upon ligand binding [41,68] using

ensemble averaged receptor levels. Therefore, accurate VEGFR

representations are necessary for accurate model development.

Our ability to obtain these experimental data on a cell-by-cell level

allowed us to now examine the most appropriate way to analyze

the data, represent the data, and extract representative parame-

ter(s) for use in models. Here, we show that these are critical steps

for accurate model development. We similarly show how data

representation affects the ligand binding kinetics and ligand

distribution in a simplified model. We use free VEGF levels as the

functional model output, since it is the primary signaling molecule

in angiogenesis [74], its secretion by tumor mediates tumor growth

and metastasis [75], and a meta-analysis has shown that VEGF

levels in blood and serum is significantly elevated in cancer

patients [76]. We believe that our work presents a novel

foundation for understanding heterogeneity, particularly in tumor,

and with such a foundation, we can now incorporate downstream

signaling for more reliable predictive power.

Concluding remarks
Here we show how the choice of data representation in

heterogeneous populations can affect anti-angiogenic drug efficacy

predictions. While we select a single value from the populations to

represent the heterogeneity (every cell in the population contains

that representative parameter), we present significant analysis to

support the parameter representation; thereby establishing the

need to fully analyze experimental data and comprehensively

identify the effect of data representation on model predictions.

With the advent of high-throughput cell-by-cell data, compart-

ments should incorporate these cell-by-cell data as individual cells

with simulations probing the aggregation of these cell-by-cell

dynamics. Such approaches, applied to our system, would require

expanding the single normal tissue compartment to hz1
compartments for h healthy endothelial cells, expanding the

diseased tissue compartment to tzdz1 compartments for d tECs

and t tumor cells, and expanding the blood compartment to

hztz1 compartments. Even for relatively low numbers of cells,

say 100,000 of each type, we estimate a single simulation could
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take upwards of 170 hours/7 days on the system used for this

study. This increased complexity would require supercomputing,

split among multiple processors to obtain reasonable solution

times. Extensions such as these would advance new insight into

how a system of distinct cells interacts to achieve a specific

response.

Supporting Information

Figure S1 Statistical distribution fits to ex vivo receptor
populations. Cell-by-cell analysis of VEGFR1/2 distributions

from C57BL/6 (A-B) and BALB/c (C-D) mice. Each distribution

was fit to Weibull (generalized extreme value distribution),

Gamma (maximum entropy probability distribution), and lognor-

mal (logarithm is normally distributed) probability density

functions. The parameters for the best fit distributions are given

in Table 2.

(TIF)

Figure S2 Receptor level effect on free VEGF levels in
the healthy body model. Comparison of adding ex vivo or in
vitro receptor levels in the healthy body model. VEGF

concentration was initialized at 0 pM and simulated to steady

state. The geometric mean (2,100 VEGFR1/C57, 1,540

VEGFR2/C57, 2,700 VEGFR1/BAL, 1,900 VEGFR2/BAL,

2,530 VEGFR1/HUVEC, 5,260 VEGFR2/HUVEC) and mode

(1,820 VEGFR1/C57, 2,860 VEGFR2/C57, 1,700 VEGFR1/

BAL, 1,200 VEGFR2/BAL, 2,720 VEGFR1/HUVEC, 11,400

VEGFR2/HUVEC) of the distributions were used. (A,D) Free

VEGF response in updating VEGFR1 alone, (B,E) updating

VEGFR2 alone, and (C,F) updating both simultaneously. The

control reflects previously published VEGFR1 and VEGFR2

levels (1,100 VEGFR1/cell and 700 VEGFR2/cell) [23].

(TIF)

Figure S3 Receptor level effect on free VEGF levels in
the tumor model. Comparison of adding ex vivo or in vitro
receptor levels in the tumor model. An optimized anti-VEGF

agent is added at t = 0 and the VEGF concentration response is

simulated to 3 weeks after injection. The geometric mean (2,100

VEGFR1/C57, 1,540 VEGFR2/C57, 2,700 VEGFR1/BAL,

1,900 VEGFR2/BAL, 2,530 VEGFR1/HUVEC, 5,260

VEGFR2/HUVEC) and mode (1,820 VEGFR1/C57, 2,860

VEGFR2/C57, 1,700 VEGFR1/BAL, 1,200 VEGFR2/BAL,

2,720 VEGFR1/HUVEC, 11,400 VEGFR2/HUVEC) of the

distributions were used. (A-C) Free VEGF response in updating

VEGFR1 alone, (D-F) updating VEGFR2 alone, and (G-I)

updating both simultaneously. The control reflects previously

published VEGFR1 and VEGFR2 levels (1,100 VEGFR1/cell

and 700 VEGFR2/cell) [23].

(TIF)

Figure S4 Effect of tumor cell receptor levels on anti-
VEGF treatment at 3 weeks of tumor growth. Free VEGF

in the normal tissue, blood, and diseased tissue compartments in

response to anti-VEGF treatment after updating (A-C) VEGFR1

alone, (D-F) VEGFR2 alone, and (G-I) both receptors on the

tumor cells at 3 weeks of tumor growth. ‘‘Density 1’’ (D1)

corresponds to the Gaussian with highest weight in the mixture

model, ‘‘Density 2’’ (D2) is the second highest weight, and

‘‘Density 3’’ (D3) is the lowest weight. ‘‘Mixture’’ was obtained by

summing the geometric means of each density distribution

weighted by their density in the mixture model. The geometric

mean was used for all receptor distributions (3,300 VEGFR1/

Mixture, 2,200 VEGFR2/Mixture, 2,900 VEGFR1/D1, 1,500

VEGFR2/D1, 1,200 VEGFR1/D2, 3,750 VEGFR2/D2, 13,250

VEGFR1/D3, 14,950 VEGFR2/D3). The control reflects

previously published VEGFR1 and VEGFR2 levels (1,100

VEGFR1/cell and 700 VEGFR2/cell) [23].

(TIF)

Figure S5 Effect of tumor cell receptor levels on anti-
VEGF treatment at 6 weeks of tumor growth. Free VEGF

in the normal tissue, blood, and diseased tissue compartments in

response to anti-VEGF treatment after updating (A-C) VEGFR1

alone, (D-F) VEGFR2 alone, and (G-I) both receptors on the

tumor cells at 6 weeks of tumor growth. ‘‘Density 1’’ (D1)

corresponds to the Gaussian with highest weight in the mixture

model, ‘‘Density 2’’ (D2) is the second highest weight, and

‘‘Density 3’’ (D3) is the lowest weight. ‘‘Mixture’’ was obtained by

summing the geometric means of each density distribution

weighted by their density in the mixture model. The geometric

mean was used for all receptor distributions (2,800 VEGFR1/

Mixture, 1,250 VEGFR2/Mixture, 3,150 VEGFR1/D1, 950

VEGFR2/D1, 650 VEGFR1/D2, 1,500 VEGFR2/D2, 8,500

VEGFR1/D3, 2,300 VEGFR2/D3). The control reflects previ-

ously published VEGFR1 and VEGFR2 levels (1,100 VEGFR1/

cell and 700 VEGFR2/cell) [23].

(TIF)

Table S1 Percent of each data set defined as outliers.
Percent of each complete raw data set defined as outliers, where

outliers are defined using low bin search or by removing all data 3

standard deviations (STD) above the mean. The largest difference

in percent defined as outliers between low bin search and 3 STD is

7.59%.
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